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Abstract In today’s data landscape, data streams are well represented. This is
mainly due to the rise of data-intensive domains such as the Internet of Things
(IoT), Smart Industries, Pervasive Health, and Social Media. To extract mean-
ingful insights from these streams, they should be processed in real-time, while
solving an integration problem as these streams need to be combined with more
static data and their domain knowledge. Ontologies are ideal for modeling this do-
main knowledge and facilitate the integration of heterogeneous data within data-
intensive domains such as the IoT. Expressive reasoning techniques, such as OWL2
DL reasoning, are needed to completely interpret the domain knowledge and for
the extraction of meaningful decisions.

Expressive reasoning techniques have mainly focused on static data environ-
ments, as it tends to become slow with growing datasets. There is thus a mismatch
between expressive reasoning and the real-time requirements of data-intensive do-
mains. In this paper, we take a first step towards bridging the gap between ex-
pressivity and efficiency while reasoning over high-velocity IoT data streams for
the task of event enrichment. We present a structural caching technique that elim-
inates reoccurring reasoning steps by exploiting the characteristics of most IoT
streams, i.e. streams typically produce events that are similar in structure and
size. Our caching technique speeds up reasoning time up to thousands of times for
fully-fledged OWL2 DL reasoners and even tenths and hundreds of times for less
expressive OWL2 RL and OWL2 EL reasoners.
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1 Introduction

In today’s data landscape, data streams are omnipresent [14]. Data-intensive do-
mains, such as the Internet of Things (IoT), Smart Industries, Smart Manufactur-
ing, Pervasive Health, financial sector, and Social Media, are still gaining popular-
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ity. This results in huge amounts of produced heterogeneous data streams. These
streams should be processed in real-time, as extracted insights change continu-
ously due to the velocity of the stream. Stream processing has proven successful
in continuous processing of data streams [28]. However, in order to extract mean-
ingful insights from these data streams, a data integration problem needs to be
solved. This is especially true in the IoT, where a variety of sensor can be used,
each using their own protocols, syntax and data model [1]. Various data streams
need to be combined or integrated with more static data sources. For example, IoT
sensors might transmit their data in JSON format, while their meta-data is stored
in a relational database or a key-value store. The integration with the meta-data is
often necessary to extract the exact location of the sensor, the observed properties
or its position/function within a larger system.

Semantic web technologies, such as ontologies, are the preferred model for the
integration of heterogeneous data [1,9]. Ontologies can serve as a unifying model,
allowing various data sources to be aligned and integrated. An ontology formally
describes concepts, properties, and their relations, within a certain domain [22]. By
defining the relations between various concepts, a model can also incorporate the
knowledge about a certain domain. For example, defining the ranges the produced
values of an IoT sensor should be contained in, when its correctly functioning. By
incorporating this domain knowledge, malfunctioning sensors can automatically
be detected. Reasoning techniques are needed to interpret the modeled domain
knowledge and thus allow to extract meaningful decisions [10]. The more elaborate
the modeling of the domain knowledge, the more expressive the reasoning needs to
be to fully interpret the domain. To extract meaningful decision from data streams,
the events in the streams should be enriched, i.e. they need to be integrated with
both static data sources and their domain knowledge [11,15].

In this paper, we specifically focus on OWL2 as ontological language to define
the domain knowledge and expressive reasoning within the OWL2 DL profile,
as it is a web standard. This expressivity is necessary as previous research [10]
has shown that almost all IoT ontologies within the Linked Open Vocabularies
repository1 require OWL2 DL reasoning to be fully interpreted.

The Stream Reasoning (SR) community states that event enrichment can be
achieved through reasoning [16], however, current reasoners were not designed for
event enrichment [42]. Expressive OWL2 reasoners have mostly focused on rather
static data [42]. There is still a mismatch between expressive reasoning and the
real-time requirements of data stream intensive domains [16]. Scalable expressive
stream reasoning is still an open issue in the SR community [16], while expressive
ontologies are in fact widely used within the field of IoT [10]. Note that expressive
OWL2 DL reasoners can have up to NEXPTIME complexity [27], resulting in
slow reasoning times. This is in contradiction with the fact that streams should
be processed in real-time. In this paper, we set the first steps for bridging the gap
between expressiveness and efficiency in IoT Stream Reasoning applications and
focus specifically on Event enrichment.

Event enrichment is the task of combining (joining) the events with the static
knowledge base, and reasoning over these events in order to infer and add all the
available rich semantic information [43]. Once these events have been enriched,
they can be used by querying tasks for further processing and analysis. However,

1 https://lov.linkeddata.es/dataset/lov/
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the challenge lies in enriching these events in a timely manner, as the reasoning
process is a time-consuming task and existing reasoners were not designed to enrich
streams. We investigate how we can speed up the enrichment process by exploiting
the characteristics of the IoT streams, i.e. events in IoT streams are typically
similar in structure and limited in size [11]. These characteristics have the benefit
that it loosens particular reasoning constraints due to the reoccurring nature of
the events and their limited size. Current expressive reasoners will perform the
same reasoning steps over and over again over these types of reoccurring events,
i.e. the events are different observations, however, their structure is the same and
so are the reasoning results.

For example, in an Industry 4.0 setting, a sensor will continuously report the
state of one specific machine [19]. In a Smart City, sensors will continuously report
the state of traffic at a certain location [37]. In a Smart Air Quality case, sensors
will continuously report the air quality in a specific room [36]. In all three cases, the
structure of the produced observation show limited variation, except for the sensor
values themselves. The integration with background data and domain knowledge
allows to meaningfully interpret and process these observations.

To allow event enrichment through the use of expressive reasoning, we set the
following objectives:

1. Expressive reasoning: In order to correctly interpret the domain, expressive rea-
soning is required to correctly analyze and capture the domain knowledge.

2. Eliminate reoccurring reasoning steps: Previous reasoning steps over similar events,
i.e. in shape and size, should be exploited to speed up reasoning performance.

3. Scalable: In order to enable high throughput event enrichment for a variety of
stream rates, the solution should be able to scale to a large number of events
and high velocity data streams.

4. Integrate static knowledge: In order to perform event enrichment, it is manda-
tory to link events to additional data, e.g., the type of measurement linked to
the sensor and the location of the sensor, since the sensory data typically only
describe the sensor readings.

In this paper, we investigate a special form of caching that exploits the reoccur-
ring nature of IoT events and limit the number of reasoning steps that need to be
performed on similar events. The cache is able to differentiate between streaming
and static data in order to correctly enrich events in IoT streams. The cache itself
is scalable, and imposes limited overhead for events that are limited in size.

We show that this special form of caching allows to speed up event enrichment
up to thousands of times for expressive OWL2 DL ontologies with large static
knowledge bases. OWL2 contains three lesser expressive profiles, i.e. EL, QL and
RL. We show that our caching technique is even up to 10 times faster for less
expressive ontologies that fall within the OWL2 RL profile and up to hundreds of
times for ontologies within the OWL2 EL profile.

This paper is structured as follows: Section 2 introduces a running example.
Section 3 provides some background on expressive reasoning and streams to un-
derstand the remainder of the paper, while Section 4 details the domain knowledge
for the running example. In Section 5 we introduce the IoT architecture used for
processing IoT streams and detail how the event enrichment process fits within the
complete architecture. Section 6 details the related work. In Section 7, we provide
all the details of our caching technique and in Section 8, we detail the evaluation.
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Fig. 1 Example of event enrichment: enriching of CO2 sensor observation with sensor meta-
data from a relational database to include the location of the sensor and with the data from
a key-value store to include the activities of the location.

Section 9 provides insights into the benefits and limitations of the approach and
Section 10 summarizes the contributions and sets a vision for future work.

2 Running Example

We will use a Smart Air Quality case as a running example and focus specifi-
cally on the fact that indoor CO2 concentrations correlate with the probability of
COVID-19 infection. One could alert the people in the room when the observed
concentrations of CO2 exceed a certain threshold. However, the threshold is not
static but rather depends on the function of the room [36]. For example, rooms,
where people are standing, speaking loudly, or exercising, have lower thresholds
than where people are resting, due to the larger amount of exhaled particles. This
requires the CO2 observations to be integrated with static background data (the
information of the room) and domain knowledge (the COVID-19 infection details).
Figure 1 gives an example of an enrichment of a CO2 sensor observation, produced
in one of the monitored rooms. Note that the event itself only details that it was
made by a certain sensor, not the full details of the sensor or its surroundings. In
this case, only the observed value and the ID of the sensor that made the obser-
vation. By combining the observation with the static data (containing the sensor
details), we can determine that the observation is a high CO2 observation in a
classroom, where activities such as Reading, Sitting and Teaching can take place.
Note that IoT data is often stored using different technologies and in different for-
mats or data models. The sensor produces data in JSON format, while the sensor
meta-data is stored in a relational database and the functionality of the locations
is stored in a key-value store. There is clearly an integration problem, and the do-
main knowledge itself still needs to be integrated as well as we still need a means
to infer that the event is alarming in terms of COVID-19 infections. This problem
is typical in the IoT, where data is often very heterogeneous [6]. Therefore, we will
rely on ontologies to facilitate the integration of all this heterogeneous data.
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Fig. 2 Relations between the different OWL2 profiles (EL, QL, RL, and DL). (Source: W3C).

