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ABSTRACT Massive Multiple-Input Multiple-Output (MaMIMO) communication networks are recently
being investigated for hltheir high potential for localisation services. This is enabled by the high-dimensional
channel state information (CSI) captured by the many antennas in the system. Previously, it has been shown
that these systems can achieve a very high localisation accuracy. However, many challenges still remain,
we identified two of them. First, the recent trend towards cell-free MaMIMO with many highly distributed
Access Points (AP), leads to the question of how this impacts the localisation methods. Current localisation
methods process the signals in a central processing unit (CPU), resulting in a high fronthaul requirement
when deploying these algorithms in a distributed network, limiting the deployment and scalability. Second,
there exists a trade-off between using model-driven and data-driven localisation methods. In this work,
we propose two new localisation methods which employ a distributed processing strategy and compare them
against two centralised localisation methods. In addition, the four analysed methods explore the trade-off
between being model- and data-driven. Moreover, the proposed ML-MUSIC method blurs the lines between
the two by combiningMachine Learning and traditional signal processing. Next to comparing the localisation
accuracy, we evaluate the performance in a dynamic setting, the scalability and fronthaul requirement of the
methods. The proposed Machine Learning-enhanced Multiple Signals Classification method, ML-MUSIC,
reaches a median error of 34.2 mm on the test set while only using 500 training samples. Due to
ML-MUSICs distributed design, the fronthaul throughput requirement is reduced 1200-fold in comparison to
the centralised methods. Furthermore, ML-MUSIC has the lowest computational complexity of all analysed
methods, making it an ideal method to localise users in upcoming distributed cell-free MaMIMO networks.

INDEX TERMS Cell-free, massive MIMO, localization.

I. INTRODUCTION
With the introduction of 5G, massive Multiple Input Multi-
ple Output (MaMIMO) enabled communication systems will
be deployed all around the world. Such MaMIMO systems
are characterised by employing a large number of anten-
nas at the base station (BS) to beamform the signal power
towards the intended user [1]. In this way, multiple users
can be served using the same time and frequency resource
as they are multiplexed in the spatial domain. In order to
effectively beamform towards the users, the channel state
information (CSI) for each user has to be measured. This CSI
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contains all information about the wireless channel between
the user and the BS and can be used to localise users. The
challenge is now to estimate the position in the most effective
way.

In [3], the authors envision that future distributed massive
MIMO networks will enable six-dimensional localisation. in
this vision, not only the 3D location will be estimated and
provided by the cellular network, but also the orientation of
the user. This opens interesting opportunities for unmanned
aerial vehicles (UAVs), ground robots in industrial settings,
autonomous cars, but as well other applications in the world
of augmented and virtual reality. Ubiquitous six-dimensional
localisation services will be a key technology linking the
metaverse with the physical world.
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A. DISTRIBUTED LOCALISATION
The literature has seen a recent surge of research interest in
localisation based on MaMIMO systems, resulting in highly
accurate localisation methods. The main advantage of using
MaMIMO systems for localisation is the high number of
antenna elements at the base station. In [12], the authors show
using a statistical channel model that the localisation perfor-
mance increases with a rising number of antennas at the base
station. In [10] , we show the same trend, i.e. an increased
localisation performance due to an increased number of base
station antennas, while using a measured dataset.

However, next-gen MaMIMO communication systems are
evolving towards distributed and cell-free configurations [2].
A cell-free system is divided in space by distributing the BS
into multiple access points (AP) and spreading the APs over
the targeted coverage area. It has been shown [4], [5], that
the distribution of the antennas increases the spatial diversity,
which decreases the channel correlation between users. As a
result, inter-user interference decreases and the spectral effi-
ciency of the system increases. These benefits are both true
for outdoor and indoor scenarios. However, when adopting a
different antenna configuration, the impact on the localisation
performance has to be analysed.

Savic and Larsson [6] presented, based on simulations,
that increased spatial diversity is beneficial for localisa-
tion purposes. Later, we showed a practical distributed
antenna system that is indeed able to reliably locate users
based on measured data [10]. Moreover, [7] and [11] show
that for an indoor scenario, a distributed antenna deploy-
ment increases the localisation accuracy in comparison to
co-located systems.

In addition, we have shown before [9] that when using
a collocated antenna array, the localisation performance is
strongly influenced by moving objects in the vicinity of the
user. More specifically, when the line-of-sight (LoS) link
between the user and the BS is blocked, the localisation
accuracy reduces strongly. By distributing APs over an area,
we increase the probability that at least some of the APs
will have a LoS connection with the user. In general, when
external factors influence the channel between the user and
the BS antennas, a distributed system has the advantage that
on average fewer links between the user and BS antennas are
affected, resulting in a more reliable localisation system.

Previous methods processed the CSI centrally, which
requires that the CSI is transmitted from each AP over a
fronthaul link to a central processing unit (CPU). However,
since the CSI is updated very frequently and a distributed
MaMIMO system consists of many APs, the transmission of
the CSI will require a high throughput of the fronthaul link.
When this is the case, this may lead to increased latency of
the position updates, resulting in hlpotentially dangerous sit-
uations when the localisation service is used by autonomous
drones or cars. A trade-off between latency and accuracy
has to be made here. It can be solved by installing a higher
capacity fronthaul link and increasing the processing power at
the CPU, however, this induces an extra cost for the providers.

Therefore, in order to lower the required fronthaul throughput
and computational requirements of the CPU, we propose to
distribute the localisation task over the APs.

B. MODEL-DRIVEN VERSUS DATA-DRIVEN LOCALISATION
When designing a localisation method based on a wireless
communication system, multiple options can be considered.
The literature classifies localisation algorithms into two cat-
egories [14]:

1) Model-Driven: The localisation method computes the
location of the user based on how the channel is
expected to behave based on channel models.

2) Data-Driven: The localisation method locates a user
based on a channel dataset. The channels in the dataset
need a positional label to link channels to locations.
A data-driven localisation method links the channel of
the user with channels in its dataset to estimate the
user’s position.

Between the two classes, there exists a trade-off, depend-
ing on the given system and targeted deployment. We will
give a short overview of the two categories and discuss the
advantages and disadvantages.

