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Abstract.
Linked Open Datasets on the Web that are published as RDF can evolve over time. There is a need to be able to
store such evolving RDF datasets, and query across their versions. Different storage strategies are available for
managing such versioned datasets, each being efficient for specific types of versioned queries. In recent work, a
hybrid storage strategy has been introduced that combines these different strategies to lead to more efficient query
execution for all versioned query types at the cost of increased ingestion time. While this trade-off is beneficial in
the context of Web querying, it suffers from exponential ingestion times in terms of the number of versions, which
becomes problematic for RDF datasets with many versions. As such, there is a need for an improved storage strat-
egy that scales better in terms of ingestion time for many versions. We have designed, implemented, and evaluated
a change to the hybrid storage strategy where we make use of a bidirectional delta chain instead of the default
unidirectional delta chain. In this article, we introduce a concrete architecture for this change, together with ac-
companying ingestion and querying algorithms. Experimental results from our implementation show that the in-
gestion time is significantly reduced. As an additional benefit, this change also leads to lower total storage size and
even improved query execution performance in some cases. This work shows that modifying the structure of delta
chains within the hybrid storage strategy can be highly beneficial for RDF archives. In future work, other modifi-
cations to this delta chain structure deserve to be investigated, to further improve the scalability of ingestion and
querying of datasets with many versions.
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1.  Introduction

Even though the RDF [1] data model itself is atem-
poral, RDF datasets typically change over time [2].
Such changes can include additions, modifications, or
deletions of individual facts, ontologies, or even com-
plete datasets. While some evolving datasets such as
DBpedia [3] are published as separate dumps per ver-
sion, more direct and efficient access to prior versions
can be desired, so that versioned queries in, between,
and across different versions can be done efficiently.

While RDF archiving systems have emerged in the
past that can handle such evolving datasets, a survey
on archiving Linked Open Data [4] illustrated the need
for improved versioning capabilities in order to pre-
serve RDF on the Web and expose queryable access.
Concretely, there is a need for systems that can store
and query such datasets with low cost and effort on
Web servers, so that they can cope with the large scale
of RDF datasets on the Web, and their velocity of
changes. In previous work, we introduced a new hy-
brid archiving approach, implemented as a system
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called OSTRICH [5]. The approach enables efficient
triple pattern queries for different versioned query
types, while still keeping storage requirements reason-
able. OSTRICH was designed to run on average ma-
chines, so it can be used as a back-end for low-cost
Web query interfaces such as Triple Pattern
Fragments [6]. Since it exposes a triple pattern query
interface, it can also be used as an index inside
SPARQL query engines [7]. As such, this hybrid stor-
age approach is a step towards solving the need for
properly preserving RDF on the Web.

A recent survey [8] has shown that existing RDF
archiving solutions fail to handle large RDF archives
with many versions. It was shown that the hybrid ap-
proach employed by OSTRICH is the only one capa-
ble of storing large RDF archives, but that it suffers
from a scalability issue in terms of ingestion time for
many versions. This is an inherent consequence of the
storage strategy of OSTRICH, which is employed to
achieve performant query execution. Concretely, after
ingesting many versions, the ingestion process starts
slowing down significantly, which makes OSTRICH
unusable for datasets with a large number of versions,
which is crucial for preserving RDF datasets on the
Web. The reason for this is that the hybrid storage ap-
proach from OSTRICH only consists of a single ver-
sion snapshot at the start, followed by an aggregated
delta chain that keeps growing longer for every new
version. While this aggregated delta chain is beneficial
for faster query execution, it comes at the cost of in-
creased ingestion times. Since additional deltas lead to
a cumulative increase in aggregated delta size during
ingestion, this process becomes more memory-inten-
sive and slower for every new version. In order to de-
lay this problem, we propose a storage strategy modi-
fication, where there still is a single version snapshot,
but we place it in the middle of the delta chain, instead
of at the beginning, leading to a bidirectional delta
chain. This modification is inspired by the concept of
bidirectional predicted pictures (B-frames) [9] that are
a popular technique within video compression. Typi-
cally, such B-frames are used for non-aggregated
deltas, but we instead devise a similar technique for
aggregated deltas. While bidirectional delta chains
complicate ingestion and querying, it leads to two
shorter delta chains. This will require less effort than
one long delta chain, and may lead to faster ingestion
and querying.

In the next section, we discuss the related work, and
give more details on OSTRICH. Next, in Section 3,

we present our problem statement, followed by our
proposed solution in Section 4. After that, we present
our experimental setup and results in Section 5, and
we conclude in Section 6.

2.  Related Work

In this section, we discuss the fundamentals on RDF
archiving, which RDF archiving solutions already ex-
ist, and benchmarks for RDF archiving. Finally, we
discuss OSTRICH in more detail, since we build upon
this approach in this work.

2.1.  RDF Archiving

Various techniques have been introduced to store
RDF datasets [10, 11]. These techniques make use of
various indexing and compression techniques to opti-
mize query execution and storage size. There is a need
to maintain the history of these datasets [2, 4], which
gave rise to the research domain of RDF archiving. An
RDF archive [12] has been defined as a set of version-
annotated triples. Where a version-annotated triple is
defined as an RDF triple with a label representing the
version in which this triple holds. Furthermore, an
RDF version of an RDF archive is composed of all
triples with a given version label.

RDF archives allow multiple versions to exist in
parallel, which leads to a range of new querying possi-
bilities. Instead of only querying within the latest ver-
sion of a dataset, also previous versions can be
queried, or even differences between different ver-
sions. To cover this new range of querying possibili-
ties, five foundational query types were
introduced [12], which are referred to as query atoms.
For brevity, we refer to the article in which they were
introduced [12] for their formal details. In the scope of
this article, we only discuss three of the five query
atoms, as the other two query atoms can be expressed
in terms of just three query atoms [13]. The three rele-
vant query atoms are defined as follows:
1. Version materialization (VM) retrieves data using

a query targeted at a single version. Example:
Which books were present in the library yesterday?

2. Delta materialization (DM) retrieves query result
change sets between two versions. Example: Which
books were returned or taken from the library be-
tween yesterday and now?
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3. Version query (VQ) annotates query results with
the versions in which they are valid. Example: At
what times was book X present in the library?

2.2.  RDF Archiving Solutions

In the recent years, several techniques and solutions
have been proposed to allow storing and querying
RDF archives. RDF archiving systems are typically
categorized into four non-orthogonal storage
strategies [4, 14]:

The Independent Copies (IC) approach creates
separate instantiations of datasets for each change
or set of changes.
The Change-Based (CB) approach instead only
stores change sets between versions.
The Timestamp-Based (TB) approach stores the
temporal validity of facts.
The Fragment-based (FB) approach stores snap-
shots of each changed fragment of datasets.

There exists a correspondence between these query
atoms and the independent copies (IC), change-based
(CB), timestamp-based (TB) and fragment-based (FB)

storage strategies. Namely, IC and FB typically lead to
efficient VM queries, CB is better for DM queries, and
TB is best for VQ queries. No single strategy leads to
good performance of all query atoms.

Table 1 shows an overview of the primary RDF ar-
chiving systems, and which storage strategy they fol-
low. These are explained in more detail hereafter.

2.2.1.  Independent Copies Approaches

SemVersion [15] tracks different versions of RDF
graphs, using Concurrent Versions System (CVS) con-
cepts to maintain different versions of ontologies, such
as diff, branching and merging.