3 Background

In this section, we will provide more details on ontologies and their relation with
the Resource Description Framework (RDF). Additionally, we give some definitions
on the topic of streaming data and explain how ontologies can model IoT streams.

3.1 Ontologies and Description Logic

OWL2 is an ontological language that defines three profiles, i.e. EL, QL, and RL,
each optimized for certain reasoning applications. OWL2 DL comprises the union
of the three subprofiles, as visualized in Figure 2. This paper focuses on improving
the streaming performance of OWL2 DL reasoning. OWL2 DL is the most expres-
sive profile and built upon Description Logic (DL) [3]. As OWL2 DL is the most
expressive, the proposed optimizations for OWL2 DL reasoning translated to all
the other subprofiles. We introduce the syntax of a simplified DL, explaining the
basic notions to understand the remainder of the paper. We refer the reader to
Horrocks et. al. [26] for a more thorough description.

DL defines concepts Ci, to represent the classes of individuals ai and roles Ri

to represent binary relations between individuals or an individual and data values.
Concepts Ci are constructed from two special primitive concepts ⊥ (bottom)

and > (top) or concept names and roles using the following grammar:

C ::= Ci|>|⊥|¬C|C1 u C2|C1 t C2|∃R1.C1|∀R1.C1

A Terminological Box (TBox) T , is a finite set of concept (C ) and role (R)
inclusion axioms of the form: C1 v C2 and R1 v R2. Concept equations (C1 ≡ C2)
denote that both C1 and C2 include each other. An Assertion Box (ABox) A is
a finite set of concept and role assertions of the form: C(a) and R(ai, aj). While
ind(A) denotes the set of individuals occurring in A. A Knowledge base K = (T ,A)
combines T and A. I is an interpretation for K, we say that I is a model of K, if
it satisfies all concept and role inclusions of T and all concept and role assertions
of A. This can be written as I |= K.

Definition 1 Reasoning is the process of interpreting the domain knowledge and
inferring implicit facts. Different reasoning tasks exist, i.e.

– Consistency checking: the task of checking if there exist a model that satisfies
all the definitions in the knowledge base.
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– Classification: the task of computing the complete view on the TBox.
– Realization: the task of inferring implicit concept and role assertions for an

individual defined in the ABox.

In the remainder of the paper, we will focus on the reasoning task of Realization and
more specifically on Materialization, which computes all possible implicit concept
and role assertions for all the individuals in the ABox.

Definition 2 We call M = K∞ the materialization of K, i.e. all inferred axioms
w.r.t. explicit individuals in K are computed and explicitly stored. This means
that, based on the knowledge defined in T , additional axioms regarding A can be
extracted through the use of a reasoner.

Example 1 The TBox defines the concepts within a certain domain. In our use
case, we could define various locations using the following concept inclusions, which
defines that an Office, Library and ClassRoom are subclasses of the concept Location:

Office v Location
Library v Location
ClassRoom v Location
...

The TBox could also define that a CO2Sensor is certain type of Sensor :

CO2Sensor v Sensor

Furthermore, the role hasLocation links Sensors to Locations. The ABox can define
an instance of a CO2Sensor called sensor1 as CO2Sensor(sensor1) and a specific
ClassRoom room1 as ClassRoom(room1). We can link them together using the role
assertion hasLocation(sensor1, room1). Through the use of reasoning and the defi-
nitions in the TBox, the materialization process will infer that sensor1 is of the type
Sensor and that room1 is of the type Location: Sensor(sensor1), Location(room1).

3.2 Relation to RDF

RDF [35] is a standard to model interchangeable data on the web and allows
the serialization of ontologies. It represents data as triples, consisting of a subject,
predicate and object. A set of triples forms a graph. We give the relation between
DL Concepts and Roles and RDF triples and how they can be visualized as graphs.

As depicted in Figure 3, Concept and Roles in DL can be converted to RDF
triples. Concept assertions of the form C(a), with C a concept and a an individual
can be represented as the RDF triple :a rdf:type :C. Role assertions of the form
R(a,b) can be represented as the RDF triple :a :R :b. Subsumption of concepts
of the form C1 v C2 can be represented as the RDF triple :C1 rdfs:subClassOf

:C2. Note that in RDF everything is represented as an URI. Prefixes can be used
to minimize the URI definitions, for example the prefix rdf: is short for http:

//www.w3.org/1999/02/22-rdf-syntax-ns#, thus rdf:type is short for http://www.

w3.org/1999/02/22-rdf-syntax-ns#type. :a, :b, :R and :C use the default prefix.
Each of the triples can be visualized as a graph. Combining multiple triples

results in a larger graph.
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Fig. 3 Relations between the different DL concept and roles, RDF Triples and RDF Graphs

3.3 Events and Streams

As the topic of this paper is about enrichment of IoT streams, we provide the
definitions of Streams, Events and the Enrichment procedure.

Definition 3 A data stream S is an infinite sequence of pairs 〈di, ti〉 where, di is
a data item, and ti is a time timestamp. An Ontology Stream is a stream where
the data item di is an ABox and ti a timestamp.

Each data item in a stream can also be considered an event :

Definition 4 We define an event Ei as an element of an Ontology stream describ-
ing a self-contained observation or state in the form of a limited size ABox. One
needs to combine the event with a static Abox A and domain knowledge described
in the TBox T in order to interpret the event.

Thus to fully interpret these events, some kind of enrichment is necessary:

Definition 5 Event Enrichment is the materialization of events Ei, while taking
the Abox data A that describes the static knowledge, e.g. sensor metadata, and
the TBox T that describes the domain knowledge into account.

More formally, Enrichment(Ei, T ,A) = Ei ∪ {C(ej)|(T ,A ∪ Ei) |= C(ej), ∀ej ∈
Ei}, with ei the individuals defined in the event Ei.

Static enrichment, which is the materialization of the static data based on the
inferred influence of the events, is out of scope for this paper.

3.4 Semantic Sensor Network Ontology

The Semantic Sensor Network (SSN) [13]2 is an ontology for the description of sen-
sors and their observations. SSN is a modular ontology, consisting of a lightweight

2 https://www.w3.org/TR/vocab-ssn/
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Fig. 4 Overview of the SOSA ontology, the event core, concepts of the static data and the
use case extensions.

self-contained core ontology called SOSA (Sensor, Observation, Sample, and Ac-
tuator) for the modeling of its elementary concepts and roles. SSN further extends
SOSA with additional concepts but also more elaborate domain knowledge.

Figure 4 visualizes the SOSA ontology with its core concepts. At the center
is the Observation concept which models the observed values and the time of the
observation as literal (data) values, through the properties hasSimpleResult and
resultTime. This defines the conceptualization for the Events themselves. The Ob-

servations are linked to the Sensor that made the observation, and the property
that was observed, e.g. CO2. This is the more Static Data. Figure 4 shows the
distinction between the conceptualization for events and more static data. Fur-
thermore, it shows that for the running example, the SOSA concepts are being
extended with CO2Sensors and CO2Observations. Moreover, Sensors are positioned
at certain Locations, which each can have an number of Activities.

3.5 Conversion to the ontology model

Special techniques exist to convert raw data, e.g. JSON, CSV, data from a database,
etc. to an ontology model. RDF Mapping Language (RML) [17] allows to convert
the raw data to the ontology model through a mapping definition. These mapping
definitions specify how parts of the raw data need to be extracted and converted
to the ontology model. Figure 5 gives a visual overview of the mapping process
for the sensor data from the running example. The values are extracted from the
raw sensor data, in this case in JSON format, and converted to a graph according
to the ontology model. The figure also gives an example of the mapping definition
itself. Note that we used YARRRML [24] for the definition of the mapping, as it
is a more concise and human-readable RML format.
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Fig. 5 Converting raw sensor data,e.g. JSON, to the ontology model using RML.

4 Defining the domain knowledge for the running example

We will now introduce the domain knowledge for the running example, defined
through the Concept and Role definitions in DL and show some visual examples
using depictions of RDF graphs.

Example 2 (Concept hierarchies) Concept inclusions allow to define hierarchies of
concepts. In our running example, each location can have a variety of activities,
based on the static defined functionality of the room. We can divide these activities
into three categories:

– Resting Breathing Activities: that involve activities where people are mostly in
rest and are not breathing excessively.

– Standing Speaking Activities: including activities where one or more persons are
standing and speaking up, resulting in more particles to be exhaled.

– Heavy Breathing Activities: activities where people are breathing excessively and
most particles are exhaled.

The concept definitions below, define a small part of the activity hierarchy,
stating that Reading is a subclass of RestingBreathingActivity, etc.:

Reading v RestingBreathingActivity
Whispering v RestingBreathingActivity
Sitting v RestingBreathingActivity
RestingBreathingActivity v Activity
...