1) MODEL-DRIVEN LOCALISATION
Model-driven localisation methods use the geometric proper-
ties of the communication system and the theoretical knowl-
edge of the user’s signal to triangulate the position of the
user [18]. To do so, Time-of-Arrival (ToA), Time-Difference-
of-Arrival (TDoA) or Angle-of-Arrival (AoA) can be used at
the APs. ToA and TDoA estimate the distance between the
user and the APs. AoA methods estimate the direction from
which the received signal is originating.

In ToA systems, the time is measured between sending the
signal at the user and receiving the signal at the receiver’s
antennas. The propagation speed is known, the speed of light,
hence, the time difference can be used for ranging. When the
range to different receivers is known, the user can be located
using the geometry of the receivers. TDoA systems measure
the time difference between receiving the signal at the dif-
ferent receivers. In this way, the source location of the signal
can be calculated based on the location and time differences
of the receivers. In ToA and TDoA based systems, accurate
synchronisation in time is required. In addition, in multipath
scenarios, it is difficult to extract a correct ToA [22].

When using AoA-based positioning methods, the received
signal at an antenna array is used to compute the direction
from which the signal originated. When multiple AoAs are
estimated at different arrays, the exact origin of the signal can
be calculated based on the geometry of the communication
system. In [12], Garcia et al. localise the users by using the
AoA, assisted by the ToA, measured at different distributed
APs of a MaMIMO system.

In general, the advantage of model-driven methods is that
they are very deterministic and require no training data, given
that the antenna arrays are calibrated. However, the required
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calibration is one of the biggest disadvantages of model-
driven methods. Furthermore, in complex environments,
e.g., where many reflections are present or users experience a
non-line-of-sight connection to the APs, model-driven meth-
ods are inaccurate since these effects are hard to model.

2) DATA-DRIVEN LOCALISATION
Data-driven localisation methods rely on measured databases
to estimate the location of a user. First, during an off-line
step, a labelled database is gathered, containing information
about the channel of the user. The information can consist, for
example, of received signal strength indicators, power delay
profiles or CSI. This information serves as the fingerprint
of the user, hence, these methods are often referred to as
fingerprinting techniques. Afterwards, in an online step, the
measured fingerprint of a user is compared to the database to
estimate the location. The localisation performance of data-
driven methods is fundamentally limited by the size and label
accuracy of the recorded database, a larger number of samples
and a very accurate label are key.

For data-driven localisation methods, the biggest challenge
is how you most effectively link the measured fingerprint
with the fingerprints in the database. The authors of [20] use
weighted K-nearest neighbour (WKNN) to localise a user in a
MaMIMO network based on a power delay profile database.
However, WKNN requires searching through big parts of the
database, making it computationally inefficient. Furthermore,
as a larger database is beneficial for accuracy, the practical
use of methods that have to compare against the database is
limited. In [6], Savic and Larsson proposed to use Machine
Learning (ML), more specifically Gaussian Process Regres-
sion, to learn an unknown non-linear function to directly map
the fingerprints to a location. Vieira et al. proposed in [13] the
use of convolutional neural networks (CNN) in order to link
the fingerprint of the user to the fingerprints in the database.
The CNN learns the direct mapping between the fingerprint
and the location of the user in an offline way. Afterwards,
during the online step, the CNN can directly estimate the
location of the user without accessing the database, resulting
in a much more efficient online step.

Ever since Vieira et al. proposed the use of NNs for fin-
gerprinting with MaMIMO CSI, many studies have adopted
this technique. Arnold et al. showed a fingerprinting method
using CNNs on measured data, including data of users in a
non-line-of-sight scenario [14]. Ferrand et al. showed the per-
formance in indoor and outdoor environments using a mea-
sured dataset, they explore the generalisation of the approach
and data ageing [15]. In [16], Foliadis et al. combined NNs
and careful feature design to reach cm-level accuracy in
indoor environments.

The main drawback of using data-driven methods is that
data-driven methods have to start learning how to locate a
user without any prior knowledge. In practice, this translates
into the need for a very large dataset. Gathering a large dataset
containing both the wireless channel and the exact location of
the corresponding user is very time consuming and, therefore,

an expensive process. As a result, the challenge for data-
driven methods is to minimise the required size of the dataset,
hence, improving the data efficiency.

C. CONTRIBUTIONS AND OUTLINE
In this article, we study the localisation performance of a
distributedMaMIMO system.We study the localisation accu-
racy, the computational complexity and the required fronthaul
throughput of several proposed localisation methods. Our
main contributions are:
• A new publicly available measured dataset, containing
data of a nomadic environment;

• Introducing two new distributed localisation methods;
• A comparison of distributed and centralised localisation
methods using multiple performance indicators;

• Exploring the advantages and disadvantages of model-
driven and data-driven methods;

• The proposed ML-MUSIC method reduces the compu-
tational complexity and fronthaul requirements, while
reaching a high localisation accuracy.

The paper is organised as follows: In Section II, the testbed
used for the measurements is described as well as the mea-
surement scenario. Section III introduces the different local-
isation methods used in this work. Afterwards, Section IV
analyses the performance of the different methods. Next,
in Section V, we delineate some implications on the privacy
of the users using the proposed localisation methods. Finally,
Section VI concludes this study.

II. MEASURED MAMIMO DATASETS
In this section, the datasets used to study the performance
of the different proposed methods are introduced. In order
to study the localisation performance of different methods,
a dataset of Massive MIMO channels is needed. To gather
such a dataset, there are two possible options.

The first option is to simulate the channels. This can be
done using various channel models or, preferably, using ray-
tracing software. One of the advantages of using simulated
data is the total control over the environment, which leads
to a perfect knowledge of the ground truth. Having accurate
positional labels is crucial when developing and evaluating
localisation methods. Furthermore, when using simulated
data, extra data is generated with ease, resulting in a possibly
very large dataset.

The second option is to gather the data using a testbed
and measuring real-life channels. Creating a large accurately
labelled dataset is very hard with measured data. Measuring
the channel at a large number of locations is very time con-
suming. Furthermore, acquiring an accurate positional label
for such measurements is very hard. However, we argue that
simulated data can not capture all the different non-idealities
that we observe in the real world. Therefore, we decided
to base this study on measured data. To do so, we have to
overcome the challenges that such a measurement introduces.