2.2.2.  Change-Based Approaches

Cassidy et al. [16] propose a system to store
changes to graphs as a series of patches, which makes
it a CB approach. They describe operations on ver-
sioned graphs such as reverse, revert and merge. A
preliminary evaluation shows that their implementa-
tion is significantly slower than a native RDF store. Im
et al. [26] propose a CB patching system based on a
relational database. In their approach, they use a stor-
age scheme called aggregated deltas which associates
the latest version with each of the previous ones.
While aggregated deltas result in fast delta queries,
they introduce a higher storage overhead.
R&WBase [17] is a CB versioning system that uses
the graph component of quad-stores to build a version-
ing layer. It supports tagging, branching and merging.
R43ples [18] follows a similar approach to R&WBase,
but they additionally introduce new SPARQL key-
words, such as REVISION, BRANCH and TAG.

2.2.3.  Timestamp-Based Approaches

Hauptman et al. [19] store each triple in a different
named graph, which corresponds to the TB storage ap-
proach. The identifying graph of each triple is used in
a commit graph for SPARQL query evaluation at a
certain version. X-RDF-3X [20] is a versioning exten-
sion of RDF-3X [11], where each triple is annotated
with a creation and deletion timestamp. RDF-TX [21]
is an in-memory query engine that supports a temporal
SPARQL querying extension, which makes use of a
compressed multi-version B+Tree that outperforms
similar systems such as X-RDF-3X in terms of query-
ing efficiency, while having similar storage require-

Name IC CB TB FB

SemVersion [15] ✓    

Cassidy et al. [16]  ✓   

R&WBase [17]  ✓   

R43ples [18]  ✓   

Hauptman et al. [19]   ✓  

X-RDF-3X [20]   ✓  

RDF-TX [21]   ✓  

v-RDFCSA [22]   ✓  

Dydra [23]   ✓  

Quit Store [14]    ✓

TailR [24] ✓ ✓   

Cuevas et al. [25] ✓ ✓ ✓  

OSTRICH [5] ~ ✓ ✓  

Table 1: Overview of RDF archiving solutions with
their corresponding storage strategy: Individual copies
(IC), Change-based (CB), Timestamp-based (TB), or
Fragment-based (FB). ✓ : fullfils the strategy com-
pletely; ~: fullfils the strategy partially.
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ments. v-RDFCSA [22] is a self-indexing RDF archive
mechanism that enables versioning queries on top of
compressed RDF archives as a TB approach.
Dydra [23] is an RDF graph storage platform with
dataset versioning support. They introduce the
REVISION keyword, which is similar to the SPARQL
keyword GRAPH for referring to different dataset
versions.

2.2.4.  Fragment-Based Approaches

Quit Store [14] is a system that is built on top of
Git, which allows these same features by considering
each version to be a commit. A version is made up of
multiple fragments, which may be reused across multi-
ple versions of a dataset, which typically leads to low-
er storage space compared to a pure IC strategy. Using
Git’s delta compression, this storage space can be re-
duced even further at the cost of slower querying.

2.2.5.  Hybrid Approaches

TailR [24] is an HTTP archive for Linked Data
pages for retrieving prior versions of certain HTTP re-
sources. It is a hybrid CB/IC approach as it starts by
storing a dataset snapshot, after which only deltas are
stored for each consecutive version. When the chain
becomes too long, or other conditions are fulfilled, a
new snapshot is created for the next version to avoid
long version reconstruction times. Cuevas et al. [25]
propose an approach similar to R&WBase, where the
named graph functionality in SPARQL 1.1 engines is
used to store RDF archives, and versioned queries are
achieved through query rewriting. As opposed to
R&WBase which only uses a CB approach, they pro-
pose distinct a IC strategy, four CB strategies, and a
TB strategy. For each of those strategies, they intro-
duce separate query rewriting techniques for VM and
DM queries, but do not consider VQ queries. Experi-
mental results on an archive with eight large versions
show there is a time-space trade-off, whereby large
storage sizes achieve faster query execution, and
smaller storage sizes result in slower query execution.
The authors consider the TB strategy achieving the
best trade-off. Relevant for our work is the use of four
CB strategies, which correspond to forward, backward
deltas, forward aggregated [26], and backward aggre-
gated deltas. OSTRICH [5] is a hybrid IC/CB/TB ap-
proach that exploits the advantages of each strategy to
provide a trade-off between storage requirements and

querying efficiency. It only fullfils the IC strategy par-
tially, since it only creates a fully materialized snap-
shot for the first version, and stores differences after-
wards. Experiments show that OSTRICH achieves
good querying performance for all query atoms, but
suffers from scalability issues in terms of ingestion
time for many versions. As such, we build upon OS-
TRICH in this work, and attempt to solve this
problem.

2.3.  RDF Archiving Benchmarks

BEAR [12] is a benchmark for RDF archive sys-
tems that is based on real-world datasets from differ-
ent domains. The 58 versions of BEAR-A contain be-
tween 30M and 66M triples per version, with an aver-
age change ratio of 31%. BEAR-A provides triple pat-
tern queries for three different query atoms for both
result sets with a low and a high cardinality. The
BEAR-B dataset contains the 100 most volatile re-
sources from DBpedia Live at three different granular-
ities (instant, hour and day), and provides a small col-
lection of triple pattern queries corresponding to the
real-world usage of DBpedia. Each version contains
between 33K and 43K triples, where the instant granu-
larity has an average change ratio of 0.011%, hour has
0.304%, and day has 1.252%. Given the relative num-
ber of triples and change ratios between BEAR-A and
BEAR-B, we refer to BEAR-A as a dataset with few
large versions, and to BEAR-B as a dataset with many
small versions for the remainder of this article.

The BEAR benchmark also provides baseline RDF
archive implementations based on HDT [10] and
Jena’s [27] TDB store for the IC, CB, and TB ap-
proaches, and the hybrid IC/CB and TB/CB approach-
es. Just like TailR [24], the hybrid approaches are
based on snapshots followed by delta chains. Since
HDT does not support quads by default, the TB and
TB/CB approaches were not implemented in the HDT
baseline implementations. Given the variety of these
approaches in terms of storage strategies, together
with their open availability and ease of use, they form
a good basis for comparative analysis when bench-
marking, which is why we make use of them during
our experiments.

Due to BEAR covering all query atoms we work
with, and it providing baseline implementations for the
different storage strategies, we make use of BEAR for
our experiments.

https://arxiv.org/pdf/1805.03721
https://users.dcc.uchile.cl/~ahogan/docs/sparql-version.pdf
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2.4.  OSTRICH

As mentioned before, OSTRICH [5] makes use of a
hybrid IC/CB/TB storage approach with the goal of
providing a trade-off between storage size and query-
ing efficiency. The main motivation for OSTRICH is
to serve as a back-end of a low-cost Web APIs for ex-
posing RDF archives [28], where query execution
must be sufficiently fast, without requiring too much
storage.

Concretely, OSTRICH always starts by storing the
initial version as a fully materialized version, follow-
ing the IC strategy. This initial version is stored using
HDT [10], which enables high compression and effi-
cient querying. Based on this initial version, all fol-
lowing versions are stored as deltas, following the CB
strategy. To solve the problem of increasing query exe-
cution times for increasing numbers of versions, OS-
TRICH makes use of the aggregated deltas [26] ap-
proach, by making each delta relative to the initial
snapshot instead of the previous version. Due to the
storage redundancies that are introduced because of
these aggregated deltas, OSTRICH uses a B+tree-
based approach to store all aggregated deltas in a sin-
gle store. This single store annotates each added and
deleted triple with the delta version in which it exists,
thereby following the timestamp-based strategy. To
further reduce storage requirements and query execu-
tion times, all triple components inside this store are
dictionary-encoded, similar to the approach followed
by HDT.