Figure 6 shows an larger extract of these concept inclusions in a hierarchy,
including StandingSpeakingActivities and HeavyBreathingActivities with their sub-
classes. Note that this hierarhcy is an extension of the Activities that are linked to
each Location as visualized in Figure 4. Thus each Location in our running exam-
ple, can have a variety of Activities from this hierarchy. We can use more complex
concept definitions to define the knowledge in a certain domain.
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Fig. 6 Extract of the activity concept hierarchy. Each Location can have a variety of activities.

Fig. 7 Example of semantic event enrichment of CO2 observation based on the activity of
the location it was captured in.

Example 3 (Domain Knowledge) In our running example, the severity of the CO2
values, in terms of potential COVID-19 infections, depend on the function of each
location. First, we need to define the function of each room in terms of several
activities that it can host. For example, a ClassRoom is a Location in which Reading,

Sitting and Teaching can take place as specific Activities (as defined in the hierarchy
in Example 2) . Note that Activities can belong to different parts of the hierarchy.
The knowledge regarding the different locations can be modeled as follows:

ClassRoom ≡ Location
u ∃hasActivity.(Reading u Sitting u Teaching)

MusicClassRoom ≡ Location
u ∃hasActivity.(Reading u Teaching u Singing)
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SpinningClass ≡ Location
u ∃hasActivity.(Teaching u Spinning)

Library ≡ Location
u ∃hasActivity.(Reading u Sitting uWhispering)

...

Note that the equivalence is used when defining the different rooms, this means that
when a location is defined as a ClassRoom, the reasoner will infer its activities, even
when they are not explicitly defined. Figure 7 shows the enrichment of a sensor
observation event which is combined with static data detailing the metadata about
the sensors and their locations. Through the event enrichment, the materialization
process will infer all implicit facts about the individuals in the event and the
static data. In the static data, room1 is defined as a ClassRoom, through the use
of reasoning, the activities are automatically inferred, even though they were not
specifically defined. This is indicated by the yellow ovals. On the other hand, when
the reasoner sees a location with the activities Reading, Sitting and Teaching it will
know this is a ClassRoom. Note that in Figure 7, we have mapped the raw JSON
data and the meta-data from the databases to the ontology model using RML so
that the different sources of data can easily be integrated together.

The domain knowledge can also define when actions need to be taken:

Example 4 (Taking actions) In our running example, we need to automatically infer
if the persons at a specific location should be alerted for high infection probabili-
ties, based on the activities and functions of the room. This is possible through the
following concept definitions, where a CO2Observation is defined as an Observation

that was made by a sensor that observes the property CO2. An HBCoronaAler-

tObservation is a CO2Observation that was made by a sensor, which is positioned
in a Location that contain HeavyBreathing Activies while the observed sensor value
is above 50 ppm. Below we define the domain knowledge for all the activities.
Note that the threshold for alerting depends on the activities that are taking
place in each location. We used the following abbreviations: (HB=HeavyBreathing,
SS=StandingSpeaking, RB=RestingBreathing)

CO2Observation ≡ Observation u ∃madeBy.∃observes.CO2

HBCoronaAlertObservation ≡ CO2Observation

u ∃madeBySensor.∃hasLocation.∃hasActivity.HeavyBreathing
u hasSimpleResult > 50

SSCoronaAlertObservation ≡ CO2Observation

u ∃madeBySensor.∃hasLocation.∃hasActivity.StandingSpeaking
u hasSimpleResult > 100

RBCoronaAlertObservation ≡ CO2Observation

u ∃madeBySensor.∃hasLocation.∀hasActivity.RestingBreathing
u hasSimpleResult > 1000

CoronaAlertObservation ≡ HBCoronaAlertObservation
t SSCoronaAlertObservation tRBCoronaAlertObservation
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Fig. 8 Architecture of IoT pipeline. Sensors transmit their readings to the Sensor Gateway,
which maps the raw data to RDF through RML, before sending the data to the backend for
processing. Before the data can be analyzed, it needs to be enriched. Finally, decisions can be
made and actions can be taken.

Note that the RBCoronaAlertObservation is more restrictive, as it requires that
there are only (∀) RestingBreathing activities taking place.

Figure 7 shows an example of an event enrichment of a CO2 observation that
was captured in a Classroom. Even though many RestingBreathing activities take
place in the class room3, since the teacher is performing a StandingSpeaking activ-
ity (because Teaching is a subclass of StandingSpeaking), the observation will be
enriched as a SSCoronaAlertObservation. Note that the event in the stream, i.e. the
observation, only states the value and the sensor. The static data describes the
observed property, i.e. CO2, and the location of the sensor, i.e. a classroom, with-
out explicitly defining the activities in the room. By combining the observation
with the static data, we can infer that the observation is a CoronaAlertObservation

and more specifically a SSCoronaAlertObservation. This allows us to take additional
actions and alert the people inside the room that there is a high probability for
COVID-19 infection, or take automated actions such as opening doors or windows.

5 IoT Architecture

In this section, we detail the IoT architecture that is used to extract meaningful
insights from IoT data and position Event Enrichment within this larger system.
Figure 8 visualizes the used architecture, consisting of the following components:

– IoT Sensors: various IoT sensors, e.g. CO2 sensors, sense their environment
and transmit their observations to the Sensor Gateway.

– Sensor Gateway: serves as an access point for the sensors to transmit their
observations to and forwards these observations to the backend for further
processing. We utilize the DYAMAND sensor gateway [33]4, as it provides
many connectors to easily interact with a variety of sensor protocols and man-
ufacturers. Furthermore, it allows to register plugins to apply additional trans-
formations to the data. We apply such a plugin to convert the raw sensor data
to the ontology model using RML [17].

– RML: converts the raw data to the ontology model. These RML mappings are
typically defined when a new type of sensor is added to the platform. Note
that this also means that the structure of the resulting event is fixed. As the
shape of the raw data typically does not change, the resulting ontology graph

3 Note that Reading and Sitting are subclasses of RestingBreathingActivity as defined in the
activity hierarchy (see Figure 6)

4 https://dyamand.tech/
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will adhere to the same structure, only the values that are injected from the
raw sensor JSON will be different.

– Backend: is responsible for the further processing of the captured IoT data.
The Event Enrichment component combines the IoT events with the static
knowledge, e.g. the sensor meta-data and the domain knowledge. It then ma-
terializes the events, i.e. performs reasoning to infer implicit facts regarding
these events. Once the IoT events have been enriched, they are forwarded to
the Stream Analysis components that investigates each enriched event and ana-
lyzes if certain events require further actions. The Decision Making component
then decides which specific actions need to be taken.

The focus of this paper is specifically on the Event Enrichment component. The
Stream Analysis and Decision making steps can be achieved through RDF Stream
Processing [45], which allows to define declarative queries on top of RDF data
streams to enable decision making and analysis.

6 Related Work

In this section, we will visit the related work that has touched on the topic of
caching for reasoning or researched optimizations for reasoning over data streams.

OWL2 Reasoners such as HermiT [20] and Pellet [40] contain caching mecha-
nisms but only for a single reasoner run [41]. If data is added, which is the case in
a streaming scenario, no caching mechanisms can exploit the reoccurring nature
of the data. This is because these reasoners were designed for static scenarios.

Glimm et al. [21] describe an approach that abstracts large ABoxes to smaller
abstractions and shows that the reasoning results can be transferred from the
abstraction to larger ABoxes. This approach is similar to ours, as we also transfer
the results, between events, instead of abstractions and large ABoxes. However, we
optimize for streaming data, while the described technique is for static data. The
technique is particularly beneficial for extremely large static ABoxes, i.e. millions
of triples, a scenario we currently do not consider in the streaming case.

TrOWL [44] is an OWL2 DL reasoner that performs approximations to enable
stream reasoning over ontologies. This is supported by incrementally processing
the addition and removal of facts while approximating the results. However, it is
only an approximation and does not provide any optimization to reduce redundant
reasoning steps over the facts in the data stream. Our caching approach is not an
approximation and is correct and complete for the task of event enrichment.

Subset reasoning [10] is another approximation technique to materialize events
in data streams that need to be combined with large static ABoxes. The tech-
nique extracts a subset of the static Abox in order to optimize the materialization
process over the events in the stream. However, subset reasoning only gives large
performance gains when events need to be combined with large static ABoxes. Fur-
thermore, the technique does not provide any optimization to reduce redundant
reasoning steps over the facts in the data stream.

RDFox [34] is the fastest incremental OWL2 RL reasoner currently available.
It is built upon the principles of datalog and is optimized for incrementally reason-
ing upon new facts. However, it is not optimized for a streaming scenario, where
events typically describe similar facts. Recently, research on datalog has investi-
gated how frequently occurring workloads can be cached for future use [29]. OWL2
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RL reasoners such as RDFox however do not yet contain such optimizations. Note
that we are not able to include them, due to the closed-source nature of RDFox.
Furthermore, we aim to support up to OWL2 DL and not limit to OWL2 RL.