First, we describe the distributed Massive MIMO testbed
which we use for the measurements. Next, we delineate how
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we extended the testbed in order to overcome the following
challenges: i)Highly-accurate labels and (ii) recording a very
large dataset. To end this section, the two datasets collected
using the testbed for this study are presented.

A. DISTRIBUTED MASSIVE MIMO TESTBED
The KU Leuven Massive MIMO testbed is equipped with
64 patch antennas, that can be combined into an array by
employing a flexible mounting system. This allows it to
quickly change the antenna deployment from a centralised
uniform rectangular array to a uniform linear array or a
distributed array. When utilising the distributed array, the
antennas are distributed into eight APs, each being a uniform
linear array of 8 antennas.

For this study, the APs were placed in an octagonal shape
around the region-of-interest (ROI), with the patch antennas
facing themiddle of the octagon. The users were placed inside
the ROI. The placement of the distributed antennas is shown
as the green rectangles on Fig. 1. This setup was build inside
our lab, which is 6 m by 9.5 m. Around the ROI, the lab is
very cluttered with desks, cabinets, measurement equipment
and other miscellaneous object, resulting in an environment
with a lot of scattering.

The testbed uses a time division duplexing frame structure,
it switches between a down- and up-link phase. Since the
channel is assumed to be reciprocal, we assume that the
uplink and downlink CSI is the same. The testbed measures
the channel by the use of uplink pilots. During a specific
time slot, every 0.5 ms, each user sends a known uplink pilot.
The base station receives these uplink pilots and estimates the
channel by comparing the known pilot tones with the received
pilot tones. The estimated channel is used to compute the
combining and precoding vectors to enable MaMIMO com-
munications. As a results, the CSI is already available for
communication in the base station and can easily be used for
localisation services without introducing extra overhead in
the communication system. Afterwards, the CSI samples are
saved to a hard disk at the base station during the collection
of the dataset.

For each antenna, the testbed can measure the channel
at 100 subcarriers. Therefore, while performing measure-
ments, the measured channel has the form H ∈ C64×100.
The measured data contains the I/Q sample of the channel
for the corresponding antenna and subcarrier. The distance
between subcarriers is 180 kHZ , resulting in an effective
bandwidth of 18 MHz. As a centre frequency, 2.61 GHz
is used (λ = 11.49 cm). The space between two anten-
nas centres in the same subarray is 70 mm. These APs are
attached to the BS by coax cables with a length of 8 m. This
allows us to spread the APs over an indoor location. The
antennas of the APs are placed at a height of 1 m above the
floor.

Twelve users can be connected at the same time to the
testbed. The user equipment is synchronised to the BS by
the use of coax cables. This ensures a good time and fre-
quency synchronisation between the devices. All devices are

FIGURE 1. Overview of the indoor measurement campaign. The 64 BS
antennas (green boxes) are distributed over eight APs, each configured as
a ULA, and were spread around the region-of-interest. Each of the four
users scans an orange rectangle by the use of a CNC xy-table. Every 5 mm,
the xy-table stops and the channel is recorded for the static user. In this
way a highly accurate dense dataset is achieved, spanning a grid with
252,004 measurement points.

controlled using the NI MIMO application software running
in LabView.

B. CNC-POWERED MEASUREMENT EXTENSIONS
1) ACCURATE POSITIONAL LABELS
In order to overcome the challenge of having accurate posi-
tional labels for our measured datasets, we focused our efforts
in developing a robotically controlled automated measure-
ment set-up. The general idea of the proposed set-up is
to use Computer Numerical Control (CNC) XY-tables to
move the antenna of the users. These machines have an
sub-mm-accuracy when placing something in the XY-plane.
In this way, the labels of the users locations are very accurate.
For these experiments four CNCXY-positioners (OpenBuilds
ACRO1515) were placed in the lab, each moving the antenna
of one user. The antennas were connected to the correspond-
ing devices using coax cables with a length of 5 m.

2) LARGE AND DENSE DATASET
The second challenge to overcomewhen recording the dataset
is the number of samples we can record. As moving the
antenna and taking a measurement takes some time, doing
this manually will take too much time, resulting in a dataset
spanning a small area or with a very low density. Since the
positioners can be controlled by a computer, an automated
measurement set-up was be developed. The four positioners
are connected to a central control PC, which is able to send
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commands and move the antennas to an arbitrary location
inside the reach of the positioners. The LabView MIMO
application framework running on the BS was extended to
allow automated CSI measurements. This is done by sending
TCP packets from the central PC to the BS. When a packet
arrives, the BS takes one CSI snapshot for all connected
users. The packet contains an identification number which
is used to identify the samples of measured data. In this
way, the correct positional label can be matched with the
corresponding measured CSI sample. As a result, the testbed
and XY-positioners can perform automated measurements,
recording the CSI of users at defined positions with a high
accuracy and without any human intervention.

C. DATASETS
For this study, two different datasets are employed. The first
one is a large and dense dataset recorded in a static environ-
ment where the users have an unobstructed LoS connection to
the APs. This dataset is used to train or calibrate the employed
methods. Furthermore, it is used to test the accuracy of
the different methods with regards of the number of train-
ing/calibration samples used. The second dataset is recorded
while a person was moving in the environment. This dataset
is called the nomadic environment dataset. This dataset is
used to test the methods in a changing environment. The
moving person alters the channel of the users by changing the
multipath. Furthermore, the moving person can even cause a
loss of LoS with some APs. The two datasets are presented
below inmore detail are publicly available at IEEEDataport.1

1) DENSE CHANNEL SURVEY
The first dataset is a dense channel survey. By employing the
CNC XY-tables, we recorded a very large dataset. We set the
XY-tables to move over a grid with a grid-size of 5 mm and
stop at each node of the grid for 0.5 s. While the XY-tables
stopped, one CSI-sample was recorded by the APs for this
position. The total grid spanned an area of 1.25 m by 1.25 m,
resulting in 63,001 CSI-samples per user. We employed four
users, therefore, this dataset contains the channel for 252,004
different locations in the region-of-interest. The full scenario
for this measurement is shown in Fig. 1.

2) NOMADIC ENVIRONMENT DATASET
When usingML to develop a localisation model, the accuracy
is only as good as the dataset it was trained on. Therefore,
when the CSI changes, for example by movement in the
area of the users, and this affected CSI is not represented
in the dataset, the localisation accuracy will suffer. To check
the performance of the proposed methods in such nomadic
environments, a second experiment was designed.

