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Abstract—Given a large enough time series signal from an
ECG signal, it is possible to identify and classify heartbeats not
only into normal and abnormal classes but into multiple classes
including but not limited to Normal beat, Paced beat, Atrial
Premature beat and Ventricular flutter as originally suggested
by benchmark electrocardiogram (ECG) datasets like the MIT-
BIH Arrhythmia Dataset. There are multiple approaches that
target ECG classifications using Machine and Deep Learning
like One Class SVM, ELM, Anogan etc. These approaches
require either very high computational resources, fail to classify
classes apart from normal/abnormal classes or fail to classify all
classes with an equivalent or near-equivalent accuracy. With these
limitations in mind, this paper proposes a deep learning approach
using Convolutional Neural Networks (CNNs) to classify multiple
classes of heartbeats in an efficient, effective, and generalized
manner. By using the MIT-BIH Arrhythmia dataset to filter
and segment individual correctly structured heartbeats, we have
designed a network which can be trained on different classes
of heartbeats and present robust, accurate and efficient results.
The class imbalance prevalent in the MIT-BIH dataset has been
dealt with using Synthetic Minority Over-sampling Technique
(SMOTE). The robustness of the model is increased by adding
techniques of loss minimization such as dropout and early stop-
ping. The approach gives an accuracy of approximately 96 % and
an extremely short time span for class prediction(classification),
i.e., less than 1 second. The results are also illustrated over
multiple (10) classes to exemplify the generality of the model.
We have illustrated these results over multiple (10) classes to
exemplify generality of the model.

Index Terms—ECG, Convolution Neural Networks, Deep
Learning, Supervised Learning
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I. INTRODUCTION

Non-threatening and treatable Arrhythmia kills about
250,000 people every year according to a research by Duke
University [13]. These types of arrhythmias occur suddenly
and are hard to detect. An Arrhythmia can be defined as an ir-
regular heartbeat that occurs due to faulty neural signals to the
heart. Arrhythmias are tachycardia (fast), bradycardia (slow)
and irregular. A heartbeat is classified as regular, or irregular
based on its beat structure. The structure is composed of a
P-wave, QRS complex, T and U waves [14]. The total length
of a beat is 0.6 to 0.8 seconds on the time axis. The sturcture
of a measured heartbeat is shown in Figure 1. According to
the MIT-BIH Arrhythmia database [7], a heartbeat can be
categorized in 16 classes, 6 of which constitute a broader
definition of a “Regular” or “Normal” heartbeat but can still
cause arrhythmias. Li, Zhi et al [15] characterizes the biggest
issues faced in heartbeat classification are structural variations
within classes and among patients. Additionally, many classes
are so rare, they are practically unseen in training data which
is naturally unbalanced.

These problems can be solved with a Neural Network that
can not only learn based on the ECG signal but also store long
term dependencies and information of the data. These Neural
Networks can be Recurrent Neural Networks (RNNs) [5] like
Long-Short Term Memory (LSTM) [3] or a Convolutional
Neural Network [4]. For training these networks, the datasets
must be balanced which is unlikely due to the natural rarity
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Fig. 1: Labeled Structure of a Heartbeat

of certain classes or using a reconstruction based approach for
anomaly detection, the model can be trained on normal classes
as a regenerative auto-encoder or a Generative Adversarial
Network.

There are numerous challenges faced in the field of ECG
classification by medical practitioners as well as Machine
Learning models. Abnormalities present in time-series heart-
beat data need to be explained. Therefore, there is a need to
classify these abnormalities separately into multiple classes as
not all abnormalities exhibit a similar level of risk and not
all abnormalities should be grouped together. This challenge
paves a way for the need to classify multiple ECG classes.
There are further challenges associated with multiclass ECG
Classification. Massive ECG time-series often do not contain
enough minority classes. This leads to insufficient and im-
balanced data. Additionally, within a class, there might be
variations of ECG representations. This intra-class variation
proves to be a challenge for training a robust model that can
avoid misclassifying such variations. Finally, even in healthy
patients the structure of heartbeats belonging to various classes
can differ. This leads to characteristic differences in beat
structure like R-R intervals, P-R intervals amongst beats of
the same patient.

