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Abstract: In laser powder bed fusion (LPBF), melt pool instability can lead to the development
of pores in printed parts, reducing the part’s structural strength. While camera-based monitoring
systems have been introduced to improve melt pool stability, these systems only measure melt pool
stability in limited, indirect ways. We propose that melt pool stability can be improved by explicitly
encoding stability into LPBF monitoring systems through the use of temporal features and pore
density modelling. We introduce the temporal features, in the form of temporal variances of common
LPBF monitoring features (e.g., melt pool area, intensity), to explicitly quantify printing stability.
Furthermore, we introduce a neural network model trained to link these video features directly to
pore densities estimated from the CT scans of previously printed parts. This model aims to reduce
the number of online printer interventions to only those that are required to avoid porosity. These
contributions are then implemented in a full LPBF monitoring system and tested on prints using
316L stainless steel. Results showed that our explicit stability quantification improved the correlation
between our predicted pore densities and true pore densities by up to 42%.

Keywords: melt pool monitoring; laser powder bed fusion; keyhole pores; lack-of-fusion pores;
temporal features

1. Introduction

Customised production is a growing trend in additive manufacturing , especially in
the generation of smaller series of products with complex geometries. As a result of this
trend, laser powder bed fusion (LPBF) is increasingly used due to its suitability in creating
complex, custom metal parts [1]. LPBF creates metal parts by melting metal powder with a
laser in our pattern of choice. These patterns are derived from a computer-aided design
(CAD), which easily allows for the modelling of flexible and complex designs. As a result,
LPBF has seen significant use in the production of medical implants, machine components
(e.g., turbine blades), and aeronautical parts [2].

Quality assurance is the main challenge in LPBF. During an LPBF build process, vari-
ous defects can occur, which impact the strength and structural integrity of the produced
part [3,4]. These defects can be the result of printing instabilities brought on by, for exam-
ple, variations in the material properties of the metal powder, heat accumulating in the
printed part, and disturbances in the build environment (e.g., changes in humidity and
air flow) [5,6]. One such defect type is porosity: the introduction of pores (or voids) in the
printed parts due to unstable printing conditions. Pores reduce the structural strength of
a printed part and make the parts more susceptible to cracking and fatigue. To reduce
porosity, the current approach is to test the printed specimens using destructive or non-
destructive testing, then adjusting the print settings by trial and error based on the test

Sensors 2022, 22, 3740. https://doi.org/10.3390/s22103740 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22103740
https://doi.org/10.3390/s22103740
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9228-4810
https://orcid.org/0000-0002-8341-9397
https://orcid.org/0000-0001-9733-0476
https://orcid.org/0000-0002-5584-4601
https://orcid.org/0000-0003-4456-4353
https://orcid.org/0000-0002-8198-0965
https://doi.org/10.3390/s22103740
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22103740?type=check_update&version=2


Sensors 2022, 22, 3740 2 of 17

findings. These repeated build attempts lead to high scrap rates, which inflate the costs
involved in LPBF, and these costs act as a barrier to further uptake of the technology [7].

In order to reduce the scrap rates in LPBF, we require the ability to reduce porosity
by creating and maintaining a stable printing process, even in a constantly changing
environment. In order to adjust build parameters on-the-fly, the state of the LPBF process
needs to be actively monitored, and any instabilities need to be communicated to the 3D
printer in real-time [4,6].

Various approaches have been proposed to monitor the stability of the LPBF process,
with differences in the choice of sensor to sense the printing process [8–10], the choice of
analysis to be performed [11–13], and the signals communicated to the LPBF printer [14–16].
The use of optical sensors has been preferred in these monitoring systems with the
trend being towards more detailed sensing: initially, photodiodes were the sensor of
choice [12,17,18], but more recently, cameras in the visual [19,20] or infrared spectrum [21,22]
have seen increasingly use. The use of cameras provides valuable spatial information on the
melt pool and spatters, but requires more elaborate processing compared to photodiodes.

The processing of the melt pool video typically consists of two stages: feature ex-
traction and the translation of features into useful printer control signals. For feature
extraction, classical hand-designed features such as melt pool geometry [9] or image texture
features [23] have been used due to the ease of computation and interpretation. More
recently, deep learning approaches have also been applied to learn features from individual
video frames [16,24,25]. While more descriptive, these deep learning features come with a
higher computational cost. Regardless of the features chosen, they serve as inputs to the
computation of either anomaly scores [9,11,14] or to estimate printer parameters (e.g., laser
speed and power) [10,13,26]. While anomaly scores capture how much the current LPBF
behaviour deviates from nominal, they do not describe in what way the current LPBF
behaviour differs. As a result, anomaly scores are typically used offline to highlight results
that require further investigation. Meanwhile, the estimation of printing parameters can
highlight instability in the printing process if they differ from the parameters that are
actually being used. This “estimation error” also provides an intuitive control signal for
online intervention in the LPBF process (e.g., parameters are adjusted in an equal, but
opposite fashion to the reported estimation errors).