During this experiment, the userss were put in static
positions in the middle of their respective XY-table. Next,
we recorded the CSI for two minutes with a half second

1https://ieee-dataport.org/open-access/ultra-dense-indoor-mamimo-csi-
dataset

interval in between the CSI samples. While performing the
measurements, a person was moving in the room, following
predetermined paths. In total seven different scenarios were
performed. During the first scenario, nothing was moving in
the room, this measurement can be used as a reference to see
how stable the localisation is over time when the scenario
remains the same. During the other six scenario, a person
was walking back and forward along one of the edges of the
positioners. The six paths can be seen in Fig. 2, depicted by
the large pink arrows.

FIGURE 2. The scenario for the nomadic measurements. The users were
placed at the middle position of the xy-tables, shown by starts on the
figure. Next, a person walked back and forth along a given trajectory for
two minutes while the channel for the user was captured every 0.5 s.
In total six trajectories were recorded, shown by the red arrows on the
figure. Also a reference measurement was taken when nothing was
moving in the environment.

The nomadic measurement was performed right after the
recording of the dense channel survey. This was done to
ensure that the environment of the measurement campaign
stayed exactly the same. The purpose of this dataset is to
see if the proposed methods, which will be trained on the
static data of the dense channel survey, are still valid when
the environment slightly changes.

III. LOCALISATION METHODS
This section outlines the different localisation methods pro-
posed in this study. The methods are split into two categories.
The first category, centralised localisation methods, delin-
eates localisation methods which process the full CSI at the
CPU. The second category, distributed localisation methods,
handles the localisation task by partially distributing the pro-
cessing of the CSI to the APs.

A. CENTRALISED LOCALISATION METHODS
Centralised localisation methods gather the CSI from every
AP at a CPU, which combines the CSI to locate the user.
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This leads to the full availability of the CSI, combining all
the APs into one large array, therefore, moving the user to the
near-field (NF) of the array [19]. The distance at which the
near-field of an array stops, and the far-field begins, is often
assumed to be the Fraunhofer distance

dF =
2D2

λ
.

The Fraunhofer distance depends on the size of the array D
and the wavelength λ of the used carrier. When using only
one AP, the ROI is located partially inside the NF region of
that AP. However, when they are combined, the full ROI is
located in the NF region of the array. Inside the NF region, the
wavefront of the signal transmitted by the user has a spherical
shape. Analysis of the curvature of this wavefront enables
simultaneous ranging and AoA estimation. As a result, the
location of the user can be estimated with high precision [17].

Since centralised localisation methods need all CSI at the
CPU, they put a high required throughput on the fronthaul
link. As cell-free MaMIMO networks scale, more APs will
be deployed, resulting in more CSI that has to be sent to the
CPU. As bigger antenna arrays lead to a higher localisation
accuracy [10], being able to process the CSI from all these
APs is beneficial. Therefore, the use of a centralised process-
ing method, may limit the scalability of the system.

Here we outline two centralised localisation methods. The
first method is data-driven, the second is model-driven.

1) END-TO-END MACHINE LEARNING
When using end-to-end (E2E) ML, a model learns all the
steps between the input and the outputs of the model and all
the different parts of the method are trained simultaneously.
In recent years, E2EMLwas proposed for position estimation
based on the CSI of Massive MIMO systems. In a couple of
years, the research field has made tremendous strides, going
from validation work, based on simulations [13], to cm-level
localisation accuracy on measured datasets [10], [14] [16].

The general idea for localisation with data-driven meth-
ods, is to feed the CSI measured at the APs to a neural
network (NN) running at the CPU. The NN estimates the
position of the associated user based on the CSI. To learn the
mapping from CSI to a location estimate, the neural network
is trained on a CSI database, labelled with corresponding
positional labels. This is done during an online training phase.
During the training phase, the NN learns the relevant features
of the CSI to estimate the position of the user. The NN learns
the direct relation between the CSI and the coordinates of the
users.

E2E ML models that are currently used in literature gather
the full CSI at a central node and process it in one NN.
Therefore, we implemented such a centralised ML model as
a benchmark. In order to achieve this, all APs send their CSI
Hi over the fronthaul link to the CPU. The CPU constructs
the full CSI matrix H, by joining the Hi ∈ C8×100 matrices
from each AP.

For this study, an ML model based on the combination of
a convolutional neural network (CNN) and a fully connected

neural network (FCNN) was designed. The full implementa-
tion of this NN can be found in the code repository2 accom-
panying this study. An overview of the architecture of this
method can be seen in Fig. 3.

FIGURE 3. End-to-end centralised machine learning architecture for
distributed user localisation. The CSI is passed to the CPU which
combines it and forwards it to a NN. The NN is a combination of a CNN
and an FCNN. After an off-line training phase, the NN is able to directly
estimate the position of the user based on the received CSI.

2) CALIBRATED NEAR-FIELD MUSIC
Model-driven methods are based on how the channel is
expected to behave and estimate the position of the users
accordingly. This can be achieved by employing the well
known MUSIC algorithm [23]. MUSIC is used to estimate
the angle-of-arrival of a signal. Furthermore, since the ROI
is in the near field of the antenna array, near-field (NF)
MUSIC [24] can be adopted to estimate the exact location
of the users. For NF MUSIC, all information needs to be
processed in a centralised way, otherwise, the ROI would not
be fully in the near field of the array.

Model-driven methods extract the location information
from the theoretical knowledge of the signal and, therefore,
expect a signal from a perfectly calibrated antenna array.
In this case, the antenna array is not calibrated and the cali-
bration parameters are not known. As a results, without extra
processing to calibrate the data, NF MUSIC can not be used.

Traditionally, to calibrate an antenna array and estimate
its calibration parameters, the array is placed in an anechoic
chamber to measure the response of the array. However,
by moving the array, the calibration can change due to small
mechanical differences induced by the move. As a result, the
calibration accuracy achieved is limited in practise. To com-
bat this, [7] proposes a method to calibrate NF MUSIC using
data measured during the dense channel survey presented in
Section II.