On top of this storage approach, OSTRICH intro-
duces algorithms for VM, DM and VQ triple pattern
queries. Only triple pattern queries are supported in-
stead of full SPARQL queries, since triple pattern
queries are the foundational building blocks for more
expressive SPARQL queries. These query algorithms
produce streaming results, where the streams can start
from an arbitrary offset, which is valuable for SPAR-
QL query features such as OFFSET and LIMIT. Addi-
tionally, OSTRICH provides algorithms for cardinality
estimation for these queries, which are valuable for
query planning within query engines. OSTRICH has
been implemented in C/C++, with bindings existing
for Node.JS (JavaScript). The triple pattern index pro-
vided by OSTRICH has been demonstrated to be us-
able within a full SPARQL query engine such as
Comunica [29, 30].

Experimental results on OSTRICH with the BEAR
benchmark show that this hybrid strategy is more ben-

eficial than having just a single storage strategy, as it
allows efficient execution of all query atoms. The
main downside of this approach is that it leads to scal-
ability issues in terms of ingestion time for many ver-
sions. Concretely, the BEAR-B-hourly dataset—which
contains 1,299 versions— starts showing high inges-
tion times starting around version 1,100. The reason
for this is that the aggregated deltas start becoming too
large. As such, we aim to resolve this problem in this
work by improving the hybrid storage strategy from
OSTRICH through fundamental changes to the delta
chain structure.

3.  Problem Statement

As mentioned in Section 1, RDF archiving solutions
are not sufficiently capable of handing large RDF
archives with many versions. While the hybrid storage
approach as proposed by OSTRICH can handle the
largest archives among all currently existing approach-
es, it does not scale sufficiently to a large number of
versions due to its long delta chains. Our goal in this
work is to investigate if we can build on top of this hy-
brid storage approach and modify its delta chain struc-
ture to be able to handle RDF archives with more
versions.

We formulate our research question as follows:
“How can we improve the storage of RDF archives
under the hybrid storage strategy by modification of
the delta chain structure?”

Concretely, we start from the hybrid storage ap-
proach from OSTRICH, and we modify its current
(forward) unidirectional delta chain (UDC) into a
bidirectional delta chain (BDC). This bidirectional
delta chain consists of two smaller delta chains, with
respectively reverse and forward deltas, all pointing to
one common intermediary snapshot. Since these modi-
fications will reduce the maximum length of a delta
chain, without requiring more snapshots, we expect
that this will reduce ingestion time, overall storage
size, and query execution time for all query atoms.
Under the assumption of typical RDF archives provid-
ed by standard RDF archiving benchmarks, we define
the following hypotheses:
1. Storage size is lower for a BDC compared to a

UDC.
2. In-order ingestion time is lower for a BDC com-

pared to a UDC.

https://rdfostrich.github.io/article-jws2018-ostrich/
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3. VM query execution is faster for a BDC compared
to a UDC.

4. DM query execution is faster for a BDC compared
to a UDC.

5. VQ query execution is faster for a BDC compared
to a UDC.

4.  Bidirectional Delta Chain

In this section, we explain our bidirectional delta
chain approach. We start by explaining the general
idea behind a bidirectional delta chain. After that, we
explain its implication on storage. Finally, we discuss
querying algorithms for the foundational query atoms
based on this storage approach.

4.1.  Delta Chain Approaches

In the scope of this work, we distinguish between
6 different delta chain approaches, as can be seen in
Table 2. We decompose these approaches into 2 axes:
directionality and aggregation.

Along the directionality axis, we distinguish
3 forms:
1. The simplest form is the forward unidirectional

delta chain, where the snapshot comes first, and is
followed by deltas that are relative to the previous
delta.

2. The reverse unidirectional delta chain is a variant
of this where everything is reversed. Concretely, the

snapshot comes last, and is preceded by deltas,
where each delta is relative to the next delta.

3. These forward and reverse unidirectional approach-
es can be combined with each other to form a bidi-
rectional delta chain, where a first set of deltas ex-
ists before the snapshot, and a second set of deltas
exists after the snapshot.

Along the aggregation axis, we consider 2 forms:
In the non-aggregated form, each delta is relative
to the delta immediately before or after it.
In the aggregated form [26], each delta is relative
to the snapshot before or after it, where other deltas
may occur in-between.

The aggregated delta approach leads to lower ver-
sion materialization times, since each delta can be di-
rectly applied to a snapshot, as opposed to non-aggre-
gated deltas where multiple deltas need to be com-
bined before a version can be materialized. As such,
the version materialization time for aggregated deltas
is O(1) with respect to the number of versions, while it
is O(n) for non-aggregated deltas with respect to the
number of versions. This shows how aggregated deltas
lead to better query execution times. The major down-
side of aggregated deltas is however that storage size
increases due to the redundancies between the differ-
ent deltas. The longer the delta chain, the larger these
redundancies become.

OSTRICH [5] is an example that follows the unidi-
rectional forward aggregated delta chain approach,
while RCS [31] (non-RDF-based) follows the unidi-
rectional reverse non-aggregated delta chain approach.
In this work, we will investigate the use of the bidirec-
tional aggregated delta chain approach, for reasons
explained in the next section.

4.2.  Motivations For A Bidirectional Delta Chain

Experiments on the unidirectional forward aggre-
gated delta chain approach from OSTRICH [5] have
shown that this approach leads to ingestion times that
increase linearly with chain length, assuming (non-ag-
gregated) deltas as inputs. This is an expected conse-
quence of the aggregated delta approach, as they grow
in size for each new version. The goal of this work is
to investigate how these problems can be solved, with-
out losing the advantages of aggregated deltas with re-
spect to query execution times. We would not achieve
any lower ingestion times by reversing our delta chain,

 Non-aggregated Aggregated

Forward 
UDC

Reverse 
UDC

BDC 
 

Table 2: Overview of unidirectional forward, unidi-
rectional reverse, and bidirectional delta chain ap-
proaches, both with and without aggregated deltas.

https://rdfostrich.github.io/article-jws2018-ostrich/
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as the additions and deletions would just be swapped,
but would not be smaller. Instead, we aim to reduce
ingestion time by lowering storage through the reduc-
tion of the number of required snapshots.

One straightforward way of reducing ingestion time
would be to create a new snapshot and delta chain
once the ingestion time or size has crossed a certain
threshold. One example of such a threshold could be
that a new snapshot is created once the ingestion time
of a delta became larger than the time for ingesting a
snapshot. For instance, we can lower the total inges-
tion time to half the original time by splitting one delta
chain into two delta chains, or even to one third by
splitting it up into three delta chains. In the extreme,
each version would form its own snapshot, which
would lead to the independent copies storage strategy,
at the cost of increased storage size. As such, there is a
trade-off between ingestion time and storage size, and
new delta chains should only be started once ingestion
times become higher than desired.

Since the creation of a snapshot can be costly in
terms of storage size, it should be avoided until abso-
lutely necessary. As explained in the previous para-
graph, splitting up a delta chain into two separate delta
chains would lead to two snapshots, each followed by
a chain of deltas. We can however reduce the number
of required snapshots by combining the forward and
reverse approaches into a bidirectional approach, by
allowing two sets of deltas to make use of the same
snapshot. Intuitively, one bidirectional delta chain is
equivalent to two forward delta chains, where the sec-
ond delta chain is reversed. The snapshots of these two
chains are therefore shared, so that it only has to be
created and stored once.