While these existing works show promise in stabilising LPBF behaviour, features
explicitly expressing LPBF stability do not appear in these LPBF monitoring systems.
Specifically, feature extraction is entirely performed in the spatial domain. The temporal
domain is more naturally suited to capture process stability, but it is generally ignored with
the exception of some simple temporal denoising (e.g., averaging multiple video frames
prior to feature extraction) [8,15]. Such denoising tends to remove temporal fluctuations,
which may indicate printing instability. Additionally, the way in which print quality
is summarised can also influence print stability through the form of online control it
produces. Existing techniques, such as the estimation printing parameters or anomaly
scores, would tell us about unstable printing behaviour, but would not directly tell us
whether these instabilities have led to printing defects. Thus, these control signals can
be over-conservative, leading to regular printer interventions, even when there is a low
likelihood of defects occurring. The frequency of these changes in printing parameters may
introduce unforeseen fluctuations in the printer or the build process.

We hypothesise that the stability of the LPBF process can be improved by explicitly in-
corporating the concept of stability into the monitoring system itself. To test this hypothesis,
we propose two novel contributions:

• Introducing temporal features into LPBF monitoring to summarise the behaviour of
the LPBF process over time. These features allow for the direct measurement of
print stability.

• Defect density regression: We introduce a neural network model that uniquely links
video features to the pore density estimates collected from post-print X-ray computed
tomography (CT) imaging. With this model, we aim to reduce the number of printer
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control actions down to only those that are necessary to avoid the creation of defects,
thereby increasing stability in the printer control.

We integrate these contributions into an LPBF monitoring platform (Section 2) and
test it on parts printed with 316L stainless steel (Section 3). We show that our contributions
increase the correlation between our printer control signals and the density of observed
defects. The implications of these results are then discussed (Section 4) prior to concluding
(Section 5).

2. Materials and Methods

Figure 1 presents an overview of our proposed LPBF monitoring system. A high-speed
video camera is used to collect data on the current status of the LPBF process. This camera
is installed off-axis: it is fixed with respect to the build plate and does not follow the motion
of the laser. This has the advantage of not requiring any machine modifications or changes
in the optical path of the laser, thus allowing the monitoring system to be easily installed as
an add-on. From the video, spatial features are calculated to capture information related to
the LPBF printing process. For the first time, we applied temporal analysis of these spatial
features to assess melt pool stability. Both the temporal and spatial features are then used
as the input to a machine learning regression module to predict the density of the created
pores. Specifically, we focus here on both lack-of-fusion and keyhole pore densities as the
estimates of interest. CT images of printed parts were used to estimate these pore densities
and to train the regression model. We envision that these pore density estimations could be
used as online control signals that can be sent to the LPBF printer. Each item in the system
is described further below.

Figure 1. Flowchart of the proposed LPBF monitoring system with our main contributions highlighted
in red. A high-speed video camera is used to capture melt pool and spatter information, which is
then summarised into spatial and temporal features. These features are then used to directly predict the
density of pores created in the 3D-printed part. See the text for further details.

2.1. Data Collection
2.1.1. LPBF Machine, Material, and Settings

A 3D Systems ProX DMP320 LPBF machine was used to 3D print the parts examined
in this study. The machine was equipped with the Materialise Control Platform (MCP)
to enable a variety of experimental designs. The laser source of the LPBF machine was a
ytterbium fibre with a wavelength of 1064 nm and had a spot size of 75 µm. Each LPBF
print was carried out under an argon atmosphere using 316L stainless steel. The powder
particle size of the stainless steel ranged between 20 and 50 µm. Each layer of the printed
part was 30 µm thick, and a hatching distance of 100 µm was used. Once printed, all parts
were cut from their base plates using wire electrical discharge machining (wire-EDM).

As part of the data collection, we varied the LPBF printing parameters layer-by-layer
to encourage either (a) nominal print behaviour, (b) the creation of keyhole pores (where
gasses are trapped in the molten metal, leading to voids in the printed part), or (c) the
creation of lack-of-fusion pores (where the metal powder does not fully melt and fuses with
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the rest of the printed part). By introducing these variations on purpose, we can distinguish
different pore types and, thus, obtain reasonable ground truth pore labels with which to
train our machine learning models.

2.1.2. Camera Monitoring System

A Mikrotron EoSens 3CL camera was used to record the LPBF printing process.
The camera was installed as shown in Figure 2: above the build plate at an angle of 25◦ from
the vertical build axis. The camera operated at 20,000 frames per second, producing 8 bit
monochrome images at a resolution of 120× 120 pixels. This camera was combined with a
25 mm-focal-length lens which, in our printer, resulting in a field of view of 25.4× 25.4 mm,
with each pixel covering an area of 212× 212 microns in size.

Figure 2. Installation of the high-speed camera on our LPBF printer.