Measuring the calibration parameters for an array is per-
formed in an anechoic chamber for the reason that there is
no multipath and the response can be measured perfectly.
The main novelty of the method proposed in [7], is to
use on-site measured data where a great deal of multipath
is present. However, when using enough measured sam-
ples and applying mean-squared-error, the multipath compo-
nents cancel each other out and the calibration parameters
are correctly estimated. This calibration step is performed

2https://gitlab.kuleuven.be/networked-systems/public/localisation-in-
distributed-mamimo-networks
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during an off-line step, before the system is used. After-
wards, NF MUSIC can estimate the position of the user very
accurately.

B. DISTRIBUTED LOCALISATION METHODS
Distributed localisation methods process the CSI at the APs
before sending the extracted information to the CPU. Which
processing is applied and which information is extracted
depends on the used method. Next, the CPU estimates the
exact location of the users based on the information received
from the distributed APs. The goal is to compress the CSI by
extracting relevant information that has a smaller dimension
than the full CSI. In this way, less data has to be sent over the
fronthaul link, lowering the throughput requirement of this
link.

We outline two different distributed localisation methods.
The first method, employs a fully data-driven approach. The
second method combines data- and model-driven methods.

1) ML WITH DISTRIBUTED AoA LEARNING
Instead of sending the full CSI matrix from the AP to the
CPU, first, the AoA is estimated at the AP. In this way, only
the AoA for every AP has to be sent to the CPU, lowering the
fronthaul requirement. Once the CPU receives all the AoA
estimates, the location of the user can be estimated based on
this information.

As shown in [8], the AoA of a user can be estimated by
ML using the CSI of the user. To accomplish this, an NN is
deployed at the AP to estimate the AoA of the users signal.
This NN consists out of a CNN and an FCNN. It is trained
using Hi ∈ CM×N , where i is the index of the AP, M
is the number of antennas at the AP and N is the number
of subcarriers in the CSI. The AoA ϕi is used as the label
during the off-line training phase. ϕi is calculated based on
the position and orientation of the i-th AP and the recorded
location of the user.

Once the APs estimate the AoA ϕi, the estimate is trans-
mitted over the fronthaul link to the CPU. At the CPU, each
ϕi is gathered and combined in to the vector ϕ. Next, a simple
FCNN is employed to estimate the location based on ϕ. The
full compute graph for this method is shown in Fig. 4.

FIGURE 4. To distribute the localisation task, the APs estimate the AoA of
the users signal in relation to the corresponding AP. Each AP uses its
partial CSI Hi to estimate the AoA ϕi using an NN. Next, all AoA
estimations are gathered in a CPU to estimate the exact location of the
user using an FCNN.

2) ML-MUSIC
In order to lower the amount of data samples needed to train
the NNs, model-based expert knowledge can be included.

in order to do so, we use the MUSIC algorithm. However,
this algorithm only works well when the antenna array is well
calibrated. However, the array used for recording the channels
is not calibrated.

a: CSI CALIBRATION
In order to use theMUSIC algorithm, a calibration step can be
applied to the CSI. As mentioned before, this calibration step
can be performed by analytical algorithms [7], [11]. However,
these methods are far from trivial. Therefore, we saw an
opportunity to employ neural networks to perform the cali-
bration step. In this way, the CSI matrix Hi ∈ CM×N , with
M the number of antennas at the AP and N the number
of subcarriers, is first be passed through an autoencoder.
An autoencoder is an NN that preserves the shape of the data.
The autoencoder is trained to apply the calibration toHi. This
results in the calibrated CSI, H̃i. Afterwards, H̃i is passed
through the MUSIC algorithm to obtain the AoA vector ϕi.
Once ϕi is estimated for every AP, they are combined into the
vector ϕ. This vector is passed to another FCNN in order to
estimate the exact location. Fig. 5 shows the overview of the
ML-MUSIC compute graph.

FIGURE 5. Instead of only relying on data to train a NN and estimate the
AoA, we can use some expert knowledge. Therefore, the MUSIC algorithm
was implemented inside the NN framework. MUSIC is very effective in
extracting the AoA from signals if the array is calibrated. Instead of
calculating the calibration matrix using by traditional methods, a NN was
placed in front of the MUSIC algorithm. This will make sure the a
calibration step is performed on the CSI.

To calibrate the CSI, an NNwas designed. For this applica-
tion an FCNN was used. When building an autoencoder, it is
easy to start from the simplest network first and gradually
increase the depth and complexity of the network. However,
we noticed that the proposed setup alreadyworked reallywell
by just employing an FCNNwith one hidden layer. Therefore,
for simplicity and minimisation of computational cost, this
NN was kept.

b: APPLYING MUSIC
After calibration by the NN,MUSIC is applied to H̃i. In order
for the NN to optimise its weights using back propaga-
tion, the MUSIC algorithm needs to be implemented in the
ML framework. In this way, the derivative can propagate
through the algorithm and the weights can be optimised using
labelled CSI-samples. Furthermore, we propose to modify
the MUSIC pseudo-spectrum and approximate it using a
normalised range in order tomap theML labels to the pseudo-
spectrum. Moreover, since ML-frameworks are optimised
to run on graphical processing units (GPUs) and perform
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matrix operations, we implemented the algorithm as much
as possible to incorporate matrix operations instead of using
code loops.

We will detail the implementation here. First, the covari-
ance is calculated:

Si = H̃iH̃H
i .

Afterwards, Si is deconstructed using the eigenvalue
decomposition

Si = U0UH .

The eigenvalues are located on the diagonal of0 in ascend-
ing order. The largest eigenvalues are attributed to the signal
and the small ones to the noise. To extract the noise subspace,
the noise eigenvectors are selected as

Un = U(:,1:M−K ),

where K is the number of incident signals. We assume that
there is only one signal in Hi, therefore K is kept low. In this
study, we assume K = 2. The eigenvectors in Un are nor-
malised.

Next, the steering vector a(θ ) is constructed as:

a(θ ) =
[
1, ejωθ , ej2ωθ , . . . , ej(M−1)ωθ

]T
,

where ω = 2πd
λ

, d is the spacing in between the antennas and
λ is the wavelength of the carrier wave.
Using the steering vector, the MUSIC pseudo-spectrum

can be evaluated for every arbitrary θ . The angle θ for which
the pseudo-spectrum has the highest response is the estimated
AoA ϕi. However, in practice, the number of angles along we
can search for the highest response is limited. For this study,
θ ranges from 0 to 180 degrees with a 1 degree resolution,
resulting in a vector with a length of 181. The vector contain-
ing these discrete angles is written as

b = [0,
1
180

π,
2
180

π, . . . , π ].