This paper aims to tackle these issues with robust techniques
of dropout for limiting the number of nodes in the fully-
connected layers of the network and early stopping to prevent
over-fitting on noise as the techniques of loss minimization
in the network. For techniques of Data Augmentation, this
paper utilizes SMOTE [9], which Synthetically Regenerates
datapoints using the KNN [1] algorithm. Experiments thus
show that the approach detects multiple classes of heartbeats
with a high accuracy and with well established efficiency i.e
Classification Time.

The main contributions of the work are as follows:
1.Effectiveness: A robust Multiclass heartbeat classification
that utilizes deep learning techniques using the CNN network
structure with loss minimization for robustness and a synthetic
modification of the benchmark MIT-BIH dataset. This modifi-
cation was made using SMOTE to improve the class balance in
the dataset. The model can accurately classify multiple classes
of heartbeats (96%).

2.Efficiency: The model can make fast inferences and predic-

tions with less than 1 second required to successfully classify
a heartbeat into its respective class.

3.Generality: This paper uses the definition of generality used
by [19]. This defines generality as the ability of a model to
provide a balanced or generalized approach towards classifi-
cation within the scope of the application domain. The model
can classify 10 classes of ECG data accurately as opposed to
two-class classification models.

The organization of this paper is given as: Literature Review,
Methodology, Analysis and Results, Conclusion, References.

II. RELATED WORK

The literature of this subject is divided into two categories:

A. Classification Models

These models require labeled data for training. With enough
training data, these models are often able to obtain high scores
in terms of testing accuracy and in some cases have proven to
be efficient as well in terms of class prediction time. However,
these models often fail to catch edge-case heartbeats. These
heartbeats lie on the boundaries of class divisions and are
often misclassified by such models. Moreover, such models
also require an extensively balanced dataset to be able to
classify minority classes accurately. Due to this reason, many
models opt to classify heartbeats into normal/abnormal classes
to achieve an improved balance in the data they gather from
personal sources as well as benchmark datasets.

One-Class SVM (Scholkopf et al 2000) [8] is a model which
aims to learn/train on normal heartbeat data to be able to
identify anomalies found in abnormal heartbeats. OCSVM
is one of the initial classification works on ECG data that
gained identification as an unsupervised approach to ECG
classification using a modified application of Support Vector
Machines, which are typically considered Supervised Learning
Models.

Xu et al. 2021 [18], proposed multiclass heartbeat classifi-
cation using ELM (Extreme Learning Machine). ELM is an
artificial neural network having a single hidden layer. This
model reduces the training time requires with the least-square
algorithm due to its high training accuracy. The heartbeats
acquired in this model are first decomposed using discrete
wavelet transform (DWT) to acquire time-frequency features.
Additionally, this model uses R-R peak intervals as features
in the time domain, essentially not utilizing a raw signal but
using feature extraction to improve train time at the expense
of test time efficiency.

B. Reconstruction Models

Many models aim to detect abnormalities in any dataset
by computing a synthetic reconstruction of the data presented.
These models are often only used for single-class classification
and can only classify heartbeats as normal or abnormal. There
are numerous techniques that are used for this purpose.
Principal Component Analysis (PCA) [2] can be used for
this reconstruction, but it exhibits a limitation. PCA can only
reconstruct data in a linear space. This low representation of



Model/Property | Efficient | Non-Linear | Robust | Generalized
OCSVM [8] v v
PCA [11] v v v
AnoGAN [12] v v
ELM [18] v v v
Proposed Model v v v v

TABLE I: Comparison of Related Literature
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Fig. 2: Variation amongst different heartbeat types.

data such as in FBOX (Shah et al 2014) [11] can easily lead to
overfitting without precautions for robustness. This ultimately
results in a low accuracy and generality in experimental setups.
Recently, with growing interest in generative adversarial net-
works, there have been proposals for abnormality detection
using adversarial training techniques. AnoGAN (Schlegl et al,
2017) [12] is such a model which aims to learn abnormality
detection using visual inputs. AnoGAN has a requirement
to learn a singular latent vector for each input it encounters
making it very slow at runtime thus limiting its applications.
This paper provides an efficient, effective, and generalized
approach for heartbeat classification by incorporating deep
learning techniques of CNNs with effective robustness. The
table given at TABLE I summarizes the existing works that
relate to our problem and show that this paper satisfies all the
desired characteristics.