In order to protect the camera from being blinded by the laser source directly, a short-
pass filter with a cut-off threshold of 975 nm was added to the camera. Taking the sensitivity
of the camera into account, the monitoring system captured radiations between 350 nm
and 975 nm.

The camera images were recorded together with the (x, y)-position of the laser on the
build area. These laser positions are set points available in the MCP.

2.1.3. CT Imaging System

A FleXCT micro CT imaging system was used to generate 3D X-ray CT images of the
printed parts. Each part was imaged in full with a resolution of 10× 10× 10 µm. These
images provided ground truth information on the porosity of the printed samples.

2.2. Optical Feature Extraction

To predict the pore densities described earlier, multiple optical features were extracted
from the high-speed video. To show the generality of our contributions, a broad range
of spatial features was selected based on their popularity in previous LPBF monitoring
and industrial inspection works. Based on these spatial features, we added new temporal
features that measured the stability in the LPBF printing process. Each of these features
are described below. In the following, I(x, y, t) represents the intensity captured by the
camera at pixel location (x, y) and time t. An example frame is shown in Figure 3a. We
further assumed that a camera calibration step was performed to allow for the mapping
of the printer’s coordinate system to that of the video camera [27]. As a result, we have
the laser’s location in pixel coordinates as (cx(t), cy(t)), also parameterised by the time
parameter t. Finally, we have the frame-by-frame laser displacement as v(t) = (cx(t)−
cx(t− ∆t), cy(t)− cy(t− ∆t)). These are shown for a given time point in Figure 3b.
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(a) Video frame example (b) Laser path notation (c) Angular zones

Figure 3. An example frame of the high-speed video along with notations used in the feature
extraction. The frame alone I(·, ·, t) is shown in (a), while the laser location (cx(t), cy(t)) and
direction v(t) are shown in blue in (b). The angular zones used for measuring spatter direction are
shown in blue in (c).

2.2.1. Melt Pool Area

We segmented the melt pool by simple grey-value thresholding (threshold τ) and
connected component analysis [28]. This is possible because the melt pool is much hotter
than its surroundings, and hence no, sophisticated method is needed. In the following,
the binary-valued function S(x, y, t) takes the value of 1 if pixel (x, y) is above the grey-
value threshold τ. Typically, this binary segmentation consists of multiple connected
components, with one of them containing (cx(t), cy(t)). We denote the segmentation of
this latter component as Sm(x, y, t), a binary-valued function that equals 1 in all pixels of
the melt pool at time t. Let Am(t) denote the melt pool area at time t:

Am(t) = ∑
(x,y)

Sm(x, y, t). (1)

The melt pool area should remain constant over time during a stable printing pro-
cess [9,12,13,17,20,29–32]. If the melt pool gets larger than nominal, this could be evidence
for a keyhole pore. If the melt pool gets smaller than nominal, this can be evidence for a
lack-of-fusion pore.

2.2.2. Melt Pool Width–Length Ratio

In a similar vein to the melt pool area, the shape of the melt pool is frequently used to
characterise LPBF printing behaviour. This shape is often characterised by the ratio between
the melt pool’s length `‖(t) along the direction of the laser’s displacement and the melt
pool width `⊥(t) perpendicular to the direction of laser displacement [11–13,17,20,33–36].
A large melt pool length, or a low width–length ratio, is an indication of delayed melt
pool solidification due to excess laser energy, which in turn may indicate the presence of
keyhole pores.

To compute the length of the melt pool, we made use of the melt pool segmentation
Sm(t) described above and the laser displacement vector v(t). To calculate the melt pool
length, the coordinates of each pixel in the melt pool are projected onto the laser direction
vector v(t). Subsequently, the length of the melt pool is then equal to the range of these
scalar projections:

`‖(t) = max
(x,y)

(z(x, y, t))−min
(x,y)

(z(x, y, t)), (2)

where z(x, y, t) is the scalar projection of coordinate (x, y) in Sm(t). The melt pool width
`⊥(t) is computed similarly by replacing the laser displacement vector v(t) with the vector
perpendicular to it.



Sensors 2022, 22, 3740 6 of 17

2.2.3. Amount of Spatter

Spatter refers to droplets of molten metal that are ejected from the melt pool during an
LPBF print. Recently, the amount of spatter exiting the melt pool has become a feature of
interest, with more spatter being a sign of higher laser energy [37].

Typically, spatters are also hotter than the surrounding material and can be found by
thresholding. In this paper, we segmented both spatters and the melt pool using the same
threshold τ. In the following, Ss(x, y, t) is a binary-valued function equalling 1 if (x, y) is in
a spatter region at time t. In our approach Ss(x, y, t) = S(x, y, t) \ Sm(x, y, t). The amount
of spatter, As(t), is then computed as

As(t) = ∑
(x,y)

Ss(x, y, t). (3)

2.2.4. Number of Spatters

The number of spatters may, like the amount of spatter, be an indication of a defect
occurring. The number of spatters is obtained by counting the number of high-intensity
regions in the thresholded image S and subtracting one (for the melt pool).