As such, the main advantage of a bidirectional delta
chain is that it can more efficiently make use of snap-
shots. Instead of only allowing deltas in one direction
to make use of it, also deltas in the opposite direction
can make use of it. This is especially advantageous for
aggregated deltas, as these grow in size for longer
chains. In the scope of this research, we continue
working with a bidirectional aggregated delta chain
due to the non-increasing query execution times for
increasing numbers of versions.

One disadvantage of the bidirectional approach is
that it complicates ingestion, since we can not build a
reverse delta chain directly, as we can not always
know beforehand what a future version will look like.
We tackle this problem in Subsection 4.4.

4.3.  Storage Approach

As mentioned before, our goal is to improve storage
efficiency of RDF archives. For this, we build on top
of the hybrid storage approach from OSTRICH, and
we fundamentally modify this storage approach to use
a bidirectional aggregated delta chain instead of a uni-
directional aggregated delta chain. Concretely, this
means that not only deltas exist after the snapshot, but
also before the snapshot.

Fig. 1 shows an overview of the main components
of our storage approach. Note in particular the delta
chain on the left side of the snapshot, while OSTRICH
only has a single delta chain on the right side of the
snapshot. All other components are inherited from OS-
TRICH, which we briefly summarize in the next
paragraph.

We store the snapshot using HDT [10], due to its
highly performant triple pattern queries, cardinality
estimates, and high compression rate. Furthermore,
metadata about the archive is stored, containing details
such as the total number of versions. To avoid storage
overhead due to redundancies between different aggre-
gated deltas, each delta chain is compressed into time-
stamp-based B+tree indexes where additions and dele-
tions are stored separately. This separation is done to
speed up query evaluation since additions and dele-
tions are not always needed at the same time. To en-
able efficient triple pattern queries for all possible
combinations, each addition and deletion index is
stored three times for different triple components or-
ders (SPO, POS, OSP). To compress each triple com-
ponent further, a shared dictionary is used. In order to
allow efficient cardinality estimate retrieval for dele-
tions, the SPO deletion index contains additional
metadata about the relative position of each triple in-

Fig. 1: Overview of the main components of our
storage approach consisting of a bidirectional aggre-
gated delta chain.

http://www.websemanticsjournal.org/index.php/ps/article/view/328
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side the snapshot. To enable cardinality estimates for
additions, we make use of a dedicated addition count
index. For the sake of brevity, we omit further details
about the components that can be found in the
OSTRICH article (section 5) [5].

4.4.  Ingestion Approach

In this section, we introduce an approach to enable
ingestion of new versions within our bidirectional ag-
gregated storage approach. For this, we build upon the
streaming ingestion algorithm and DM query algo-
rithm for unidirectional forward aggregated delta
chains [5], which allows us to insert deltas after the
snapshot.

In order to insert deltas before the snapshot, our ap-
proach for constructing the reverse delta chain in-
volves a temporary forward delta chain. This is be-
cause we can not start building our reverse delta chain
directly, as we can not predict what triples will be in
the snapshot later down the line. For each new ver-
sion, our temporary forward delta chain will be built
up, and can be queried in the meantime. From the mo-
ment that this delta chain becomes too long, or some
other threshold has been exceeded, then an offline fix-
up algorithm is triggered that will effectively reverse
this delta chain, and place a snapshot at the end, where
a new forward delta chain can be built upon when new
versions arrive.

Algorithm 1 shows a sketch of our fix-up algorithm
in pseudo-code. First, the aggregated deltas in the
chain will be extracted as non-aggregated deltas by in-
voking a DM query over the current unidirectional ag-
gregated delta chain. We store the deletions as addi-
tions, and the additions as deletions. Next, we create a
new delta chain, and insert these reversed non-aggre-
gated deltas by invoking the streaming ingestion algo-
rithm to create unidirectional aggregated delta chains.

Once ingestion is done, the existing delta chain is re-
placed by our new delta chain.

The main advantage of this fix-up approach is that it
avoids query unavailability of the archive. The fix-up
algorithm can run at any time, preferably when the
server is experiencing a lower query load. During the
execution of this process, the temporary forward delta
chain is still available, so queries are still possible dur-
ing this time. Only after the fix-up process is done,
query executions will be delegated to this new reverse
delta chain, and the temporary forward delta chain can
be deleted. Since this fix-up process only applies to
the first (temporary) delta chain, and does not touch
the second delta chain, it may even run in parallel to
other ingestion processes for new versions.

4.5.  Out-Of-Order Ingestion Approach

The previously discussed ingestion approach as-
sumes in-order ingestion of versions, where versions
are ingested as soon as they become available. In some
cases, it may occur that all versions are present before-
hand, and can be ingested at the same time. If this oc-
curs, we can simplify ingestion and avoid the fix-up
algorithm, by not inserting versions in their logical
order.

Algorithm 2 shows a sketch of our out-of-order al-
gorithm in pseudo-code. Concretely, if we have a set
of n versions then we first determine the middle ver-
sion ⌊n/2⌋. For this middle version, we create a fully
materialized snapshot, and assign its proper version
label ⌊n/2⌋. Next, we create our reverse delta chain
for all versions < ⌊n/2⌋, by invoking the streaming
ingestion algorithm to create unidirectional aggregated
delta chains targeted at snapshot ⌊n/2⌋, and by swap-
ping the addition and deletion labels. Finally, we cre-
ate our forward delta chain for all versions > ⌊n/2⌋,
by again invoking the streaming ingestion algorithm to

FUNCTION fixUp(store) 
# Recreate deltas, but in reverse 
  additions = []  
  deletions = [] 
  FOR v IN store.getVersions() 
    deletions.push(store.getAdditions(v, v + 1)) 
    additions.push(store.getDeletions(v, v + 1)) 
# Ingest reversed deltas into a new delta chain 
  newChain = store.newDeltaChain({ reversed: true }) 
  FOR v IN store.getVersions() 
    newChain.ingest(v, additions[v], deletions[v]) 
# Replace delta chain 
  existingChain = store.getDeltaChain(store.getVersions()) 
  store.replaceChain(existingChain, newChain) 

Algorithm 1: Fix-up algorithm for reversing an ex-
isting bidirectional aggregated delta chain.

FUNCTION ingestOutOfOrder(store, versions) 
# Create snapshot for middle version 
  vMiddle = Math.floor(versions.length / 2) 
  store.createSnaphot(middleVersion, versions[vMiddle]) 
# Create reverse delta chain 
  reverseChain = store.newDeltaChain({ reversed: true, snapshot: vMiddle }) 
  FOR v = 0; v < vMiddle; v++ 
    reverseChain.ingest(v, versions.deletions[v], versions.additions[v]) 
# Create forward delta chain 
  forwardChain = store.newDeltaChain({ reversed: false, snapshot: vMiddle }) 
  FOR v = vMiddle + 1; v < versions.length; v++ 
    forwardChain.ingest(v, versions.additions[v], versions.deletions[v]) 

Algorithm 2: Out-of-order ingestion algorithm for
creating a bidirectional aggregated delta chain for a
predetermined set of versions.

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

https://rdfostrich.github.io/article-jws2018-ostrich/
https://rdfostrich.github.io/article-jws2018-ostrich/
https://rdfostrich.github.io/article-jws2018-ostrich/#delta-materialization
https://rdfostrich.github.io/article-jws2018-ostrich/#ingestions
https://rdfostrich.github.io/article-jws2018-ostrich/#ingestions
https://rdfostrich.github.io/article-jws2018-ostrich/#ingestions
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create unidirectional aggregated delta chains targeted
at snapshot ⌊n/2⌋.