RDF Stream Processing (RSP) is part of the Stream Reasoning initiative and
focuses specifically on the processing of RDF streams [45]. A variety of RSP en-
gines have been proposed by the community, e.g. CQELS [32], C-SPARQL [5] and
RSP4J [45], however, these solutions focus more on query answering than on rea-
soning. As a result, if reasoning is supported, the expressivity is typically limited
to RDFS, i.e. computation of hierarchies and transitive relations. IMARS [4] is
an incremental materialization maintenance technique for stream reasoning un-
der RDFS entailment. It reduces reasoning steps by investigating which reasoning
steps incrementally need to be performed or can be skipped within a time window.
IMARS is an incremental approach, but does not perform any form of caching.
Furthermore, it operates on RDFS, which is far less expressive than OWL2 DL.
StreamQR [12] is the most expressive RSP engine that uses Query Rewriting (QR)
to inject the reasoning directly in the query evaluation process. This is done by
rewriting a registered query into a much larger query consisting of many UNION
definitions in order to inject the ontology TBox inside the query and eliminate
the need to reason at query time. However, the expressiveness of the supported
ontology is restricted to the ELHIO logic, which is a subset of the logic used
within OWL2 DL. Note that rewriting queries over OWL2 DL ontologies in a
sound and complete manner is not possible. When combining RSP with uncer-
tainty management, caching has been introduced to speed up the reoccurring calls
to the uncertainty functions [31]. Caching results of uncertainty functions is sim-
pler than caching reasoning results, as the uncertainty functions with the same
input parameters always returns the same results and thus can easily be stored.

In the realm of Answer Set Programming (ASP) reasoning, there have been
some efforts to eliminate redundant reasoning steps in Stream Reasoners. Bazoobandi
et al. [7] propose an optimization technique for LARS, i.e. a stream reasoning
framework for ASP, that infers which facts will be impossible to derive from the
streams in the future and blocks the reasoner from performing these computa-
tions. The technique thus limits the reasoning steps that should be performed on
the stream. Compared to our technique, it will still recompute the same reasoning
steps over reoccurring events, however, only deriving the facts that are meaningful.
Furthermore, we focus on OWL2 instead of ASP.

Dodaro et al. [18] use reinforcement learning to identify which concept deriva-
tions are most useful for the stream and introduce an efficient caching methodology.
The technique is specific for ASP solvers and is not always complete due to the
learning component.

MASSIF [9] is a semantic message broker that allows consumers to subscribe
to events using high-level ontological concepts that are evaluated using expressive
OWL2 DL reasoning. To obtain decent performance, it provides an incomplete
caching technique. Incomplete in the sense that it 1) cannot deal with subscrip-
tions that are subclasses of each other, 2) can only cache the inference for a single
individual in the event, and 3) cannot deal with data property or nominal reason-
ing. In this work, we present a caching technique that produces complete results
for the enrichment of the whole event and prove its correctness.

It is clear that there is a large interest in increasing reasoning performance
over dynamic data. To the best of our knowledge, we are the first to propose an
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Fig. 9 Flowchart for event enrichment using the cache

attempt that exploits the characteristics of the stream to increase performance in
a very natural and low-impact fashion through structural caching. Our proposition
is reasoner independent and can be combined with any OWL2 reasoning system.

7 Caching for Event Enrichment

This section details the inner workings of our caching technique. Before going into
the details, we explain the high-level idea. Figure 9 shows a visual representation
of the flow of the cache. Our caching technique eliminates the need to reason upon
reoccurring events, by identifying the structure of events that will lead to the
same derivations through reasoning. This means that we move from reasoning to
pattern matching. When a new event arrives, we check the cache. When there is
no hit, we combine the event with the static data and the domain knowledge and
then we materialize the event. We then extract the Cache Structure of the event,
i.e. the structure that will be used for pattern matching when the next events
arrives. Next, we store the inferred types for each individual in the event and
store them as Cached Enrichments. When a new event arrives, we check if there is
a Cache Structure that exactly matches the event and we add the stored Cached

Enrichments. This allows to perform the materialization through pattern matching
instead of reasoning. Note that it is important that there is an exact match between
the new event and the Cache Structure, i.e. if the event has relations that are not
in the Cache Structure, then there is no match. We explain the reason for this in
detail in the remainder of this Section.

7.1 Creating Cache Structures

We first explain how events are converted to Cache Structures and how Cache

Enrichment are extracted.

Definition 6 A Cache Structure is a special abstraction of an event with the prop-
erty that if an event matches the Cache Structure, it can be materialized in the same
way as the original enriched event from which the Cache Structure was extracted.
The materialization itself is stored in the Cache Enrichment which contains all the
inferred types that need to be added when an event matches the Cache Structure.

The Cache Structure can impose a number of constraints:
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Fig. 10 Cache structure extraction for event enrichment

– A Node Check is a constraint in the Cache Structure that requires the same
individual to be present in the event as defined in the Node Check.

– A Type Check is a constraint in the Cache Structure that requires the same type
assertion to be present in the event as defined in the Type Check.

– Variables need to be bound to a unique individual in the event. An individual
can only be bound to a single Variable. Variables allow to match multiple events
and thus transfer the enrichment from one event to another.

– A Property Check is a constraint that requires the same property to be defined
over Node Checks or Variables that have already been successfully matched.

– A Data Check requires data values to be above or below a certain threshold.

The evaluation of the Cache Structure requires all of its constraints to be satisfied.
Figure 10 shows an example of the extraction of a Cache Structure from an enriched
event. We start from the enriched CO2 observation from Figure 7, consisting of the
inferred types CO2Observation and SSCoronaAlertObservation, which could only be
inferred by adding the sensor and location meta-data and the domain knowledge.

When extracting the Cache Structure we make a distinction between individuals
from the events and individuals that are a reference to the static data. In Figure 7,
the observation states that it is made by sensor1, while sensor1 is described in
the static background data. Thus sensor1 is a reference to the static data. All
references to the static data should be added as Node Checks in the Cache

Structure. This means that in order to match the structure, the observation should
have been made by sensor1. This is shown in the Cache Structure in Figure 10 with
the variable dotted circles.

Example 5 (Static data) Suppose an additional CO2 sensor, sensor2, that is in-
stalled in the library:

CO2Sensor(sensor2), hasLocation(sensor2, room2), Library(room2)
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When the same observation from Figure 7 would be made by sensor2, it would
not cause an SSCoronaAlertObservation, as the library only allows RestingBreathin-

gActivities and the threshold for alerts in such a location is much higher than the
observed value (as specified in the domain knowledge detailed in Section 4).

Individuals from the event that have no references to the static data, should
be substituted to Variables instead, allowing the structure to match various events.

Example 6 (Event data) Suppose a similar event:

Observation(obs2),madeBySensor(sensor1), hasSimpleResult(130)

The materialization of this event will result in the same inferred types as obs1.

The object properties described in the event should be added to the structure
as Property Checks. This means that the same number and same type of properties
should be present in a new event before the structure can be matched.

Example 7 (Object properties) Suppose that Observation obs3 is similar to obs2 but
has an additional object property indicating its battery level:

hasBatteryLevel(obs3, low)

And the following axiom exists that infers low precision observations if their bat-
tery levels are low:

LowPrecisionObservation ≡ Observation u ∃hasBatteryLevel.Low

obs3 can be inferred as LowPrecisionObservation, which was not the case for obs2.

Data properties defined in the event can be ignored, if they are not part of
a class definition that contains a data property restriction, e.g. such as Coron-

aAlertObservations, which state that the observed data values should be above a
certain threshold. These restrictions are added as Data Checks to the Cache Struc-

ture if one of the concepts that contain a data property restriction is inferred in
the materialization process. We use the same technique for nominal restrictions.

Example 8 (Data properties) The SSCoronaAlertObservation defines a threshold
above 100. This restriction is added as a Data Check to the structure.

Type assertions defined in the event need to be added as Type Checks to the
Cache Structure, for the same reason as object properties required exact matches.