2.2.5. Melt Pool Intensity

The intensity of the melt pool is often used as a surrogate measure for the melt pool’s
temperature [9,12,13,15,17,20,31,34]. We define melt pool intensity as the average intensity
within the melt pool area:

Îm(t) =
1

Am(t)
∑
(x,y)

I(x, y, t)Sm(x, y, t). (4)

2.2.6. Spatter Direction

Recently, Ji and Han [38] argued that the direction in which spatters travel may be
a useful feature for identifying pore creation. To characterise spatter direction with a
consistent number of features, we followed their approach and made use of a combination
of the polar [39] and Radon transforms [40]. In effect, the polar transform was used to
generate a small number of angular zones similar to the ones shown in blue in Figure 3c.
These zones were then centred at the laser location (cx(t), cy(t)) and rotated to align with
the laser displacement vector, v(t), shown in blue in Figure 3b. Once in place, the Radon
transform was used to integrate image intensities over each angular zone. The sums from
each zone were then used as features that roughly captured the directions of spatter. As we
employed a faster camera than the one used by Ji and Han (20,000 fps vs. 50 fps), we were
able to capture spatters using a single ring of angular zones as opposed to the 5 used by Ji
and Han [38].

2.2.7. Image Texture Features

The Histogram of Oriented Gradients (HOG) feature detector has been used in melt
pool analysis before [10] to capture overall image texture. Features such as the HOG have
proven to be useful in other industrial inspection problems [23] and capture more complex
image cues than the other features previously mentioned. Therefore, we included them
here to capture melt pool texture and the relations between spatters and the melt pool.

For the HOG detector, we computed image gradients∇I(x, y, t) using finite differences.
Traditionally, these gradients are binned based on their orientation to create a histogram.
However, in our context of melt pool monitoring, we made our texture features invariant to
the direction of laser travel. To do so, we measured the angle between the gradient vector,
∇I(x, y, t), and the laser displacement vector, v(t). This angle is computed as

θ(x, y, t) = acos
(
∇I(x, y, t)
‖∇I(x, y, t)‖ ·

v(t)
‖v(t)‖

)
. (5)
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These gradient angles are then binned to create our histogram of oriented gradients.
Furthermore, unlike the traditional HOG, which creates a histogram for each 16× 16 pixel
block, we used a single histogram for the whole image. This was done to (a) keep the
number of features at a manageable level and (b) because the melt pool video does not
exhibit a large amount of image texture.

2.3. Temporal Features

We propose new temporal features for the direct measurement of melt pool stability.
These temporal features were computed from each of the spatial features described earlier
in this section. The temporal variance of each of the spatial features was used to estimate
LPBF print stability over a chosen time range.

For a time-varying feature f (t), we define its temporal mean and variance as

µt( f ; t) =
1
K

t

∑
t′=t−K

f (t′), (6)

σ2
t ( f ; t) =

1
K

t

∑
t′=t−K

(
f (t′)− µt( f ; t)

)2, (7)

where K is the number of video frames in our temporal window of interest. In this work,
one temporal variance feature was computed for each of the spatial features described
earlier. We expect that larger-than-nominal temporal variances would indicate instability
in the printing process and a heightened potential to introduce pores.

2.4. Pore Density Measurement

A main contribution of this work is to directly predict the creation of pores from the
high-speed video features described earlier. To achieve this goal, we employed a supervised
learning approach to perform regression between the extracted video features and pore
densities. To generate training data for this task, we introduced porosity in layers of the
printed part using off-nominal printer settings. These layers can be identified on the CT
image of the printed part, and their corresponding pores are used to define pore densities.

To extract pore densities from the CT image, the following procedure was followed
(Figure 4). First, the CT image was denoised with a 3D total variation method to minimise
the effect of imaging artefacts (e.g., scatter) and to improve the subsequent pore segmenta-
tion accuracy [41]. A binary segmentation mask was then obtained by comparing the CT
image with a global threshold obtained using Otsu’s method. Voxels below the threshold
were labelled as belonging to pores. All segmented pore voxels inside the printed object’s
CT image were aggregated over each print layer. This gives a per-layer measure for the
number of pore voxels. A cube root was applied to this number of voxels to obtain a
quantity that scales linearly with the dimensions. We refer to this measure as the linear
pore density (LPD) and used these measurements as target values in training the machine
learning model.

Separate LPD estimates were generated for both lack-of-fusion and keyhole pores.
The lack-of-fusion pores arise where they are created, so the LPD of the given layer was
used as its lack-of-fusion pore density estimate. Meanwhile, keyhole pores are known to
appear below the print layer that creates them. Therefore, the keyhole LPD for a given
layer was computed as the sum of the LPD values in the 20 print layers below the given
layer [42]. Because of these definitions, it is important to induce these different pore types
in separate regions of the printed part when preparing your training data (i.e., layers with
nominal laser settings should be printed between layers that introduce lack-of-fusion or
keyhole pores).
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Figure 4. Illustration of the pore segmentation process. Shown is a trans-axial (vertical) slice through
the centre of a printed object, with the locations of the non-optimal print layers indicated in red (left).
Horizontal slices through a lack-of-fusion layer (top) and a keyhole layer (bottom), indicated with
arrows, are shown. For these layers, the original CT, the denoised CT, and the segmented pores are
shown from left to right.