This out-of-order ingestion will typically not be
used in a live setting. Instead, it can be used when ini-
tializing an archive when all versions are known
beforehand.

4.6.  Query Algorithms

In this section, we discuss triple pattern query algo-
rithms for the three query atoms discussed in Section 2
(VM, DM, VQ). For simplicity, we assume the exis-
tence of a (bidirectional) delta chain with one snap-
shot. We consider multiple snapshots and delta chains
future work. We build upon the existing algorithms for
unidirectional (aggregated) delta chains [5], and there-
by inherit their properties of streaming, offset support,
and cardinality estimators. Below, we briefly discuss
the relevant parts of these existing algorithms. For
more details, we refer to the OSTRICH article (section
7) [5].

4.6.1.  Version Materialization

Version Materialization (VM) allows retrieval of
triples in a given version. In summary, VM over a uni-
directional delta chain works by either querying a
snapshot directly, if the requested version is a snap-
shot, or applying a given delta on the closest preceding
snapshot otherwise. In our bidirectional delta chain, a
snapshot can not only exist before a delta, but also af-
ter a delta. Nevertheless, the algorithm itself remains
the same as for a unidirectional delta chain, as the
delta will have to be applied onto the snapshot in both
cases. As such, we do not discuss this VM case any
further.

4.6.2.  Delta Materialization

Delta Materialization (DM) allows differences be-
tween two given versions to be retrieved. The DM al-
gorithm over a unidirectional delta chain distinguishes
two cases for this; either the start version is a snapshot
or a delta, where the end version will always be a
delta. If the start (or end) version is a snapshot, then
the result is simply a query within the aggregated delta
of the end version. Otherwise, the addition and dele-
tion indexes for the two delta versions are iterated in a
sort-merge join-like operation, and only emit the

triples that have a different addition/deletion flag for
the two versions.

In our bidirectional storage approach, one additional
case can occur: when the start and end version corre-
spond to deltas in the bidirectional delta chain before
and after the snapshot, i.e., the DM query crosses the
snapshot boundary. For this, we split up our query into
two queries: a DM query from the start version until
the snapshot, and a DM query from the snapshot until
the end version. These two queries can be resolved
over the two respective delta chains using the DM al-
gorithm over a unidirectional delta chain. As the OS-
TRICH DM algorithm guarantees that the triples from
these two queries are sorted (because the are stored in
order), we can merge them in a sort-merge join way
(which preserves the order), where triples are only
emitted if they don’t exist in both streams (ignoring
the addition/deletion flag). Algorithm 3 illustrates this
algorithm in pseudocode. Following the patch notation
for DARCS [32], with o being the start version, e be-
ing the end version and s being the snapshot, our delta
split corresponds to D  = D1 D2 .

In order to estimate the cardinality of this third case,
the same idea is followed where the counts of the part
of the delta chain before and after the snapshot are
added. Just like the existing DM cardinality estimator
over a unidirectional delta chain, this can be an over-
estimation, since certain triples may occur in both
delta chains that would be omitted from the final result
stream.

4.6.3.  Version Query

A Version Query (VQ) enables querying across all
versions, with results being annotated with the ver-
sions in which they occur. VQ over a unidirectional
delta chain is done by iterating over the snapshot for a
given triple pattern in a streaming manner. Every
snapshot triple is queried within the deletion index.
For every discovered deletion, their respective version
annotations are removed from the result. If no such

o e o s e

FUNCTION queryDmCase3(store, start, end) 
  snapshotVersion = store.getSnapshotBetween(start, end) 
  reverseStream = store.getDeltaStream(start, snapshotVersion) 
  forwardStream = store.getDeltaStream(snapshotVersion, end) 
  return sortMerge(reverseStream, forwardStream) 

Algorithm 3: Delta Materialization algorithm for
triple patterns that produces a triple stream when the
version range crosses the snapshot boundary.

1 
2 
3 
4 
5 

https://rdfostrich.github.io/article-jws2018-ostrich/#ingestions
https://rdfostrich.github.io/article-jws2018-ostrich/
https://rdfostrich.github.io/article-jws2018-ostrich/
https://rdfostrich.github.io/article-jws2018-ostrich/#version-materialization
https://rdfostrich.github.io/article-jws2018-ostrich/#delta-materialization
https://rdfostrich.github.io/article-jws2018-ostrich/#delta-materialization
http://darcs.net/
https://rdfostrich.github.io/article-jws2018-ostrich/#version-query
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deletion value was found, the triple was never deleted,
so the versions annotation will contain all versions of
the store. Once the snapshot stream has finished, the
addition index are iterated in a similar way, where the
version annotation of every addition triple is again up-
dated based on its presence in the deletion index.

Our case is a trivial extension of this algorithm. In-
stead of checking single addition and deletion streams,
two addition and deletion streams have to be checked.
This will produce distinct version annotations, for
which we apply the union.

To estimate the cardinality of the VQ results, the
unidirectional delta chain approach can again be ex-
tended by adding the snapshot cardinality with the ad-
dition cardinality for both delta chains for the given
triple pattern. As some triples could occur in both delta
chains, this can lead to an overestimation.

5.  Evaluation

In this section, we evaluate our bidirectional ar-
chiving approach by comparing our implementation to
native OSTRICH and other systems.

5.1.  Implementation

We have implemented our storage approach and
query algorithms as a tool called COBRA (Change-
Based Offset-Enabled Bidirectional RDF Archive).
COBRA is an extension of OSTRICH, has been im-
plemented in C/C++, and is available under the MIT
license on GitHub (https://github.com/rdfostrich/co-
bra). Our implementation uses HDT [10] as snapshot
technology, and makes use of the highly efficient
memory-mapped B+Tree implementation Kyoto Cabi-
net (http://fallabs.com/kyotocabinet/) for storing our
indexes. The delta dictionary is encoded with gzip,
which requires decompression during querying and
ingestion.

5.2.  Experimental Setup

In order to evaluate the ingestion and triple pattern
query execution of COBRA, we make use of the
BEAR benchmark
(https://aic.ai.wu.ac.at/qadlod/bear.html). To test the
scalability of our approach for datasets with few and
large versions, we use the BEAR-A benchmark. We
use the first ten versions of the BEAR-A dataset (more

versions cause memory issues with OSTRICH), which
contains 30M to 66M triples per version. This dataset
was compiled from the Dynamic Linked Data Obser-
vatory. To test for datasets with many smaller ver-
sions, we use BEAR-B with the daily and hourly gran-
ularities. For the daily dataset we use 89 versions and
for hourly dataset 1,299 versions, both of them have
around 48K triples per version. All experiments were
performed on a 64-bit Ubuntu 14.04 machine with a
24-core 2.40 GHz CPU and 128 GB of RAM. Our ex-
perimental setup and its raw results are available on
GitHub (https://github.com/rdfostrich/cobra/tree/mas-
ter/Experiments/), as well as the scripts that were used
to process them (https://github.com/rdfostrich/cobra-
bear-results/).

Considering we aim to measure the benefits of the
bidirectional aggregated delta chain compared to the
unidirectional aggregated delta chain under the hybrid
storage strategy, we primarily distinguish between the
following storage approaches:

OSTRICH: Forward unidirectional aggregated
delta chain (Subfig. 2.1)
COBRA*: Bidirectional aggregated delta chain be-
fore fix-up (Subfig. 2.2)
COBRA: Bidirectional aggregated delta chain after
fix-up (Subfig. 2.3)

Fig. 2: The different storage approaches used in our
experiments for an arbitrary dataset with six versions.