Afterwards, the pseudo-spectrum of MUSIC is calculated.
This spectrum is also the output of the ML model at the APs.
However, the traditional MUSIC algorithm does not have a
pseudo-spectrum that is normalised to a specific range. Fur-
thermore, supervised learning assumes that the exact label,
i.e. the value of the pseudo-spectrum, is known in order to
teach the NN this value. Since the exact value is not known
for the MUSIC algorithm, we propose an alteration to the
MUSIC algorithm to normalise the pseudo-spectrum. As a
result, at the AoA, the pseudo-spectrum tends towards 1, and
at the other angles it tends towards 0. In this way, we can label
the training data by setting all angles to 0 except for the known
AoA, which is set to 1, i.e., we one-hot encode the labels.

To explain the modification, we start from the unmodified
pseudo-spectrum. The traditional MUSIC pseudo-spectrum
is given by:

f (θ ) =
1

a(θ )HUnUH
n a(θ)

.

When θ is not the AoA of the signal ϕi, the denominator
of f (θ ) will be maximised and can reach a value of maxi-
mum M . When θ ≈ ϕi, the denominator tends towards 0,
hence, the pseudo-spectrum reaches a high response, with
an unknown maximum value. The range that the spectrum
can reach becomes defined when inverting the equation. The
range becomes:

θ ≈ ϕ, f (θ )−1 ⇒ 0,

θ 6= ϕ, f (θ )−1 ⇒ M .

To normalise the range, a division by M is performed.
As last step, the response is flipped by subtracting it from 1.
The new pseudo-spectrum f is calculated for every θ in b as:

f (θ ) = 1−
a(θ)HUnUH

n a(θ )
M

.

As ML frameworks are optimised to run on GPUs, which
prefer matrix operation, the full pseudo-spectrum f can be
calculated for every θ in one time using matrix operations.
First, all steering vectors are combined in to the matrix
A ∈ C181×M

Where the matrix A is constructed as:

A = a(b),

The new pseudo-spectrum f is calculated in the following
way:

f = 1−
diag(AHUnUH

n A)
M

.

and the diag() function selects the elements on the diagonal of
the square input matrix and transforms them into a vector. The
resulting pseudo-spectrum contains the response for every
angle θ in vector b. The angle θ with the highest response
is selected as ϕi.

c: COMBINING THE AoA ESTIMATIONS
For the next step, the CPU gathers all AoA estimates ϕi into
the vector ϕ. Afterwards, another FCNN uses ϕ to estimate
the position. The used FCNN consists out of 5 hidden layers.
To train this network, a two step method is proposed. Since
the task that the network should learn is very well defined,
we can first train the NN on simulated model-based data. This
has as the major advantage that we can simulate an infinite
amount of model-based data, which will give the network a
good starting point. This is very advantageous when only a
low amount of training samples is available.

To create the model-based data, we use a geometry-based
model of the environment. We sample random positions of
the possible user positions and calculate ϕ based on the loca-
tion and orientation of the APs. Next, we add some random
errors to ϕ to emulate errors and blockages in the system.
In this way, the FCNN learns how to deal with erroneous
ϕi estimates. The number of angles ϕi that is affected by
noise is decided by sampling integers from an exponential
distribution with the rate parameter λ = 1 and rounding
this number to the nearest integer. Which of the AoAs ϕi are
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affected is decided randomly using a uniform chance for each.
To the selected angles we add a random angle, drawn from
a normal distribution with a mean of 0 rad and a standard
deviation of π4 rad . In this way, the NN learns how to deal
with noisy data that can contain errors.

In the second training step, we use the actual measured
data, presented in Section II, to train the NN. This will teach
the NN about the scenario specific imperfections and devia-
tions from the theoretical deployment, further improving the
accuracy of the model.

IV. PERFORMANCE ANALYSIS
In this section, the performance of the different proposed
localisation methods is analysed. First, we study the locali-
sation performance in a static environment. Second, we will
analyse the performance in nomadic environments. In this
case, there will be a moving person in the environment,
interacting with the propagation of the signals sent by the
users. Afterwards, we analyse the computational complexity
of the different methods and how it scales for a rising number
of APs in the communication system. To end, we calculate
for the different methods the required fronthaul throughput.

A. PERFORMANCE IN A STATIC ENVIRONMENT
To analyse the performance of the four proposed methods,
they are trained/calibrated on a couple of datasets, each with a
different size. This was done to see whichmethod is most data
efficient, as gathering labelled data is very time consuming
and, therefore, expensive. In total five training sets were cre-
ated with sizes of 100, 500, 1000, 10,000 and 50,000 samples.
These samples were randomly selected from the 252,004
labelled samples in the dense CSI dataset. At the same time,
a test set of 20,000 randomly sampled CSI-samples was
selected from the same dataset while making sure there is no
overlap between the test set and the training sets. For each of
the CSI-samples in the test set, the position was estimated by
the four different methods after being trained on the different
training sets.

The median localisation error is shown in Fig. 6. The
median localisation error is computed by estimating the loca-
tion for all samples in the test set and computing the error
of these estimations. From these error values, the median
was computed and reported. The first trend to notice is that
all methods become better when more training samples are
available. However, model-based methods require less data
to achieve a good localisation performance. In general, when
a low amount of samples is available in the training set, the
two methods that (partially) rely on MUSIC perform best.
This is due to the expert knowledge present in these methods.
The algorithm did not have to learn from scratch how it can
efficiently position users, as is the case with the methods that
solely rely on ML. The pure data-driven methods only reach
a similar performance when using 10,000 or more samples in
the training set. However, when an even larger amount of data
is available, the data-driven methods can perform better than
the model-driven ones.

FIGURE 6. Localisation performance of the proposed methods in function
of the size of the the training set. We can see a strong trend that when
more data is used, the performance becomes better. Furthermore,
model-driven methods need less data to train or calibrate the method.
However, when ample data is provided, the data-driven methods match
and even surpass the performance of model-driven methods.