2.5. Pore Density Estimation

To predict pore densities from the high-speed video, a supervised learning approach
was chosen based on a neural network. We generated a training set by pairing the video
features from a layer with the corresponding LPDs described in the previous subsection.
To improve the optimisation of the neural network parameters, the input features were
normalised so that each had a unit mean. The input dimension is equal to the number of
high-speed video features, while the output dimension is 2 (LPD predictions for lack-of-
fusion and keyhole pores).

Several neural network architectures were considered, including both convolutional,
pooling, and fully connected layers, and we investigated several transfer functions. Prefer-
ence was given to simpler networks as (a) we value future real-time performance and (b) we
do not expect a very high complexity in this inference task and want to avoid overtraining
or memorisation of specific data points. After several iterations, we decided on a simple
structure corresponding to a two-layer perceptron with 164 neurons in the hidden layer,
a sigmoid transfer function in the hidden layer, and a rectified linear unit (ReLu) transfer
function in the output. Training was performed in Keras for 100 epochs with the Adam
optimiser and a mean absolute error loss function.

2.6. Experimental Setup
2.6.1. Description of Object and Printing

For the experimental validation, the test object shown in Figure 5a was printed. The de-
sign consists of a main cylinder (diameter 5 mm and height 19 mm) with several smaller
cylinders protruding at angles of 45 degrees. These smaller cylinders allow easy align-
ment with CT reconstructions, taking into account possible shrinking. A squared non-
symmetrical base plate was added as this section will get partially lost while detaching
from the build plate. The markings seen on top are used to identify the object. The object
was hatched in a parallel back-and-forth pattern, with a hatching distance of 100 microns
and a rotation of 67 degrees between layers.
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Figure 5. The object printed to generate training and testing datasets (left). Pores were induced in the
bulk of the object over groups of three consecutive layers using the printing schemes on the right.
(a) The object after printing and cutting. (b) Off-nominal print layer (red = area with off-nominal
laser settings). (c) Three consecutive off-nominal print layers.

The bulk of the object was printed with nominal parameters for laser speed and power.
Deviations from these nominal parameters were introduced in 14 sections. Every deviating
section consisted of three consecutive layers where the 25 central lines had off-nominal
laser parameters. This resulted in overlapping zones with 1, 2, and 3 deviating layers,
as illustrated in Figure 5c. The settings for the different off-nominal sections are listed in
Table 1 along with the LPD measurements computed from the CT scan (see Section 2.5).
In between the off-nominal sections, we printed at least 1 mm of nominal layers, thereby
avoiding that pores from one section are confused with another section.

The full design of the test object was developed using the Materialise Build Processor
SDK, which enabled us to introduce local, off-nominal, laser settings into the print job file.

Table 1. The laser power and speed as a percentage of the nominal values and the lack-of-fusion and
keyhole densities (computed from the CT scan) for each off-nominal section.

Section Laser Power Laser Speed Lack-of-Fusion Keyhole
ID (% of Nominal) (% of Nominal) LPD LPD

1 100 80.0 0 0
2 100 66.7 0 0.691
3 100 50.0 0 2.94
4 100 40.0 0 4.82
5 100 33.3 0 5.93
6 100 25.0 0 6.52
7 150 100 0 0
8 200 100 0 0
9 233 93.0 0 0.575
10 100 133 0 0
11 100 200 1.77 0
12 75.0 100 0 0
13 50.0 100 1.71 0
14 25.0 100 4.77 0

2.6.2. Data Preprocessing and Model Training

Once printed, the test object was moved from the build plate and CT scanned. The re-
sulting CT image was aligned to its CAD model using a least-squares fitting procedure.
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The video data were also synchronised to the CAD model, as mentioned in Section 2.1.2.
The CT image and recorded video were then processed as described earlier. To avoid border
effects, which introduce porosity of unknown type, pore densities were computed only on
the central cylindrical core of the object (radius = 2 mm).

The data from the test object were split into a training and a testing set by vertically
“slicing” the object in two. All data points from one half of the object (i.e., the data coming
from laser coordinates with negative x values) were used for training, while the data points
from the other half of the object were used for testing. Since the object is symmetric in the
horizontal plane and since the hatching direction constantly alternates, the same printing
behaviours are expected to be observed in both the training and test sets.