Algorithm 1 gives a simplified version of the conversion algorithm in pseu-
docode. It shows the conversion of individuals either as Variables or NodeChecks

and the property and type assertions as either PropertyChecks or TypeChecks, us-
ing the converted individuals. For simplicity reasons, we omitted the conversion of
data properties and nominals.
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Algorithm 1: CacheStructure extraction algorithm

// Extract the CacheStructure for event E
indStore = { } // stores indiviuals either
// as Variables or NodeChecks
// stores the cache structure
cacheStructure =new CacheStructure()
// Convert indiviuals to Variables or NodeChecks
for ind in Ind(E):

if ind not in static data:
indStore[ind] = Variable(ind)
cacheStructure.addVariableCheck(Variable(ind))

else:
indStore[ind] = NodeCheck(ind)
cacheStructure.addNodeCheck(NodeCheck(ind))

// Convert Object Properties to NodeChecks
for (subj, prop, obj) in objectProperties(e):

cacheStructure.addPropCheck(indStore[subj], prop, indStore[obj])
// Convert Type assertions to NodeChecks
for (ind, a, type) in typeAssertions(e):

cacheStructure.addTypeCheck(indStore[ind], type)
return cacheStructure

7.2 Storing the Materialization

All the inferred types for each individual in the original enriched event, from which
the Cache Structure is extracted, are stored in the Cache Enrichment and linked
to the extractedVariables or Node Checks for static reference individuals. When
we add a new Cache Structure to the cache, we first extract the Cache Structure

from the event and then combine the event with the static data to materialize
the event. For each individual in the event, we store the inferred types retrieved
through the materialization and link them to the extracted Variable or Node Check

of the Cache Structure. The linking of the inferred types to the Cache Structure is
called the Cache Enrichment and is depicted in Figure 10 at the bottom right. We
note that Cache Enrichments and Cache Structures are stored together.

Example 9 (Cache Enrichment) In Figure 10, obs1 is converted to the variable ?obs

in the extracted Cache Structure. Upon materialization, obs1 gets the types SSCoro-

naAlertObservation and CO2-Observation. As ?obs is extracted from the individual
obs1, we store the inferred types SSCoronaAlertObservation and CO2Observation for
the variable ?obs in the Cache Enrichment. This allows other events, which match
the extracted Cache Structure, to be materialized in the same fashion.

7.3 Checking the Cache

When checking the cache, it is important to have an exact match in order to claim
a cache hit. This means that all the Checks should be fulfilled:

1. All references to the static data should be present.
2. The same type assertions should be defined.
3. The same property relations should be present.
4. Each variable should be bound to a unique individual.
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5. Data property restrictions, if any, on literals should be evaluated.
6. Nominal restrictions, if any, should be evaluated.

If all the checks can be fulfilled, there is a cache hit. In this case, the stored
extracted materialization for each variable can be assigned to the individuals that
are bound to the variables in question.

Example 10 (Cache hit) When Observation obs2 matches the Cache Structure, obs2

will be bound to the Variable ?obs. In the Cache Enrichment, ?obs is assigned to
the inferred types CO2Observation and CoronaAlertObservation. Thus, obs2 gets
assigned the inferred types CO2Observation and CoronaAlertObservation.

This allows us to move from reasoning to pattern matching, i.e. checking the Cache

Structures. In the evaluation, we will show that the latter is a lot more efficient.

7.4 Theoretical Foundations

This section details the theoretical foundations of our caching mechanism. It proves
that the cache is correct and complete for the task of event enrichment.

As the cache is looking for similarities in structures of the events, we first define
a function that translates ABoxes to new ABoxes with the same structure:

Definition 7 The translation function ε translates an ABox A to a new Abox
A′ such that all names n ∈ NA (with NA the individual names in A) have a name
translation in A′ such that i) there is a one-on-one translation for each n to ε(n),
ii) for all concept assertions Ci(a) ∈ A the same concept assertion holds in A′ such
that Ci(ε(a)) ∈ A′, iii) for all role assertions R ∈ A i.e. Ri(nj , nq) ∈ A the same
relation Ri holds in A′ such that Ri(ε(nj), ε(nq)) ∈ A′.

This means that when an event Ei is added to the cache, its Cache Structure will
match for any ABox ε(Ei). We now define how the inferred types of Ei can be
assigned to ε(Ei) as in the Cache Enrichment.

Definition 8 A translated equivalence function ≡ε states that if C(a) is entailed
in K = (T ,A) and there exist a translation ε to A′, then C(ε(a)) is entailed in
K′ = (T ,A′), i.e. K |= C(a) ≡ε K

′ |= C(ε(a)).

Proof The translation function ε can be seen as a homomorphism h with mappings
∀a ∈ ind(A) :

⋃
{a → ε(a)}. Let A and A′ = ε(A) be ABoxes and h : ind(A) →

ind(A′) a homomorphism from A to A′. Then, by the definition of homomorphisms,
for every TBox T and every axiom α, A∪T |= α implies A′ ∪T |= h(α). Therefore
K |= C(a) implies K′ |= C(h(a)) with h(a) = ε(a).

To make a distinction between events in the data streams and static back-
ground data we define a special translation function:

Definition 9 The background translation function εB is a translation function
ε that fixes the translation for the individuals defined in the static background
ABox B. This can be seen as a translation function that maps the individuals
defined in B onto themselves.
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This means that for the ABox A = Aevent ∪ B with B the static background
data, the translation function will only translate the individuals defined in the
event data Aevent. As εB still can be seen as a homomorphism that maps the
individuals from B onto themselves, ≡εB still holds. We will now show that when
a translation function exists between two events, their event enrichment is the
same under ≡εB :

Theorem 1 If a translation function between two events Ei and Ej exists, then their

event enrichment is the same under ≡εB

Proof We need to prove that:
Enrichment(Ei, T ,A) ≡εB Enrichment(Ej , T ,A)⇔ Ei = εB(Ej)
We first prove ⇒:
Enrichment(Ei, T ,A) ≡εB Enrichment(Ej , T ,A)⇒ Ei ≡ εB(Ej)

Enrichment(Ei, T ,A) ≡εB Enrichment(Ej , T ,A)

(defEnrich.)⇒Ei ∪ {C(ej)|(T ,A ∪ Ei) |= C(ej), ∀ej ∈ Ei}
≡εBEj ∪ {C(ej)|(T ,A ∪ Ej |= C(ej), ∀ej ∈ Ej}

(def ≡εB)⇒Ei ∪ {C(ej)|(T ,A ∪ Ei) |= C(ej), ∀ej ∈ Ei}
≡εB(Ej ∪ {C(ej)|(T ,A ∪ Ej |= C(ej), ∀ej ∈ Ej})

(defεB)⇒Ei ∪ {C(ej)|(T ,A ∪ Ei) |= C(ej), ∀ej ∈ Ei}
≡ εB(Ej) ∪ εB({C(ej)|(T ,A ∪ Ej |= C(ej), ∀ej ∈ Ej})

(def ≡εB)⇒Ei ≡ εB(Ej)

We now prove ⇐:
Ei ≡ εB(Ej)⇒ Enrichment(Ei, T ,A) ≡εB Enrichment(Ej , T ,A)

Ei ≡ εB(Ej)

(def∪)⇒Ei ∪ {C(ej)|(T ,A ∪ Ei |= C(ej),∀ej ∈ Ei}
≡εB(Ej) ∪ {C(ej)|(T ,A ∪ Ei |= C(ej), ∀ej ∈ Ei}

(def ≡εB)⇒Ei ∪ {C(ej)|(T ,A ∪ Ei |= C(ej),∀ej ∈ Ei}
≡εB εB(Ej) ∪ εB({C(ej)|(T ,A ∪ Ej |= C(ej),∀ej ∈ Ej})

(defεB)⇒Ei ∪ {C(ej)|(T ,A ∪ Ei |= C(ej),∀ej ∈ Ei}
≡εBεB(Ej ∪ {C(ej)|(T ,A ∪ Ej |= C(ej), ∀ej ∈ Ej})

(defEnrich.)⇒Enrichment(Ei, T ,A) ≡εB Enrichment(Ej , T ,A)

The cache can be seen as a structure that verifies if a translation function
between a new event and the stored event exists. For optimization purposes, we
store the structure of the translation, i.e. the Cache Structure, that verifies the
existence of a translation function.

7.5 Complexity Study

When performing a lookup in the cache, we need to evaluate the stored Cache

Structures and check if one of these structures matches the incoming event. The last
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step requires the whole event to be inspected. Thus for a cache of size n consisting
of events of size m, the complexity for a cache look-up would be O(n∗m). However
note that m, the size of the event, is typically very small ( m << n), and can often
be disregarded, resulting in a complexity of O(n). Note that the size of the event
reflects the number of individuals it contains.

Adding to the cache requires to materialize the event and create a Cache Struc-

ture from the event. The last step takes O(m) for events of size m. The material-
ization step is more expensive and depends on the used logic. When using OWL2
DL, the complexity can be up to NEXPTIME, whereas the subprofiles (RL, QL,
EL) remain in PTIME. Thus the complexity of adding to the cache would be
O(m+matT ime) with matT ime the time to materialize the event which depends
on the used logic. As m is typically much smaller than matT ime (m << matT ime),
we can simplify to O(matT ime). Note that adding to the cache might seem expen-
sive, however, keep in mind that without the cache every event would be processed
in O(matT ime). The whole purpose of the cache is to eliminate this step.

7.6 Cache Replacement Policies

To avoid that the cache grows to unmaintainable sizes, cache replacement policies
can fix the size of the cache and define how the elements in the cache should
be replaced when the size limit has been reached. We support the four typical
types of replacement policies: First in first out (FIFO), Last in first out (LIFO),
Least recently used (LRU), and Most recently used (MRU). The choice of the
optimal replacement policy depends on the use case at hand. The LRU policy is
the most popular cache replacement policy [23] and thus the standard configured
replacement policy in our cache.