The figure shows that the calibrated NF MUSIC method
has the best performance and already reaches a very high
performance when only using 100 samples in the training
set. The second best method is the ML-MUSIC algorithm,
which reaches an adequate localisation performance with
only 500 samples to train on. Both of these methods reach
an accuracy lower than 50 mm while only using 500 training
samples, which is 20 times less samples than required by
he purely data-driven method. Therefore, these two methods
have our preference from the view of sample efficiency. This
shows the strength of model-driven methods. When a low
amount of training data is provided, data-driven methods can
not reach the same level of performance as model-driven
methods.

B. PERFORMANCE IN A NOMADIC ENVIRONMENT
Next, these trainedmodels were tested on the nomadic dataset
presented in Section II. All CSI samples in the nomadic
dataset were given to the four different methods. The full
nomadic dataset was used here as the test set. The training sets
are the same as before, randomly sampled from the dataset of
the static environment. The results can be seen in Fig. 7.

First of all, the conclusions of the static environment are
still true for the nomadic environment. As the number of
training samples go up, the accuracy of themethods increases.
Second, the accuracy for this test set is lower as for the one
of the static environment, as would be expected since the CSI
is impacted by the movement of the user and the methods are
not trained/calibrated for this.

Surprisingly, the calibrated NF MUSIC method was not
impacted by the movements of the user. This was the only
method that was still able to estimate the users position with
a very high accuracy due to the centralised combining and
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FIGURE 7. Localisation performance in a nomadic environment of the
proposed methods in function of the size of the the training set.

processing of the data. Moreover, the method never performs
worse than 50 mm error, which is really impressive in com-
parison to the other methods. The second best method is
ML-MUSIC, which is only slightly impacted by the nomadic
environment. Again, both of these methods reached a median
error of below 50 mm, while only using 500 training samples.
Furthermore, the impact on the purely data-driven methods is
higher than the impact on the methods that use model-based
information.

These experiments showed that model-based approaches
are still a very powerful tool. In addition, they show that
centralised and distributed methods can both reach a high
localisation performance. Hence, we do not have to send the
full CSI to the CPU to reliably localise users in distributed
MaMIMO systems.

C. COMPUTATIONAL COMPLEXITY
To compare the different proposed methods in more depth,
we assess the computational complexity. For a localisation
system to function properly, this metric should be as low as
possible, otherwise, it is not possible to estimate the location
in a timely manner, which is important for future applica-
tions as autonomous vehicles and UAVs which require a low
latency update of their location.

Since execution time is the most important aspect of com-
putational when localising users, we will focus on the num-
ber of operations to be performed to localise a user. More
specific, since multiplications are the most time consuming
operation, we will count the number of multiplications that
have to be performed in order to localise a user.

Furthermore, we also assess the scalability of the methods.
The scalability of the system can be assessed in two ways.
i) How the computational complexity scales with a grow-
ing number of APs and ii) how the complexity scales by a
growing number of users to be located. Since all methods
estimate the location for a user one-by-one, the computational
complexity of the methods scales linearly with the number of
users. Therefore, to compare the scalability of the different
methods, the number of APs used for localisation is used
as the main variable. We assume the network consists of a
varying number of APs, each AP consisting of an array of
eight antennas.

1) CENTRAL E2E LEARNING
For the NNs, we can compute the computational complexity
in following ways: For an FCNN, for every layer, the size of
the input vector is multiplied by the number of hidden nodes
in the layer. Afterwards, we sum these values for all the layers.
For a CNN, the calculation becomes a bit more complex. For
each layer, the computational complexityC can be calculated
in the following way:

CCNN = hin · win · cin · kh · kv · cout

with hin the height, win the width, and cin the number of
channels of the input of the layer. kv and kh are the vertical and
horizontal kernel size and cout the number of output channels.

For the Central E2E Learning method, we have to compute
the computational complexity by applying the above formu-
las for both the CNN and FCNN. In this case hin depends on
the number of used antennas, therefore, it will scale with the
number of APs. Furthermore, also the FCNN to estimate the
position based on the AoAs depends on the number of APs,
however, here only the first layer will increase in size. As a
result, the computational complexity of Central E2ELearning
increases linearly with the number of APs.

2) CENTRAL NF MUSIC
When computing the complexity of the centralised calibrated
NF MUSIC method, we have to look at all the different alge-
braic operation that are being performed. First the covariance
of the CSI is calculated, its complexity corresponds to the
one of a matrix multiplication, resulting in a complexity of
O(M2N ). Next, the eigenvalues should be calculated, this has
a complexity of O(M3). All following computations have to
be applied to a steering vector. For NF MUSIC, there is a
steering vector for each possible user location. We set the
number of steering vectors to n. when calibrating the steer-
ing vectors, O(MN ) multiplications have to be performed.
Afterwards, these steering vectors have to be multiplied with
the noise space with dimension M − 1, computed using the
eigenvalue decomposition, this results in a complexity of
O(M (M − 1)).

As a result, the computational complexity of the centralised
calibrated NF MUSIC can be calculated as:

C = M2N +M3
+ n(MN +M (M − 1)), (1)
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withM the number of antennas, N the number of subcarriers
and n the number of positions that have to be evaluated. In [7],
this was set to all possible user locations, i.e. n = 252, 004.
The computational complexity is strongly influenced by the
number of antennas in the antenna array and the number of
locations to be evaluated. When the number of antennas is
increased, the computational complexity of this method rises
in a cubic manner, strongly limiting the scalability of the
method.

3) DISTRIBUTED AoA LEARNING
For the distributed AoA learning method, the CNN archi-
tecture is the same as the one for the central E2E learning,
however, it is distributed per AP. Therefore, the complexity
of the CNN at each AP is the same as the complexity of the
central E2E for one AP. This complexity is multiplied by the
number of APs, therefore, scaling linearly. Also the FCNNs
of the distributed AoA learning method and the central E2E
learning method are mostly the same. As a result, they have
the same complexity and scale in the same way. However,
in this case, the computations are distributed over the different
APs and the CPU in the network, lowering the per device
requirement of computation power.