Subfig. 2.1: OSTRICH with a forward unidirec-
tional aggregated delta chain    

Subfig. 2.2: COBRA* with two unidirectional ag-
gregated delta chains before fix-up    

Subfig. 2.3: COBRA with a bidirectional aggregat-
ed delta chain after fix-up (ingested out-of-order
starting with snapshot)

https://github.com/rdfostrich/cobra
http://www.websemanticsjournal.org/index.php/ps/article/view/328
http://fallabs.com/kyotocabinet/
http://www.gzip.org/
https://aic.ai.wu.ac.at/qadlod/bear.html
http://swse.deri.org/dyldo/
https://github.com/rdfostrich/cobra/tree/master/Experiments/
https://github.com/rdfostrich/cobra-bear-results/
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In order to achieve a more complete comparison
with other approaches, we also evaluate BEAR’s Jena
(IC, CB, TB and hybrid CB/TB) and HDT-based (IC
and CB) RDF archive baseline implementations. We
consider a comparison with other systems such as X-
RDF-3X, RDF-TX and Dydra out of scope for this
work due to the major difficulties we experienced with
these systems caused by missing implementations or
the additional required implementation effort to sup-
port the required query interfaces.

In the scope of this work, we work with at most two
delta chains. For simplicity of these experiments, we
always start a new delta chain in the middle version of
the dataset (5 for BEAR-A, 45 for BEAR-B Daily, 650
for BEAR-B Hourly). Note that for the COBRA stor-
age approach, we assume that all versions are avail-
able beforehand, so they can be stored out of order,
starting with the middle snapshot. For example, fol-
lowing the out-of-order ingestion algorithm from
Subsection 4.5, for BEAR-A, this will first lead to the
creation of a snapshot for version 5, the creation of a
reverse delta chain for versions 0-4, and finally the
creation of a forward delta chain for versions 6-9. In
practice, this may not always be possible, which is
why we report on the additional fix-up time during in-
gestion separately that would be required when ingest-
ing in order (COBRA*).

To evaluate triple pattern query performance, we
make use of the query sets provided by BEAR.
BEAR-A provides 7 query sets containing around 100
triple patterns that are further divided into high result
cardinality and low result cardinality by the bench-
mark creators. BEAR-B provides two query sets that
contain ?P? and ?PO queries. We evaluate these queries
as VM queries for all version, DM queries between the
first and all other versions and a VQ query. In order to
minimize outliers, we replicate the queries five times
and take the mean results. Furthermore, we perform a
warm-up period before the first query of each triple
pattern. Since neither OSTRICH nor COBRA support
arbitrary numbers of snapshots, we limit our experi-
ments to OSTRICH’s unidirectional storage layout and
COBRA’s bidirectional storage layout with a single
snapshot.

5.3.  Measurements

In this section, we discuss the results of our experi-
ments on ingestion and query evaluation, which we
then analyze in the next section.

5.3.1.  Ingestion

Table 3 and Table 4 respectively show the total stor-
age sizes and ingestion times for BEAR-A, BEAR-B
Daily, and BEAR-B Hourly under the different storage
approaches.

When purely comparing the COBRA approaches
and OSTRICH, it can be observed that COBRA re-
quires less storage space than OSTRICH for BEAR-A
and BEAR-B Hourly, but not for BEAR-B Daily. CO-
BRA* requires more storage space than both COBRA
and OSTRICH with BEAR-A, but it requires less in-
gestion time. For BEAR-B Daily, OSTRICH requires
less storage, but COBRA* has the lowest ingestion
time. For BEAR-B Hourly, COBRA* is lower in terms
of storage size and ingestion time than both COBRA
and OSTRICH. The outliers that are apparent for
BEAR-B Hourly are compression artefacts for the
storage of dictionaries and delta chains using Kyoto
Cabinet, as storage size may fluctuate slightly based
on the available data. In summary, COBRA requires
less ingestion time than OSTRICH in all cases (59%
less on average), and it reduces storage size for two
out of the three cases (19% lower on average).

Compared to the HDT and Jena-based approaches,
and the original raw representation of BEAR’s delta
files in N-Triples and gzip, we see similar results as
shown before in the OSTRICH article (section
8.3.1) [5]. COBRA, COBRA*, and OSTRICH reduce
storage size compared to the raw gzip representation,
expect for BEAR-A. HDT-CB is consistently smaller,
and Jena-CB/TB is also smaller for the BEAR-B
datasets. Regarding ingestion time, OSTRICH and
COBRA are overall significantly slower than the alter-
natives. However, COBRA speeds up ingestion
enough so that it comes close to some of the Jena-
based approaches, and sometimes even becomes faster
than them.

https://rdfostrich.github.io/article-jws2018-ostrich/
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Approach BEAR-A BEAR-B
Daily.

BEAR-B
Hourly

Raw (N-
Triples) 46,069.76 556.44 8,314.86

Raw (gzip) 3,194.88 30.98 466.35

OSTRICH 4,587.52 16.87 450.59

COBRA 4,066.74 25.69 331.20

COBRA* 5,052.67 21.58 216.95

Jena-IC 32,808.96 415.32 6,233.92

Jena-CB 18,216.96 42.82 473.41

Jena-TB 82,278.4 23.61 3,678.89

Jena-CB/TB 31,160.32 22.83 53.84

HDT-IC 6,829.73 148.61 2,226.45

HDT-CB 3,485.43 6.21 25.14

Table 3: Total storage size in MB for the different
datasets. The lowest sizes per dataset are indicated in
bold. There is no consistent overall winner.

Approach BEAR-
A.

BEAR-B
Daily

BEAR-B
Hourly

OSTRICH 2,256 12.36 4,497.32

COBRA 1,300 6.54 529.99

COBRA* 1,019 4.91 337.52

Jena-IC 443 8.91 142.26

Jena-CB 226 9.53 173.48

Jena-TB 1,746 0.35 70.56

Jena-
CB/TB 679 0.35 0.65

HDT-IC 34 0.39 5.89

HDT-CB 18 0.02 0.07

Table 4: Total ingestion time in minutes for the dif-
ferent datasets. The lowest times per dataset are indi-
cated in bold.

Fig. 3: Cumulative storage sizes for BEAR-A,
BEAR-B Daily, and BEAR-B Hourly under the differ-
ent storage approaches. COBRA requires less storage
space than OSTRICH for BEAR-A and BEAR-B
Hourly. The middle snapshot always leads to a signifi-
cant increase in storage size. The ingestion of COBRA
happens out of order, which means that the middle
version is ingested first, up until version 0, after which
all versions after the middle version are ingested in
normal order.

Subfig. 3.1: BEAR-A

Subfig. 3.2: BEAR-B Daily

Subfig. 3.3: BEAR-B Hourly
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In order to provide more details on the evolution of
storage size and ingestion time of COBRA(*) com-
pared to OSTRICH, Fig. 3 shows the cumulative stor-
age size for the different datasets, and Fig. 4 shows the
ingestion time for these datasets. Note that COBRA is

ingested out of order, which means that the first half of
the delta chain is ingested first in reverse order, and
the second half of the delta chain is ingested after that
in normal order. These figures show the impact of the
middle snapshots within the bidirectional chain. For
BEAR-A, storage size for COBRA lowers in the sec-
ond half of the delta chain, which shows that a snap-
shot with reversed deltas pointing to it (COBRA) re-
quires less storage space compared to continued use of
aggregated deltas (OSTRICH). For BEAR-B Daily,
the storage size significantly increases for the second
half of the delta chain, but for BEAR-B hourly it de-
creases. For all datasets, COBRA ingestion times reset
to low values from the middle version. Especially for
BEAR-B Hourly we see a significant decrease in in-
gestion time for COBRA compared to OSTRICH.
While OSTRICH experiences major performance is-
sues from around version 1100, the ingestion times of
COBRA are much lower, which clearly shows the
benefit of the bidirectional delta chain.