III. METHODOLOGY
A. Dataset

The dataset used for this paper is the MIT-BIH Arrhythmia
Dataset [7] which was started to be compiled in 1975 at Beth
Israel in Boston, Texas and was published by Physionet [6] in
1980. It is an open-source benchmark dataset consisting of 48
half hour recordings from 47 different patients using different
machines. The recordings are digitized at a frequency of 360
Hz with an 11-bit resolution over a range of 10mV.

The MIT-BIH dataset has 16 annotated heartbeat classes at
each R-Peak. The description for each label of classes is in
Table II:

Label Description
Normal
Left bundle branch
Right bundle branch
Atrial premature
Premature ventricular
Paced
Aberrated atrial premature
Ventricular flutter
Fusion of ventricular and normal
Blocked atrial premature
Nodal escape
Fusion of paced and normal
Ventricular escape
Nodal premature
Atrial Escape
Unclassifiable
1 16

-
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TABLE II: Description of Labels in the MIT-BIH Arrhythmia
Dataset

B. Heartbeat Segmentation

Each recording was read and converted into a raw signal
reading. The ML-II lead was used for reading the heartbeats
which is placed on the upper rib in normal cases with a
few notable exceptions. The records were passed through a
median filter like of window size 5 to reduce noise encountered
commonly when dealing with such ECG datasets like Xe et
al [18]. Each recording was then segmented into multiple 234
sample heartbeats with centered R-peaks. The structure for
each heartbeat was taken from ELM with 0.25 seconds before
the R-peak and 0.4 seconds after the heartbeat as given by the
inference below:

For every R-peak at point y, the beginning point of the
heartbeat is given as:

begin =y — 0.25(f) (1)
and the ending point of the heartbeat is given as:
end =y + 0.4(f) (2)

Here, f is the sampling frequency of the ECG Monitor. In
case of the MIT-BIH, the sampling frequency is 360 Hz.
Each heartbeat structure is characterized by a P-wave, a
QRS complex and T-wave, and U-wave. The R-peak values
are pre-annotated in the dataset [7], so the structure of each
beat was centered at the local R-peak value. Heartbeats with R-
peaks close to either end of the recording was discarded due
to insufficient data samples available for complete heartbeat
construction.
A sample segmented heartbeat from a single record is given
in Figure 3.

C. Synthetic Minority Oversampling Technique

Chawla et al [9]. proposed SMOTE in 2002 as an approach
to classification model construction from datasets that are
imbalanced in nature. The nature of real world datasets tend
to contain a very minute number of abnomralities and the cost
of misclassifying these can be immense. The method shows
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Fig. 3: Structure of a singular Heartbeat with ECG Magni-
tudes(Vertical axis)

over-sampling the minority and under-sampling the minority
class can create favorable results for classifier performance.
The MIT-BIH dataset is a highly imbalanced dataset [7]. The
major reason for this is that many cases of heartbeats do not
occur commonly. The dataset prepared post segmentation had
an overwhelming majority of 75,016 Normal Heartbeats. Many
of these edge cases and minority classes are misclassified
as the model does not encounter enough of their samples in
the training set. Such misclassification can be detrimental to
patient health and early myocardial infarction detection which
is divisive in the medical realm. To ensure that such misclas-
sifications do not take place, this paper utilizes SMOTE.
SMOTE is a technique commonly used in Machine Learning
and Deep Learning when dealing with imbalanced datasets.
Rather than simply duplicating minority class data in the
training set, SMOTE works by focusing on examples that are
close to each other in the feature space. A random sample
is chosen first from the minority class. K nearest neighbors
of that example are then found, typically we take K=5. One
these neighbors is then chosen, and a line is drawn between the
randomly chosen sample and the randomly chosen neighbor.
Therefore, SMOTE is basically based on KNN classification
algorithm [1]. Once connected, a random point is taken along
this connection in the feature space and a synthetic example
is created at this point. This procedure is repeated until the
minority class has as many samples in its set as the majority
class. A key suggestion in the paper is to first trim the majority
class using random under-sampling before oversampling the
dataset with SMOTE.