For the calculation of optical features, the segmentation threshold τ was empirically
set to 40, while the length of the sliding window for the temporal variance calculations,
K, was empirically set to 10 frames (or 0.5 ms). Additionally, the number of bins in the
HOG feature detector was empirically set to 9, while the angular zones used to measure
spatter direction (Figure 3c) were empirically set to 60◦ each with a thickness of 8 pixels.
This results in the set of input features listed in Table 2.

Table 2. The high-speed video features used as inputs to the pore density estimation.

Feature Type Number of Features Described in...

Melt pool area 1 Section 2.2.1
Melt pool width–length ratio 1 Section 2.2.2

Amount of spatter 1 Section 2.2.3
Number of spatters 1 Section 2.2.4
Melt pool intensity 1 Section 2.2.5

Spatter direction 6 (1 per angular zone) Section 2.2.6
Histogram of oriented gradients 9 (1 per histogram bin) Section 2.2.7

Temporal variances 20 (1 per spatial feature) Section 2.3

We compared our proposed monitoring framework with a baseline approach similar
to that of Zhang et al. [13]. In their work, similar spatial image features were used to predict
laser power settings, with incorrect predictions being potential indicators of porosity. Since
both laser speed and power significantly influence porosity, we extended the work of
Zhang et al. to predict both laser parameters. In the case of laser speed, we predicted the
inverse laser speed instead in order to have both predicted values be linearly proportional
to the energy density output by the laser. To better isolate the impact of our proposed
contributions, we used our spatial features and neural network to accomplish the same
task as Zhang et al., then measured the impact of adding our temporal features and pore
density estimations to this framework. With the exception of the model training in Keras,
all other LPBF monitoring software was implemented in Quasar [43].

3. Results
3.1. Temporal Features

Our proposed monitoring system was tested both with and without the temporal
features, as was the baseline monitoring system of Zhang et al. that predicts laser speed
and power. In Figure 6, the layer-averaged predictions of the neural network are plotted for
these four different scenarios (with and without temporal features for the baseline system
and ours). Layer averages were obtained by averaging the predictions for all video frames
in a single layer that correspond to the laser-on signal. As the contours of the object are
always printed at nominal settings, a slight bias might be introduced in these averages
when considering error layers. For each graph, the target values for the 14 off-nominal
settings in Table 1 are indicated with dots. All other layers are nominal, corresponding to
target values of 1.0 (for system settings targets) or 0.0 (for pore targets).
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Figure 6. The predictions on the test data set averaged per layer, with the targets at the off-nominal
layers indicated with dots. (a) System settings’ predictions without (left) and with (right) temporal
features. (b) Pore density predictions without (left) and with (right) temporal features.

In the first scenario with the baseline system, the settings of the laser power and
inverse laser speed were predicted from only the spatial features of each individual video
frame. In the left image of Figure 6a, it can be seen that the predicted energy and inverse
speed correspond fairly to the ground truths, although a significant bias can be observed
in the inverse speed target. At the off-nominal layers, clear peaks can be observed in the
corresponding predicted values, which are proportional to the deviation from nominal.
However, the off-nominal, high-laser-speed settings between Layers 400 and 500 were
poorly estimated. A fast oscillating behaviour was also observed in the inverse speed
estimates, with a layer frequency that correlates with the inter-layer rotation of the hatching
strategy (67◦ per layer). This result indicates a sensitivity to hatching and laser direction.

The second scenario with the baseline system, visible in the right image of Figure 6a,
repeated the experiment, but with the addition of the temporal features described in
Section 2.3. The predictions showed a notable improvement: the bias and directional
sensitivity were lessened, and the predicted values at the error layers were closer to the
target values. This gives a qualitative confirmation that the inclusion of temporal features
can significantly enhance the predictive capabilities of the network.

Figure 6b shows the pore density predictions from our proposed monitoring system,
with and without the use of temporal features. Similar conclusions apply here: a bias and
oscillating behaviour was present, which was lessened by the inclusion of temporal features,
and the predictions showed a clear and proportional correspondence to the targets at the
error layers. The inclusion of temporal features showed a large qualitative improvement in
the predictions of the network.

Quantitative results were also obtained by calculating the correlation coefficients
between the predictions and the ground truth values on the test set for the four different
scenarios. These coefficients are shown in Table 3 and confirm several of the conclusions
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derived above. A clear increase in correlation can be observed when temporal features are
added, in all prediction measures. The increases were most noticeable for laser speed and
keyhole pore density predictions (20.7% and 20.6% increases, respectively).

Table 3. Correlation coefficients between predicted and ground truth outputs on the test set, for sce-
narios with and without temporal features.