7.7 Relation with Query Rewriting

Query Rewriting is the process of rewriting the reasoning inside the query, such
that no reasoning is required during query evaluation. This results in a much larger
query, containing many UNIONs in order to include the logic defined in the TBox.
Note that the larger the query and the more UNIONs it contains, the longer it
takes to evaluate these queries. Furthermore, Query Rewriting for expressive logics
as used within OWL2 DL is not possible. Our structural cache can be seen as a
lazy query rewriting process. Compared to traditional rewriting techniques, our
cache cannot perform the rewriting at query registration time, since a complete
rewrite is not possible, however, it adds rewritten queries at run time to its cache.
This results in an expressive rewritten query that can grow in size at run time and
contains only the actually used concepts, instead of all possible rewritten concepts.
The downside is that as the rewriting process cannot happen at query registration
time, it needs to happen at run time, in a lazy fashion, i.e. only when reasoning
steps need to be evaluated that are not yet added to the cache. On the upside, the
cache will only contain a kind of rewritten query for the reasoning steps that are
actually are being used and a much higher expressiveness can be obtained.



22 Pieter Bonte et al.

7.8 Implementation Details

We build our structural caching mechanism in a reasoner agnostic fashion by build-
ing upon the OWL-API [25] interfaces. This implies that our caching approach
can be used around any reasoner implementing the OWL-API reasoner interface
in order to speed up event enrichment. In the standard configuration, the HermiT
reasoner is used to perform the materialization of the events combined with the
static data. The storage and evaluation of the Cache Structures has been custom
built5, to assure the exact matches with the events (as explained in Section 7.3).

8 Evaluation

This section evaluates the performance of our cache and compares it with existing
OWL2 reasoning techniques. We compare the scalability in terms of increasing
static data and increasing cache size. We have used the OWL2Streams [8] bench-
mark for the evaluation of dynamic OWL2 reasoners, consisting of three scenarios:

1. A Smart Building case, on which the running example is based. CO2 sensors are
producing observations in a variety of building locations. Each location has a
different set of activities. Based on the static and domain knowledge explained
in Section 2, the CO2 events need to be enriched as AlertObservations, i.e.
when the CO2 values are exceeding the allowed CO2 threshold based on the
activities occurring at the location of measuring. The static data describes
properties about the locations and the sensors contained within each location.
The data is synthetically generated based on the data distributions found in
real smart buildings, producing streams up to 100.000 events with each an
average size of three RDF triples.

2. A University Management scenario, which is an extension of the OWL2Bench
benchmark [39] where the stream consists of students registering to a certain
university. This is not an IoT use case, but as the stream consists of events that
are similar in shape and size, it can be used for evaluation of our approach as
well. Based on the courses that students are following, their hobbies and the
type of university, each of the students can be enriched as a specific type. For
example, a student with many hobbies, a leisure student, a self-aware student,
etc. Each type is described in the domain knowledge. Note that the static data
consist of the information of the university, its personnel and information of
the courses. The data for this scenario is also generated, allowing to configure
the size of the university. The streams produce up to 10.000 events, each with
an average size of 16 RDF triples.

3. A Smart City scenario. This is an extension of the CityBench benchmark [2],
containing more elaborate domain knowledge. In this smart city use case, var-
ious traffic observations throughout the city are captured, e.g. the congestion
level, the average vehicle speed, parking occupation, etc. The version of City-
Bench contained in OWL2Stream describes more expressive types for the ob-
servations that can be used for event enrichment, from simple type inference
for observations based on their observe the property, e.g. CongestionObservation

observe the property CongestionLevel, to observations that lead to alerts when

5 The source code can be found on https://github.com/IBCNServices/LOCERS.
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Fig. 11 Evaluation of the time to check the cache as a function of the cache size, with growing
sizes of events.

high traffic has been observed near certain types of locations. Note that infer-
ring the traffic levels and which locations require these kinds of alerts is also
defined in the domain knowledge and is based on the types of roads, surround-
ings, and location properties. The static data describes information regarding
the properties of the different roads and properties about the locations that
are near the sensor observations. The data for this scenario is a replay of the
data captured in the smart city of Aarhus, consisting of streams up to 15.000
events, each with an average size of 6 RDF triples. This scenario can be scaled
by varying the number of sensors that produce data throughout the city.

Each of the scenarios consists of a data stream, a static knowledge base describing
additional information regarding the events in the stream, and an expressive OWL2
DL ontology. All evaluations were conducted on the same hardware, i.e., Intel(R)
Xeon(R) CPU E3-1220 with 16GB of ram running Ubuntu 18.04 LTS.

We first evaluate the scalability of the cache itself in terms of computation
time and memory usage when the cache and the events increase in size. Next, we
will compare the performance of the proposed cache with existing techniques for
both materialization of the events, i.e. event enrichment, and query tasks. The last
evaluation measures the performance of the different cache replacement policies.

8.1 Cache Scalability

To evaluate the scalability of the cache itself, we used the Smart Building scenario.
In this evaluation we check how the cache reacts to:

1. Increasing cache size: number of Cache Structures stored.
2. Increasing event size: number of individuals in the events in the stream. Larger

events will result in larger Cache Structures, and thus a larger number of Vari-

ables that needs to be evaluated.

In order to check how the cache performs with increasing cache size, we gen-
erated sensor streams originating from a large number of locations. In this case:
100, 200,..., till 1000 unique locations. As the locations are unique and have links
with the static data, observations originating from a unique location results in
a distinct Cache Structure. Thus with increasing number of unique locations, we
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Fig. 12 Evaluation of the memory consumption of the cache as a function of the cache size,
with growing sizes of events.

can grow the size of the cache. We also evaluate what happens if the sizes of the
Cache Structures increase. This is artificially done by combining combinations of
observations originating from unique locations, resulting in larger events. Thus,
with increasing size of the events, the number of variables increases in the Cache

Structures. It is important to note that this is only to really stress-test the cache.
In realistic settings, event sizes rarely exceed size 10.

8.1.1 Time Performance

Figure 11 shows the influence of both increasing cache size (the number of stored
Cache Structures) and size of the events. We depict the cache lookup time when the
size of the cache increases while feeding various sizes of events. Note that larger
events result in larger Cache Structures. We see that for small events (event size 10)
the lookup times stay below 5ms, even for extremely large cache sizes. Even below
1ms for realistic cache sizes up to size 500. When increasing the size of the events,
the lookup times increase as well. This was expected as larger Cache Structures

need to be evaluated. In realistic settings, event size rarely exceed size 10, as
events are kept small on purpose [47]. Note that the reported times represent the
average cache look-up time over the whole scenario provided by OWL2Streams.
As we are investigating the scalability of the cache itself, i.e. in growing number
of variables and sizes of events, only cache hits are taken into account. The time
for cache misses depends on the used reasoner that performs the materialization.
We have used the HermiT reasoner as the underlying reasoner, which takes up to
8 seconds for events with size 100 for this specific use case.

8.1.2 Memory Consumption

Our structural cache is a typical example of the space-time tradeoff. In order
to decrease reasoning time, we store Cache Structures and thus sacrifice memory.
Figure 12 visualizes the memory consumption as a function of the size of the cache
while storing different sizes of events. The memory increases in a rather linear
fashion when the cache size increases or the size of the stored Cache Structures

increases. Note that while the cache size might become large, the size of events
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typically stays rather small. In our experiments, the size of the events in the
streams did not exceed size 10, thus resulting in very limited memory impact.

8.2 Comparison with Existing Reasoners for Event Enrichment tasks

The second evaluation evaluates the scalability in terms of increasing static data
to compare the performance of the cache with the following reasoning approaches:

– OWL2 DL reasoners Hermit [38] and Pellet [40]: these are the baselines in
terms of performance, as they are complete in terms of the expressivity of the
used ontologies. JFact and Konclude were initially included in the evaluation,
however, they either did not reach a conclusion within one hour or crashed.

– OWL2 EL reasoner ELK [30] and OWL2 RL reasoner RDFox [34]: these rea-
soners are added as a reference only. They are a lot faster, as they do not infer
all facts due to the lower supported expressivity. This is indicated in the com-
pleteness columns of the various result tables. We wanted to investigate if our
cache could even have added value for these OWL2 reasoners with lower ex-
pressiveness. Note that both ELK and RDFox allow incremental reasoning, i.e.
when new data arrives, they can incrementally update their materialization,
without the need to start the reasoning process from scratch.

– Approximation approaches TrOWL [44] and Subset Reasoner [10]: these rea-
soners support OWL2 DL expressivity, however, make some approximations to
speed up the reasoning over data steams, possibly resulting in incompleteness.
A form of incremental maintenance is provided, but as an approximation.

– A rule engine approach that uses the part of the ontology that can be expressed
as rules. We used the RETE-based rule engine that is part of Jena6 as it can
process RDF data and allows querying using SPARQL. This approach is also
added as a reference only and can perform incremental reasoning.