Finally, Table 5 shows the fix-up times, which are
measured as a separate offline process, together with
their additional cost relative to out of order ingestion.
The fix-up time is the time it would take to transition
from the COBRA* to COBRA storage approach,
when the versions cannot be inserted out of order.
While this fix-up requires only 2.39 times more time
relative to the overhead of COBRA compared to CO-
BRA* for BEAR-B Daily, it requires more than 200
times more time for BEAR-A and BEAR-B Hourly,
which shows that out-of-order ingestion is still pre-
ferred when possible.

5.3.2.  Query Evaluation

Fig. 5, Fig. 6, and Fig. 7 show the query results on
BEAR-A for all approaches for respectively VM, DM
and VQ. Fig. 8, Fig. 9, and Fig. 10 show the same for
BEAR-B Daily, and Fig. 11, Fig. 12, and Fig. 13 for
BEAR-B Hourly. These query evaluation times are av-

Fig. 4: Ingestion times per version for BEAR-A,
BEAR-B Daily, and BEAR-B Hourly under the differ-
ent storage approaches. COBRA resets ingestion time
from the snapshot version, while ingestion time for
OSTRICH keeps increasing. The ingestion of COBRA
happens out of order, which means that the middle
version is ingested first, up until version 0, after which
all versions after the middle version are ingested in
normal order.

Subfig. 4.1: BEAR-A

Subfig. 4.2: BEAR-B Daily

Subfig. 4.3: BEAR-B Hourly

Subfig. 4.4: BEAR-B Hourly (Logarithmic Y axis) Dataset Time Overhead cost

BEAR-A 9.52 hours 203.27x

BEAR-B Daily 3.91 minutes 2.39x

BEAR-B Hourly 7.82 hours 243.78x

Table 5: Fix-up duration for the different datasets,
together with its cost relative to the overhead of CO-
BRA compared to COBRA*.
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eraged across all query sets for their respective
dataset. For completeness, we included more detailed
plots for each query set separately in the appendix.

When purely comparing COBRA and OSTRICH,
the summarizing figures show that for VM queries,
COBRA is faster than OSTRICH in BEAR-A, but for
the BEAR-B datasets, COBRA is slightly faster than
OSTRICH for the first half of the delta chain, and be-
comes slower in the second half. For DM, COBRA is
always equal or faster than OSTRICH when querying
within the first half of its delta chain, but slower for
the second half. For VQ, COBRA is faster than OS-
TRICH for BEAR-B Hourly, slightly faster for BEAR-
B Daily, and slower for BEAR-A.

When also including the HDT and Jena approaches,
we see that for VM queries, HDT-IC is overall faster
than all other approaches, and Jena-based approaches
are mostly the slowest. HDT-CB also starts of about as
fast as HDT-IC, but becomes slower for later versions,
and even becomes significantly slower than COBRA
and OSTRICH for BEAR-B Hourly that has many
versions. For DM queries, HDT-IC is slightly faster
than COBRA and OSTRICH. Again, Jena-based ap-
proaches are significantly slower, and HDT-CB again
starts off fast, but becomes slower for later versions.
For VQ queries, COBRA and OSTRICH are faster
than all other approaches, except for BEAR-A where
the HDT-based approaches achieve similar
performance.

Fig. 5: Median BEAR-A VM query results for all
triple patterns for all versions.

Fig. 6: Median BEAR-A DM query results for all
triple patterns from version 0 to all other versions.

Fig. 7: Median BEAR-A VQ query results for all
triple patterns.

Fig. 8: Median BEAR-B-daily VM query results for
all triple patterns for all versions.

Fig. 9: Median BEAR-B-daily DM query results for
all triple patterns from version 0 to all other versions.
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5.4.  Result Analysis

In this section, we discuss the findings of our results
regarding ingestion and query evaluation when com-
paring the bidirectional delta chain with a unidirec-
tional delta chain, we test our hypotheses, and we dis-
cuss the overall comparison of different archiving
approaches.

5.4.1.  Ingestion

While the unidirectional delta chain leads to in-
creasing ingestion times for every new version, initiat-
ing a new snapshot (COBRA*) can effectively reset
these ingestion times, and lead to overall lower inges-
tion times. The downside is that there can be an in-
crease in storage size due to this, for datasets that have
few small or large versions (BEAR-B Daily and
BEAR-A). Otherwise for many small versions
(BEAR-B Hourly) there is a decrease in storage size,
because the creation of a new snapshot and delta chain
outweighs continuing with the aggregated deltas in
terms of storage size. As such, for datasets that have
few small or large versions (BEAR-B Daily and
BEAR-A), it is recommended to wait longer before
initiating a new snapshot in the delta chain. On the
other hand, the decrease in storage size for BEAR-B
Hourly hints that we could have reduced total storage
size even more by creating the snapshot slightly earli-
er. Given the capabilities and query load of the server
and affordable storage overhead, a certain ingestion
size and time threshold could be defined, which would
initiate a new snapshot when this threshold is
exceeded.

Once there are two unidirectional delta chains, the
first one could optionally be reversed so that both can
share one snapshot through a fix-up process
(COBRA). Our results show that this can further re-
duce storage size for datasets with few large versions
(BEAR-A and BEAR-B Hourly), and even lead to less
storage space compared to the continued use of aggre-
gated deltas (OSTRICH). However, even though there
is a reduction of storage size for many small versions
(BEAR-B Daily), this leads to overhead in terms of
storage size compared to the unidirectional delta chain
(OSTRICH). This shows that a bidirectional delta
chain is more effective for BEAR-A and BEAR-B
Hourly compared to the BEAR-B Daily dataset in
terms of storage size, while it is always effective in
terms of ingestion time. The fix-up process for en-
abling this reversal does however require a significant
execution time. Since this could easily run in a sepa-
rate offline process in parallel to query execution and
the ingestion of next versions, this additional time is
typically not a problem. As such, when the server en-
counters a dataset with large versions (millions of
triples per version), then the fix-up approach should be
followed.

Fig. 10: Median BEAR-B-daily VQ query results
for all triple patterns.

Fig. 11: Median BEAR-B-hourly VM query results
for all triple patterns for all versions.

Fig. 12: Median BEAR-B-hourly DM query results
for all triple patterns from version 0 to all other
versions.

Fig. 13: Median BEAR-B-hourly VQ query results
for all triple patterns.
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The results also show that if all versions are known
beforehand, they should be ingested out-of-order into
a bidirectional delta chain. Because this leads to a sig-
nificantly lower total ingestion time compared to in-
order ingestion followed by the fix-up process.