With SMOTE, that dataset now consists of a training set of
623818 samples and a validation set of 307255 samples with
a 1/3 train-validation split. The split was done in a stratified
way to prevent intermixing of instances in the training and
validation sets.

Before SMOTE, the shape of the dataset in terms of class
distribution is given in Table III:

The classes with the number of occurences less than 5 have

Label | Number of Samples
71621
7149
6998
6594
6167
2547
1777
311
34
16
103214

RO =P ~RZ

Total

TABLE III: Number of Samples per Class

been grouped into unclassifiable heartbeats due to the lower
limit of samples being more than 5 present in SMOTE.
With this class distribution and management, the dataset is
completely balanced and prepared to train a classifier.

D. Classification Model

One of the most common signal processing techniques is
convolution which is defined as a mathematical operation
performed on two functions. It is a commutative operation that
denotes how the shape of one function is changed or affected
by the other. The convolution operation is represented by
the * symbol. Convolution of two functions f and g is given as:

(reo) = [ T gt - Ty 3

LeCunn et al [4]. proposed Convolutional Neural Networks,
a technique of shape based recognition and classification
using minimally processed images (and signals) rather than
feature annotation in 1999. This technique has since proven
to be advantageous for classification of images and signals.
These networks, when fed with raw signals or images are
able to extract the right set of useful features and use them
for object-recognition as well as image/signal classification.
The model used for the classification is a CNN model with
3 1-D Convolution units, followed by 1D-MaxPooling and a
Dropout to avoid overfitting the dataset as well as make the
model robust. Each Convolution layer is given a leaky-ReLU
activation with a leak of 0.001. The mathematical expression
for the activation function leaky-ReLU is given as f(x):

f(z) = max(azx, ) 4)

Here, a is defined as the leak. In the case of this model, the
leak is set to 0.001.

The 1-D Convolution Kernal Size and the number of each
layer in the convolution network is given as 32(3/1)-64(3/1)-
128(3/1) where 32 is the number of filters, 3 in the size of
the filter and 1 is the step-size or stride. Padding for each
layer was set to ‘same’. The Convolution Layers are followed
by a 1-D MaxPool layer of pool size 3 and stride of 2 with
the same padding followed by a dropout of 0.5.

The model is flattened followed the 2 fully connected dense



layers of size 256 and 512 respectively with leaky ReLU
activation of leak 0.001. The final output/classification layer
is then added with softmax activation. The size of this layer
is 10 which signifies the 10 classes the model aims to predict.
The structure of the Multi-Layer-Perceptron (MLP) is given
as:

InputLayer

Dense

Dense

‘ max_pooling1ld { MaxPooling1D ‘

Fig. 4: Structure of the Proposed CNN Model

dense_1
dense_2

convld_2

convld_input

The model is optimized using the Adam optimization
algorithm. This is a replacement algorithm for the traditional
SGD and is used for training deep models. Adam aims to
combine the best properties from two algorithms namely the
AdaGrad and RMSProp to enable an algorithm to handle
noisy problems which can cause sparse gradients. The learning
for the optimizer was set to 0.001. Adam was chosen as the
optimizer for this model due to its relatively user-friendly
initialization and faster convergence as compared to other
algorithms like SGD (Stochastic Gradient Descent).
Loss minimization of the model is carried out by minimizing
the Sparse Categorical Cross Entropy Loss. The mathematical
expression for Cross-Entropy loss is given as:
Leg = — Y Tilog(S;) ®)
i=1
Here, T is the indicator which indicates whether the class label
is correct, its value is 1 if the label is correct and O if the
label is incorrect while calculating loss. S gives the predicted
probability that the member lies under the class label T.
The model was trained for 7 epochs with a batch size of 64
giving each epoch 9748 batches of the training data. Cross
Validation technique was adopted to ensure the best-fit solution
for the problem.
The loss encountered whilst training the model for 10 epochs
is given in Figure 5 and the accuracy is given in Figure 6.