We evaluate the performance on the different scenarios described above to per-
form Event Enrichment on the events in each stream. This means that the events
are combined with the static data and the domain knowledge and all possible ax-
ioms with respect to the individuals in the events are inferred. For each approach,
we compute the completeness, i.e. the average percentage of correctly inferred ax-
ioms over all events in the stream. For each scenario, we grow the static data,
as the reasoning performance typically decreases with growing datasets and thus
stresses their performance. Note that the reported times are the average time to
perform event enrichment over all the events in the whole scenario.

8.2.1 Stream of Students

We start with the extension of OWL2Bench, where the stream consists of students
registering to a certain university. The students follow certain courses and have
various hobbies and interests. Various students can follow the same curriculum or
have the same interests. Even though these are different students, they are classi-
fied in the same way. This is the type of students that are matched by the cache.
Instead of growing the number of universities, we grow the number of departments

6 jena.apache.org
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Table 1 Evaluation of performing event enrichment over the student streams extracted from
OWL2Bench. The reasoning time is shown as a function of the number of departments in the
static data. Furthermore, the completeness of each approach is shown. All reported times are
in milliseconds. (TO = Time Out, compl. = completeness)

engine compl. #departments
1 5 10 15 20

Pellet [40] 100% 1905.52 TO TO TO TO
HermiT [20] 100% 1823.93 6166.73 15403.37 15730.57 35012.41
Subset [10] 100% 1160.12 1776.92 708.94 413.14 2498.76
TrOWL [44] 76% 28.44 162.31 507.76 1052.77 1864.25
RDFox [34] 72% 10.42 8.07 7.19 9.48 7.34
ELK [30] 67% 3.89 4.19 4.66 5.91 5.76
Jena 76% 109.82 403.72 851.07 1413.72 6343.59
Cache 100% 0.79 0.74 0.75 0.63 0.98

Table 2 Evaluation of materializing traffic observations of CityBench. The reasoning time is
shown as a function of the number of intersections in the city. Furthermore, the completeness
of each approach is shown. Pellet was not included as it was producing errors while handling
the data property reasoning. All reported times are in milliseconds. (compl. = completeness)

engine compl. #road intersections
1 100 200 400 600 800

HermiT [20] 100% 112.68 749.06 1807.75 4724.34 9419.08 14197.38
Subset [10] 100% 686.19 673.41 673.73 667.28 672.52 672.91
TrOWL [44] 52% 17.37 33.47 48.29 80.44 135.08 196.72
RDFox [34] 85% 6.30 5.91 6.03 5.70 5.58 7.58
ELK [30] 74% 34.00 60.24 89.67 148.33 230.15 332.35
Jena 81% 42.53 146.92 300.09 622.25 707.28 1398.99
Cache 100% 0.62 0.72 0.67 0.84 0.68 0.66

within a single university. The reasoning time for expressive reasoners to reason
over more than one university is far beyond the real-time requirements [39], and
thus not considered. Table 1 shows the results for each of the reasoning techniques
to enrich events describing students. To make a fair comparison, we ask the rea-
soners to only infer the types of the individuals contained in the events and not to
materialize the whole static data. We see that the fully-fledged reasoners become
very slow very quickly with increasing static background. Pellet timed out after 5
departments. Our caching technique is the fastest in event materialization, even
faster than the approximation approaches or the less expressive reasoners such as
RDFox and ELK or the RETE-based approach using Jena. Note that our cache
produces results that obtain 100% completeness for the task of event enrichment.
We note that these are the times when the events have already been added to the
cache, as the cache internally uses the HermiT reasoner, upon cache misses the
same performance as HermiT can be expected. While the overhead to add events
to the cache is minimal as well, only a few milliseconds.

8.2.2 Traffic Stream

Compared to the student stream, the streams considered in the Smart City require
reasoning on a data property level, which is a typical requirement in the IoT. The
observations get classified differently based on the sensed values and their location.
In the previous evaluation, no data property reasoning was considered. As the
cache supports it, we evaluate it here as well. Table 2 shows the results for each of
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Table 3 Evaluation of materializing traffic observations of CityBench for each reasoner
equipped with our cache. We show the speed-up time as a result of using the cache for each
reasoner over the whole scenario.

engines
with cache

AVG
Speed up

#road intersections

1 100 200 400 600 800
HermiT [20] 1773.70 2197.80 814.75 1346.20 1882.59 2146.86 2254.02
Subset [10] 758.11 767.35 757.39 757.64 752.57 756.69 757.00
TrOWL [44] 126.94 27.72 52.86 75.56 123.39 200.48 281.66
RDFox [34] 9.94 10.12 9.50 9.69 9.16 8.97 12.17
ELK [30] 211.22 53.68 93.56 136.77 218.43 323.33 441.55
Jena 562.52 66.79 216.53 405.64 716.34 783.55 1186.24

the reasoners for increasing city sizes, i.e. number of intersections where the traffic
sensors are positioned. We can see that the cache is able to enrich the events in less
than one millisecond, and it is clearly the fastest approach, even faster than the less
expressive reasoners. While being very scalable, the cache produces results with
the same completeness as the fully-fledged OWL2 DL reasoners. Note that these
are the reported times for cache hits, cache misses have similar time consumption
as the HermiT reasoner, as HermiT is used under the hood by our approach.

Table 3 details the speed up times of equipping each evaluated engine with our
cache on the Smart City scenario. As our cache is reasoner agnostic, it can easily
be combined with other reasoners, allowing these reasoners to benefit from the
speed up from the cache. We see major improvements in reasoning speed up times
for HermiT, i.e. thousands of times faster, while still hundreds of times faster for
less expressive reasoners in the EL profile, such as ELK, and up to 10 times faster
for the OWL2 RL reasoner RDFox. The speed up depends on the hit rate of the
cache, in this scenario the hit rate was up to 99.96%. These high hit rates can
be expected in IoT scenarios where the structure of the events is fixed due to the
format of the sensor output.

Fig. 13 Scenario run time compari-
son between HermiT and the Cache.

Figure 13 shows the scenario run time for
the first 100 events and compares the rea-
soning times between HermiT and our cache.
There occur three cache misses (resembled by
the three peaks), which result in the same
reasoning times as HermiT. The other sce-
nario steps are cache hits, resulting in great
performance gains for our cache.

8.3 Comparison with Existing Reasoners for Query tasks

We have evaluated the cache for materialization tasks above, now we compare the
performance of the cache with query driven approaches. Note that query driven
approaches do not necessarily need to fully materialize the dataset before answer-
ing a certain query, but perform the reasoning necessarily to answer the query at
query time. We compare these query driven techniques with our cache. Our cache
performs event enrichment as usual with the additional step of query evaluation
on top of the performed materialization. Thus, the reported times for our cache
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Table 4 Evaluation of query task on the students streams extracted from OWL2Bench. The
reasoning and query time is shown as a function of the number of departments in the static
data. Furthermore, the completeness of each approach is shown. All reported times are in
milliseconds.(QR = Query Rewriting, TO = Time Out, compl. = completeness)

engine compl. #departments
1 5 10 15 20

Pellet [40] 100% 776.46 TO TO TO TO
HermiT [20] 100% 1225.31 17017.50 61481.21 132448.14 228852.50
TrOWL [44] 29.5% 28.78 186.94 532.61 1092.18 1841.70
QR [12] 48.1% 40.63 87.87 127.38 178.20 217.43
ELK [30] 29.5% 4.06 10.00 11.71 11.63 12.86
Cache 100% 5.79 6.69 6.29 6.22 6.47

are both event enrichment and query evaluation times. Note that for our cache, no
reasoning is required at query evaluation time, due to the materialization process.

The OWL2Bench benchmark is accompanied by a set of SPARQL queries. We
have selected all the type queries7 as they allow to easily translated to DL-queries
and answered by the reasoners that do not support SPARQL out of the box. For
the query evaluation task, we compare against the following reasoners:

– OWL2 DL reasoners Hermit [38] and Pellet [40] as baselines and evaluate DL-
queries.

– The lesser expressive OWL2 EL reasoner ELK [30] evaluating DL-queries.
– The approximation approach TrOWL [44] evaluating DL-queries.
– A Query Rewriting approach [12] that evaluates large rewritten SPARQL

queries that contain the TBox logic instead of reasoning.

Table 4 shows the results of the evaluation of the type queries as a function of
growing static data. Table 4 also shows the completeness, which is computed as the
mean of the percentage of correct answers for each query. The cache outperforms
the other approaches in terms of completeness and reasoning/query answering
time. Even the Query Rewriting is slower than the cache due to the very large
queries that need to be evaluated. Note that some of the queries are very large
and contain up to 324 UNIONs. The times shown in Table 4 for our cache are a
little higher than in Table 1 as both the event enrichment and the querying of the
whole static data needs to be performed. For our cache approach, a conversion is
necessary to allow the evaluation of SPARQL queries8, hence the small increase in
time. It is important to note that the caching approach assumes a fully materialized
version of the static data, which is expensive to compute. Luckily, the static data
does not change very often and can be computed as a preprocessing step.