Predicted Measure
Ground Truth Correlations

Without Temporal With Temporal ImprovementFeatures Features

Laser Power 0.871 0.892 +0.021
Inverse Laser Speed 0.645 0.813 +0.168
Lack-of-Fusion LPD 0.881 0.916 +0.035

Keyhole LPD 0.650 0.819 +0.169

Figure 7 shows an example of the improvements seen when using temporal features
when printing a layer with higher-than-nominal laser speed (Section ID = 11 in Table 1).
This printer setting leads to the lack-of-fusion pores seen in the red oval in Figure 7a.
Without using temporal features, the laser speed estimate (left-bottom of Figure 7b) and
the lack-of-fusion pore density estimate (left-top of Figure 7c) underestimated the extent of
the problem. When including the temporal features, the predicted laser speed significantly
increased (shown as a decrease in inverse laser speed in the right-bottom of Figure 7b) as
did the predicted lack-of-fusion porosity (top-right of Figure 7c). Both estimates based on
temporal features agreed better with the porosity seen on the CT image.

(a) (b) (c)

Figure 7. CT image, predicted laser settings and predicted pore densities, for a layer printed with
higher-than-nominal laser speed (Section ID = 11 in Table 1). Note that the addition of temporal
features improved the predictions for both laser speed and lack-of-fusion porosity. These improved
predictions were most noticeable in the region highlighted in red. (a) CT image with lack-of-fusion
pores. (b) Predicted laser settings. (c) Predicted pore densities.

3.2. Pore Density Estimation

We hypothesised that direct predictions of pore densities would correlate more
strongly with part quality than predictions of the printer’s laser settings. To test this
hypothesis, we computed the coefficient of multiple correlations between predicted outputs
and the measured pore densities. These correlation coefficients are presented in Table 4.
We observed that predicting pore densities directly correlated significantly better to actual
pore densities than using laser speed and power settings (42.8% better for lack-of-fusion
pores and 24.8% better for keyhole pores).
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Table 4. Coefficient of (multiple) correlations between predicted variables (using temporal features)
and pore densities on the test set.

Predictor Correlation with Porosity
Lack-of-Fusion Keyhole

Laser Speed and Power 0.524 0.616
Lack-of-Fusion LPD 0.916 -

Keyhole LPD - 0.819
Improvement +0.392 +0.203

To understand the reason why pore density prediction works better as a print qual-
ity indicator than laser settings, we present results in Figure 8 for a layer printed with
higher-than-nominal laser power (Section ID = 9 in Table 1). The CT image in Figure 8a
shows no porosity within the red oval in this layer, and the magnitude of high keyhole
pore density predictions in Figure 8c generally aligns with the lack of porosity observed.
Conversely, the predicted laser power, while well-predicted, is shown as being abnormally
high throughout this region. This laser power prediction clearly does not align well with
the amount of porosity observed on the CT image. Thus, a disconnect exists between the
off-nominal laser setting and the amount of porosity observed.

(a) (b) (c)

Figure 8. CT image, predicted laser settings, and predicted pore densities, for a layer printed with
higher-than-nominal laser power (Section ID = 11 in Table 1). Note that the laser settings’ predictions
would recommend a larger amount of intervention in the printing process, especially in the region
highlighted in red, despite the limited production of pores. (a) CT Image with keyhole pores.
(b) Predicted laser settings. (c) Predicted pore densities.

4. Discussion

The hypothesis for this study was that porosity could be more accurately predicted
by taking the stability of the LPBF process explicitly into account. We considered stability
in two respects: the stability of the melt pool, which was captured using our proposed
temporal features, and the stability of printer control, which we aimed to improve by
reducing the number of times the laser settings needed to be changed in real-time. This
latter stability criterion was addressed through our contribution of pore density prediction.
For both contributions, we saw increased accuracy in detecting porosity, with the com-
bination of the two showing the strongest correlations with the measured pore densities.
For the temporal features, improvements were most noticeable in the laser speed and
keyhole pore density predictions. This may be a result of capturing additional dynamic
information using the temporal features. Clearly, the time dimension is already present
in the definition of laser speed, and as that speed increases, the laser will cover more area
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and could interact with a greater variety of powder conditions (e.g., different powder sizes,
impurities, and temperatures). We suspect that this greater variety could be increasing the
temporal variance in the video features. Similarly, keyhole pore creation is known to be
associated with a variety of melt pool fluctuations (e.g., vaporisation of volatile elements
and keyhole collapse) [44]. Our temporal features are likely capturing some of that dynamic
behaviour. For pore density prediction, we observed improved results mainly because
some off-nominal laser settings did not introduce porosity. By predicting pore densities, our
LPBF monitoring system was able to ignore these inconsequential laser parameter changes.

Our two main contributions, the temporal features and pore density predictions,
are novel and, to our knowledge, have not been applied to LPBF monitoring before.
With respect to the use of temporal features, simple temporal denoising methods have
been applied [8,15], but apart from that, the time dimension has largely been ignored
in LPBF monitoring. Our results suggest that this temporal denoising might actually
be counterproductive: it may filter out the dynamic melt pool behaviour that we found
useful for detecting porosity. With respect to pore density prediction, the closest related
works focus on the prediction of laser parameters such as laser speed and power [10,13,26].
The hypothesis behind such an approach is that the melt pool should always look like it
was created with the same nominal laser parameters. Our results here show that such an
approach is over-conservative: it would recommend that laser parameters be changed even
when no porosity is being introduced. Overall, our combination of temporal features and
pore density estimation provides the most accurate prediction of porosity, resulting in more
accurate signals to control part quality and to reduce scrap rates.