IV. ANALYSIS AND RESULTS
A. Accuracy

The model is tested on the test set of the MIT-BIH. The
test set in a unbalanced set of heartbeats that is similar to
data encountered in experimental settings in terms of class
disparity. The original MIT-BIH dataset was given a train-test
split of 1/3 in 5 different iterations. The model was then tested
on each test set and an accuracy score was retrieved. The ac-
curacy score obtained by testing the model on these iterations
is 95.7% with a standard deviation of 0.03%. In comparison
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Fig. 5: Plot of Training vs Validation Loss of the model.
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Fig. 6: Plot of Training vs Validation Accuracy of the model.

with other bi-class and multiclass ECG classification models,
the performance of this model is given in Table IV:

Model Accuracy
OCSVM [8] 81.2%
PCA [11] 83.6%
AnoGAN [12] 90.2%
ELM [18] 93.4%
Proposed Model 95.7%

TABLE IV: Comparison of Prediction Accuracy of Discussed
Models

B. Generality

The model can distinctly identify all 10 classes of the data
with a significant accuracy. Generality is this paper is defined
within the scope of ECG classification. This is therefore
limited to the classification of the 10 classes defined below in
the class-precision table. Each of these classes is taken from
the MIT-BIH Arrhythmia dataset. As explained earlier, classes
with insufficient samples were classified under the ‘Q’ class
which denotes Unclassified Heartbeats. The performance of
the model on each of the 10 classes is given in Table V:



Label | Accuracy in Prediction
97.8%
96.6%
94.2%
95.4%
94.1%
96.9%
92.8%
96.1%
95.5%
95.2%

OO =L ~RZ

TABLE V: Prediction Accuracy per Class of Proposed Model

C. Efficiency

The model gives a training time of 4.8-5 hours with mean
estimated time of 1730 seconds per epoch of training. This
training was carried out using the standard Google Colab CPU
and RAM without using GPU. The Google Colab system
dedicates an Intel(R) Xeon(R) 2.3 GHz Haswell Dual-Core
CPU with 12 GB RAM for a notebook. The prediction time
for each heartbeat is very low compared to other systems
of predictions present in the literature. The proposed model
is capable of classifying a heartbeat in 0.6 seconds due
to the light CNN structure as compared to other state-of-
the-art models like AnoGan, ELM etc, while it is not an
oversimplified approach like PCA, OCSVM which would lead
to misclassifications.

The comparison of prediction times of other models discussed
in the literature is given in Table VI:

Model Prediction Time(seconds)
OCSVM [8] 0.87
PCA [11] 0.34
AnoGAN [12] 3.6
ELM [18] 8.4
Proposed Model 0.6

TABLE VI: Prediction Time of Discussed Models

V. CONCLUSION

To conclude, this paper proposes a deep learning model for
multiclass ECG classification with additive robustness. The
proposed model aims to address the shortcomings of current
approaches by focusing on two major problems. i.e:

1) Class Imbalance.

2) Variation amongst Binary Classes (Normal and Abnormal
classes contain a wide distribution of classes).

The paper tackles these issues by using various techniques
that have been previously implemented. This includes using
Minority Oversampling to tackle imbalanced classes as
explained earlier. This enabled the model to be trained on
sufficient samples to properly classify heartbeats.

In light of the literature discussed in the paper, the proposed
model aims to make the following contributions:

1) 10 Classes can be inferred through this model. These
classes cover most of the major as well as minor classes of

heartbeats encountered by medical practitioners and especially
ones which have proven fatal in most heart attacks.

2) The model outperforms baseline models with an
approximate 96% accuracy and very fast inference of
less than 1 second.

3) The model is made robust with dropout and early stopping.
This makes the model efficient, generalized, robust as well as
effective.
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