8.4 Cache Replacement Strategies

Next, we evaluate the different cache replacement strategies for the Smart City
scenario. Figure 14 visualizes the cache hit rates as a function of cache size and re-
placement policy for the Smart City scenario consisting of traffic streams resulting
from 20 unique locations, producing a total of 60 distinct events. The MRU and

7 Queries of the form: Select ?s WHERE{?s a :someType}
8 We used Jena for the evaluation of the queries.
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Fig. 14 Evaluation of different cache replacement policies. Hit rates for each policy as a
function of the cache size.

LIFO policies work best for smaller cache sizes, while LRU and FIFO work best
for large cache sizes. Once the cache sizes exceed the size of 20, LRU and FIFO
perform really well. This is due to the fact that there are 20 unique locations that
send their observations around the same time, resulting in 20 unique events, mak-
ing it impossible for LRU or FIFO policies to achieve a cache hit. The computation
overhead for each of the policies is very limited and only around 0.003 ms.

9 Discussion

In this section, we discuss how our caching approach tackles the set objectives
from Section 1, provide some additional insights into the evaluation results, and
discuss the limitations of our caching approach.

9.1 Objectives Discussion

Looking back at the Objectives set in Section 1, we can now discuss how our
caching approach tackles the various objectives:

1. Expressive reasoning: our cache can be used with any OWL2 reasoner imple-
menting the OWL API interfaces and provides huge performance gains for
OWL2 DL reasoners and even for lesser expressive OWL2 EL and RL reason-
ers. We have shown that our caching approach is complete and correct for the
task of event enrichment when reasoning over expressive OWL2 DL ontologies.

2. Eliminate reoccurring reasoning steps: our caching approach can store the rea-
soning results by exploiting the fact that events in IoT streams typically have
the same structure and size. Through a smart look-up mechanism that takes
the static data into account, it can eliminate reasoning steps when a similar
event has been processed in the past. In this case, the reasoning results can be
transferred to the new event, moving from reasoning to pattern matching.

3. Scalable: as seen in the evaluation, the cache itself scales really well in the num-
ber of stored events and size of the events. Furthermore, as performing event
enrichment through our caching approach is just a simple cache look-up, it can
be easily distributed, allowing horizontal scaling as well. A synchronization
step would be required when one of the distributed caches has a miss and a
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new event is added to the cache. In this case, the other cache instances would
require the new event as well.

4. Integrate static knowledge: as our caching approach can differentiate between
static and streaming data, all connections with the static knowledge base are
kept. This allows to correctly perform event enrichment over a variety of events,
that have similar structure and size.

9.2 Evaluation Discussion

In Section 8, we have first evaluated the scalability of the cache in terms of the
number of stored events and the size of the events. We have seen that for smaller
size events, the cache scales very well, even with large amounts of events stored.
For larger events, the cache tends to become slower as more events are stored.
Fortunately, the size of the events in the IoT, and in stream processing in general,
are typically kept small, making the cache ideal for these situations. We also see
that as investigated in Section 7.5, the complexity of the cache is indeed linear in
the size of the cache.

In comparison with existing reasoners, we have shown that our cache scales
really well with increasing size of static background knowledge. This is because the
other reasoners need to take larger amounts of data into account during reasoning
when the size of the static background knowledge increases. Our cache circumvents
this problem by turning to pattern matching in order to eliminate reoccurring
reasoning steps. It is important to stress that this is only in the case when there is
a cache hit, if not, the same reasoning times can be expected as for the traditional
reasoners. As the HermiT reasoner is used under the hood to fill the cache in case
of a cache miss, the same reasoning times as HermiT can be expected. However,
as the events in an IoT setting are typically very similar in shape and size, the
cache can provide very large performance gains, with very limited overhead. If one
is willing to sacrifice some memory consumption to increase performance during
event enrichment, then the cache is very beneficial.

We note that even for lesser expressive reasoners, such as RDFox and ELK that
support the lesser expressive OWL2 RL and OWL2 EL profiles, our cache can still
provide large performance gains. Our cache still outperforms these reasoners and is
at least ten times faster. (And up to 300 times for large datasets using ELK.) This
means that for streams with similar structure and size, we can employ expressive
OWL2 DL reasoning and still be competitive in terms of event enrichment times
compared to lesser expressive and more performant reasoners such as RDFox and
ELK. This is very beneficial, as most of the IoT ontologies require OWL2 DL
reasoning to be fully interpreted [10]. On the other hand, this also means that
we can use our cache in combination with RDFox or ELK and still gain large
performance gains. At this point, the OWL2 DL reasoner HermiT is used for the
materialization of the events upon a cache miss. We can easily switch to another
reasoner to perform this initial materialization.
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9.3 Limitations

Our approach makes a number of assumptions, limiting its use to specific scenarios.
We now go deeper into the limitations of the fact that events should have similar
structure and size and that we focus specifically on the task of event enrichment.

9.3.1 Fixed Event Structure

The cache is optimized to exploit reoccurring reasoning steps over streams that
contain events that are similar in shape and size. This is typical in an IoT setting
where various sensors produce observations. Each observation is unique, in the
sense that the observed value is unique, the sensor that made the observation may
vary or the observed property. However, these observations are all still mostly the
same structure and size. Outside the IoT this assumption may hold as well, e.g.
as we have seen in the university management scenario in Section 8. However, in
other Stream Processing scenarios such as Social Media analysis, this hypothesis
typically does not hold. Social media posts can have a different number of likes,
followers, comments, and so on. This variability in the number of properties would
lead to a huge number of cache misses and thus minimize the benefits of the
cache. At this point, the cache can thus not be used in scenarios with variable
event structures. However, evaluating if the event structure is fixed is possible.
When the original generated data is not in the RDF format, a mapping step is
necessary to map it to the RDF model, e.g. through RML [17]. By analyzing the
mapping file that indicates how the raw data needs to be mapped to semantic
data, we can be sure that the structure of the resulting stream is fixed. If the
stream is original an Ontology stream, and thus no mapping phase is available for
analysis, still we can monitor the structure of the events and evaluate how much
they vary before employing our cache solution. The latter can easily be done with
our cache itself, by adding an alert on the number of stored events.

9.3.2 Event Enrichment

As indicated in Section 3, our approach is optimized for Event Enrichment, i.e. we
only infer the types of the individuals that were contained within the event. Thus
if the event invokes a change of types in the static data, that was not linked in the
event, then these changes will not be captured. The latter is the problem of Static

Enrichment, which we did not study here. Figure 15 shows a visual explanation
between the different enrichments. In theory, the possible enrichments of the static
data could be cached as well. The only requirement is that the reasoner provides
some intuition which additional types have been added to the static data. Her-
miT does not allow to extract these insights, requiring to query the whole static
knowledge base for possible changes. This is by no means a scalable solution as 1)
the larger the static data, the more data needs to be queried, and 2) one needs to
maintain a list with all the current types of all individuals in the static data to be
able to verify if additional types have been added through the reasoning process.
Reasoners that do provide this intuition allow to use the cache for both Event and
Static Enrichment.
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Fig. 15 Difference between event and static enrichment. Event enrichment: materialization
based on the influence of the static data on the event. Static enrichment: materialization based
on the influence of the event on the static data. The event is enriched as a CO2Observation,
it needs the static knowledge stating that the sensor observes CO2. It is also a CoronaAlertO-
bservation because it is a CO2Observation measuring a value above 100 in a ClassRoom. The
static knowledge is enriched as an AlarmRoom, as one of the sensors in the room has captured
an AlertObservation.

10 Conclusion & Future Work

In this paper, we presented a caching technique to solve the mismatch between
expressive reasoning and real-time processing requirements in data-intensive do-
mains. In order to significantly speed up reasoning time for the task of event
enrichment, we exploit the fact that events in IoT data streams are often similar
in structure and size. Our caching technique is ideal for the semantic enrichment
of events, in combination with rich backgrounds and complex domain knowledge.
In these cases, the proposed caching technique is up to thousands of times faster
than fully-fledged OWL2 DL reasoners for event enrichment, while preserving the
correct and completeness of reasoning. The caching technique is beneficial even for
less expressive profiles, such as OWL2 RL and EL, where we obtain up to tenths
and hundreds faster reasoning times.

In our future work, we will investigate the possibility to pre-fill the cache,
based on the stream description such as provided by VoCaLS [46]. To further
limit memory consumption, we will incorporate various encoding schemes. We
will also investigate how to exploit our cache for non-IoT streams, i.e. streams
consisting of events that have no similar structure or size. This is typical in Social
Media analysis. We also aim to extend the technique to enable the enrichment of
windows of events, while we currently only considered single events. In this paper
we have limited the scope to the enrichment of the events only, disregarding the
enrichment of the static data. We will further extend our technique to include
both enrichment influences. This will allow to further bridge the gap between
expressivity and efficiency of reasoning over high-velocity data streams.
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