The monitoring performed in this work was based on high-speed imaging. The sam-
pling rate of 20,000 fps was chosen as a trade-off between what is needed to observe pore
creation and what video speed can possibly be processed in real-time. The creation of pores
in an LPBF process occurs over very short time periods, typically less than 100 ms [44].
Thus, a high sampling rate is required to even observe the pore creation phenomena and
the events leading up to it. At the same time, the multiple video analysis steps presented
here require computation time, a resource that will be limited when extending this work to
a real-time system. While we are currently working on a real-time version of this monitor-
ing system, the camera’s high sampling rate has already led us to make design decisions
that reduce the amount of computations required. These design decisions include the
avoidance of deep learning, placing limits on the number of video features (e.g., the spatter
direction features were limited to six even through Ji and Han used 80 spatter direction
features in a similar approach [38]) and the preference for smaller neural networks for pore
density prediction.

On a related note, we acknowledge that the results presented here consider a single
set of spatial features, one which is not comprehensive. In this work, we chose spatial
features with two criteria in mind. First, we wanted to test features that capture a variety
of information, including information on the melt pool, spatters, and the image as a whole
(e.g., image texture). Second, we selected features that we believe can be computed in
real-time. It may be the case that the improvements seen with the proposed contributions
would differ in magnitude depending on the spatial features used. Deep learning features
in particular may be able to increase pore prediction accuracy simply through using more
descriptive image features. Nevertheless, we hypothesise that the proposed stability-related
contributions would show improvements in pore detection regardless of the features used.
It remains part of our future work to test this hypothesis.

Despite these improvements in pore density prediction, we did recognise a couple of
limitations. First, the temporal features seemed to influence laser speed and keyhole pore
density predictions more so than laser power and lack-of-fusion pore density predictions.
For lack-of-fusion pore density prediction specifically, this limited improvement may be due
to the temporal features’ sensitivity to laser stopping and starting effects at the beginning
and end of each scan line. This sensitivity is notable in Figure 7c, where high lack-of-fusion
pore density predictions are seen around the border of the object even when no porosity
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is seen. A simple workaround may be to ignore the temporal features when performing
predictions near the object border, thus eliminating the laser stopping and starting effects
at the expense of poorer pore predictions around the object borders. Meanwhile, we may
be seeing limited improvement in laser power estimation simply because existing spatial
features are already able to predict it quite well [12,13,24].

A second limitation of this work is related to the measurement of pore densities from
the CT image. We assume that all pores on or below an off-nominal print layer have
the same label. In practice, this assumption can be challenging to apply. To improve the
suitability of this assumption, we deliberately ignored the object border regions. These
border regions show porosity for a variety of reasons that are beyond our control (e.g., ge-
ometry, head dissipation, laser stopping and starting effects) [45], making it challenging to
determine what types of pores are present there. Similarly, we made sure to introduce a
gap of nominally printed layers between the off-nominal layers we used to create pores.
While our off-nominal laser settings were chosen carefully to introduce a specific pore type,
there is the possibility that the occasional pore of a different type could have been created in
nearby nominally printed layers. Based on our reported improvements in pore prediction
accuracy, we suspect that any incorrectly labelled pores were small enough in number
not to significantly impact our results. Nevertheless, it should be noted that the labelling
of the pore type can be both challenging and can influence the results of the proposed
LPBF monitoring platform. This labelling should be carefully considered when training the
neural network.

Finally, we acknowledge that the experimentation presented in this study is not com-
prehensive. Only a single test object was used for experimentation, and it had a rather
simple geometry. It has been established that part geometry can have an impact on the re-
sulting porosity [46], with more complex geometries inducing greater porosity. It remains to
be seen how the proposed LPBF monitoring contributions perform across different printed
objects with more complex geometries. This too is planned future work. Nevertheless, we
showed a proof-of-concept experiment in which pore prediction was improved through
the explicit encoding of LPBF process stability into the monitoring system.

5. Conclusions

We proposed herein that LPBF monitoring systems could predict porosity better by
explicitly measuring LPBF stability. In particular, we proposed two ways of capturing that
stability using high-speed camera data. First, temporal video features were introduced to
compute the variance in the LPBF process across time. Second, we proposed a machine
learning model for the direct prediction of pore densities. Our experiments showed that
these contributions improved the estimation of real pore creation by both capturing dy-
namic LPBF behaviour and directly learning its relationship with the resulting porosity.
The temporal features improved the prediction of keyhole pores by over 20%, while the
direct prediction of pore densities improved prediction accuracy by 24–42%. These results
are an encouraging first step for the encoding of stability measures in LPBF monitoring.
Future work will look to confirm these results over different part geometries and different
image feature sets.
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