4) DISTRIBUTED ML-MUSIC
For the computational complexity of the distributed
ML-MUSIC a comparable formula to equation (1) can
be found for the complexity of the MUSIC block in the
compute-graph:

C = NAP(M2
APN +M

3
AP + n(MAP(MAP − 1))).

However, here we have to multiply everything by NAP, the
number of APs, but the number of antennas per AP, MAP,
is lower and fixed. Since MAP is fixed and only NAP rises
when increasing the number of APs, the complexity rises in
a linear way for this method. Furthermore, in this case, n is
the number of angles we search along the array, in this study,
n = 181. In comparison to NF MUSIC, n is much lower for
ML-MUSIC, as in NF MUSIC n = 252, 004. To complete
the calculation, the complexity of the calibration NNs and of
the NN to estimate the location, have to be added. For the
calibration, a one-layer-deep FCNN is used per AP, therefore,
the complexity of this rises linearly with the number of APs.
Next, the other FCNN to combine the multiple AoAs to a 2D
position also depends on the number of APs, but only the size
of the input changes, increasing the complexity in a linear
way. As a results, the total complexity of the ML-MUSIC
method increases linearly with the number of APs.

5) COMPARISON OF THE COMPUTATIONAL COMPLEXITY
Fig. 8 shows the computational complexity for the four dif-
ferent evaluated methods in function of the number of APs.
Each AP is equipped with eight antennas. So the case of eight
APs corresponds with the one in this paper, where we use
data of 64 antennas, divided over 8 distributed antenna arrays.
The figure shows that Central NF MUSIC has by far the

FIGURE 8. Computational complexity: the number of multiplications
needed to estimate the position of one user for the different localisation
methods. We analysed this amount in function of the number of APs.
We assume an AP to have an antenna array with eight antennas. The
scalability of Central NF MUSIC is cubic, therefore, problematic for a
practical deployment, while Distributed ML-MUSIC scales only linearly.

highest computational complexity, followed by Central E2E
learning andDistributedAoALearning. In the case of 16APs,
ML-MUSIC reduces the computational complexity by a fac-
tor 1000 in comparison with NF MUSIC.

Furthermore, the computational complexity of Central NF
MUSIC also rises faster than the other methods, cubic in com-
parison to linear. As a result, calibrated NF MUSIC becomes
an impractical method for future cell-free Massive MIMO
networks. Note that the number of evaluated positions, n in
equation 1, is kept constant in this figure. When the cell-free
network grows and the number of APs rises, also the number
of possible locations rises, increasing the complexity even
further.

Note that the value shown in Fig. 8 is the total amount
of computations that has to be performed. However, for the
distributed methods, these computations are further divided
over the distributed APs and the CPU, resulting in an even
lower amount of computations per device. This in comparison
to the centralised methods, which need all the computations
to be performed at the CPU, putting a high requirement on a
single device.

D. FRONTHAUL REQUIREMENT
For the localisation methods to work, information has to be
shared by the different APs to a central node. For the two
centralised methods, all CSI is needed to be transmitted to
the CPU. For the distributed methods, only a small amount of
information is needed to be shared. In this part of the study,
we will calculate the required information throughput from
the APs to the CPU for the proposed methods.

We will base this analysis on the KU Leuven MaMIMO
testbed presented in Section II. The presented MaMIMO
system has 64 antennas and measures the channel for each
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user for 100 subcarriers. Each measured symbol consists of
a complex number, using 16 bit for the real and imaginary
part. Therefore, the number of bytes needed for one sample
for one user is equal to 25.6 kB. In the testbed, which is based
on the LTE framework, the channel is measured 2000 times
per second for up to 12 users.

For the distributed methods only the AoA is sent to the
CPU. Since the AoA is discretised at 1 degree per step, and
we consider a range from 0 to 180 degrees, 181 different
values should be encoded. To do this, we need 8 bits or
1 byte. Therefore, for the studied system, 8 bytes are needed
to be send to the CPU per user per CSI update. As a result,
the required fronthaul throughput for the central methods
is 4.915 Gbps. While for the distributed methods, this is
reduced to 1.536 Mbps. This is a 1200-fold reduction of
the required throughput. The reduced fronthaul requirements
of distributed localisation methods will enable a practical
deployment of localisation services in cell-free MaMIMO
systems.

V. PRIVACY-CENTRIC LOCALISATION
There are rising concerns about user privacy in recent times
as more people start to be aware that a big part of their
digital life can be tracked. This has even given rise to multiple
conspiracies about that 5Gwill be used tomonitor and control
persons. Therefore, it is important to address these concerns
and think about how we will keep the location of the users
safe. To do this, one can employ the principles of ‘‘privacy
by design’’ [25].

When processing the information in one central place,
e.g. a server connected to the BS, the mobile internet service
provider will have the full knowledge of the exact location
of the user. This might be vulnerable for malicious attacks of
hackers stealing the valuable data. Furthermore, exact local-
isation data could be used for surveillance by governments
that do not respect civil rights.

As we have shown, distributed localisation methods
achieve a high accuracy while reducing the computational
complexity and fronthaul requirement. This allows use to
move the CPU that combines the information of the separate
APs to be moved to the user equipment itself. In this case,
the full information will only be available at the device of
the user, keeping its exact location for itself, increasing the
privacy of the user. In conclusion, we identify privacy-centric
localisation as an interesting topic for future research.

VI. CONCLUSION
In this study, we compared four user localisation methods
based on a distributed MaMIMO network. We compared
methods that process all data centrally and methods that off-
load part of the computation to the distributed APs. Second,
we compared model-driven and data-driven methods. The
localisation performance of the different methods is com-
pared using measured data from two scenarios. The computa-
tional complexity and fronthaul requirement were computed.

By employing distributed localisation methods, the fron-
thaul requirement was reduce 1200-fold in comparison to the
centrally processed methods, making the technology scal-
able for future networks with tens of APs. In addition, the
computational complexity of the distributed methods was the
lowest of the analysed methods, reducing the computational
requirements of the distributed APs and CPU. In addition,
to achieving a localisation accuracy below 50 mm, by includ-
ing model-driven techniques, we were able to reduce the
amount of training samples needed by a factor of 20 in
comparison to using purely data-driven methods.

We found that the proposed distributed ML-MUSIC algo-
rithm, which combines machine learning and MUSIC to
localise the users, is the best candidate for the presented task
and scenario, as it is able to reach accurate localisation while
using a moderate amount of training samples. It reaches an
accuracy of 34.2 mm when only using 500 training sam-
ples. When using more training samples, the accuracy further
improves. Furthermore, at the same time, it keeps the compu-
tational complexity and fronthaul requirement to a minimum,
making it an ideal candidate to be used in large distributed
MaMIMO networks.
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