5.4.2.  Query Evaluation

Regarding query performance, our results show that
the bidirectional delta chain also has a large impact
here compared to the unidirectional delta chain. Since
two shorter delta chains lead to two smaller addition
and deletion indexes compared to one longer delta
chain, VM and DM times become lower for the
dataset with few large versions (BEAR-A), since less
data needs to be iterated. However, for datasets with
many small versions (BEAR-B), we see that VM
times become lower or equal for the first half of the
bidirectional delta chain, but become slower for the
second half. We see this behaviour also recurring
across all datasets for DM queries. This is because in
these cases we need to query within the two parts of
the delta chain, i.e., we need to search through two ad-
dition and deletion indexes instead of just one. For
datasets with many small versions (BEAR-B), VQ
also becomes faster with a bidirectional delta chain,
but this does not apply when the dataset has few large
versions (BEAR-A). This is again caused by the fact
that we now have two delta chains, and two addition
and deletion indexes to query in. When we have many
small versions, these two delta chains are worth it, as
the benefit of the shared snapshot outweighs the over-
head of the delta chains. However, for few large ver-
sions, the overhead of two delta chains is too large for
VQ, and one delta chain performs better. In summary,
a bidirectional delta chain is effective for optimizing
VM (assuming few large versions), it can make DM
faster for the first half of all versions, but it slows DM
down for the second half, and it is beneficial for VQ
(assuming many small versions).

5.4.3.  Hypotheses

In Section 3, we defined research hypotheses, which
we will now answer based on our experimental results.
In our first hypothesis, we expected storage size to be-
come lower with a bidirectional delta chain compared
to a unidirectional delta chain. While this is true for
BEAR-A and BEAR-B Hourly, this is not true for
BEAR-B Daily. As such, we reject this hypothesis. In

our second hypothesis, we expected ingestion time to
be lower with a bidirectional delta chain, which was
the primary goal of this work. Our results show that
this is true. As such, we accept this hypothesis. Our
other hypotheses expect that evaluation times for VM,
DM and VQ with a bidirectional delta chain would be
lower. Our results show that each one of them is true
in many cases, but they are not valid across the board,
so we reject each of them.

5.4.4.  Comparison Of Archiving Approaches

In previous work, it was shown that OSTRICH can
speed up VM, DM, and VQ queries on average com-
pared to other RDF archiving approaches, at the cost
of higher ingestion times. Our experimental results for
the new bidirectional delta chain approach from CO-
BRA show that it can significantly reduce ingestion
time, and sometimes also ingestion size. Even though
there are these reductions, there are still approaches
for which ingestion is significantly faster (Jena-TB,
Jena-CB/TB, HDT-IC, HDT-CB) and storage size is
slightly lower (Jena-TB, Jena-CB/TB, HDT-CB).

The results show that HDT-based approaches can
perform exceptionally well in certain cases, but they
then perform relatively much worse in other cases. For
instance, HDT-IC performs best in all cases for VM
queries, but this comes at the cost of very high storage
requirements. Furthermore, HDT-CB performs really
well for all queries, but becomes continuously slower
for more versions in the dataset. Overall, Jena-based
approaches are the slowest. In general, both OS-
TRICH and COBRA offer a valuable trade-off be-
tween these extremes, with COBRA focusing on re-
ducing the problematically high ingestion times of
OSTRICH. OSTRICH and COBRA are thereby never
the optimal solution for all specific cases, but they per-
form –on average– sufficiently well for all different
cases, which is not the case for the other approaches.

6.  Conclusions

In this work, we improved the storage of RDF
archives under the hybrid storage strategy (OSTRICH)
by making use of a bidirectional delta chain. Based on
our implementation of this new approach (COBRA),
our experimental results show that this modification
leads to more efficient ingestion (59% faster) com-
pared to a unidirectional delta chain (OSTRICH). This
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change also reduces total storage size (19% lower) for
two out of three datasets. Furthermore, all versioned
query types achieve a performance boost (21% faster),
except for VQ under the BEAR-A dataset. COBRA
offers a more balanced performance trade-off between
the different versioned query types and ingestion com-
pared to other RDF archiving approaches that may
perform better in specific cases, but worse in other
cases. This trade-off, combined with query execution
times in the order of 1 millisecond or less, shows that
the bidirectional delta chain strategy from COBRA is
an ideal back-end for RDF archives in the context of
Web querying, as network latency is typically slower
than that.

As such, the bidirectional delta chain (COBRA) is a
viable alternative to the unidirectional delta chain
(OSTRICH), as it reduces its scalability problems dur-
ing ingestion while still achieving sufficiently fast
querying. We recommend bidirectional delta chains
when any of the following is needed (in order of
importance):

Lower ingestion times
Lower storage sizes

On the other hand, we do not recommend bidirec-
tional delta chains in the following cases:

Fast VQ is needed over datasets with very large
versions: Bidirectional chains slow down VQ when
versions are large.
Fast VM/DM is needed over datasets with many
small versions: Bidirectional chains slow down
VM and DM in the second half for many smaller
versions.
Dataset has only a few small versions: Unidirec-
tional chain should be used until the ingestion of a
new version exceeds the ingestion time of a new
snapshot.

These limitations of a bidirectional delta chain may
be resolvable in future work through more intelligent
strategies on when to convert a unidirectional delta
chain into a bidirectional delta chain. Next to this, the
beneficial impact of the bidirectional delta chain opens
up questions as to what respect other transformations
of the delta chain in terms of delta directionality and
snapshot placement may be beneficial to ingestion
time, storage size, and query performance. First, deltas
may inherit from two or more surrounding versions,
instead of just one. Second, aggregated and non-aggre-
gated deltas are just two extremes of delta organiza-

tion. A range of valuable possibilities in between may
exist, such as inheriting from the n  largest preceding
version. Third, the impact of multiple snapshots and
strategies to decide when to create them still remain as
open questions, which we suspect will be crucial for
RDF archiving for indefinitely increasing numbers of
versions. Fourth, the creation of multiple snapshots
will also lead to the need for querying across multiple
snapshots and delta chains. While the existing VM
querying algorithm can be reused for this, new effi-
cient algorithms for DM and VQ with offset support
will be required, as well as algorithms for providing
cardinality estimates.

While these findings show that a bidirectional delta
chain can be more beneficial than a unidirectional
delta chain for the same version range, neither ap-
proach will scale to an infinite number of versions.
Therefore, investigating creation of multiple snapshots
in future work to create new delta chains will be cru-
cial for solving scalability issues when ingesting (the-
oretically) infinite numbers of version. While we ex-
pect that the creation and querying of multiple delta
chains will be significantly more expensive than a sin-
gle delta chain, the use of bidirectional chains can de-
lay their need by a factor of 2 compared to unidirec-
tional delta chains.

We have shown that modifying the structure of the
delta chain can be highly beneficial for RDF ar-
chiving. This brings us closer to an efficient queryable
Semantic Web that can evolve and maintain its history.
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Appendix

A.    BEAR-A Query Evaluation results

In this appendix section, we list all measured
BEAR-A query evaluation durations. Each figure con-
tains the durations for each storage approach, being
OSTRICH, COBRA, HDT-IC, HDT-CB, Jena-IC,
Jena-CB, Jena-TB and Jena-CB/TB.
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Fig. 14: Average VM query results for S?? triple
patterns with a low cardinality for all versions.

Fig. 15: Average VM query results for S?? triple
patterns with a high cardinality for all versions.

Fig. 16: Average VM query results for ?P? triple
patterns with a low cardinality for all versions.

Fig. 17: Average VM query results for ?P? triple
patterns with a high cardinality for all versions.

Fig. 18: Average VM query results for ??O triple
patterns with a low cardinality for all versions.

Fig. 19: Average VM query results for ??O triple
patterns with a high cardinality for all versions.

Fig. 20: Average VM query results for SP? triple
patterns with a low cardinality for all versions.

Fig. 21: Average VM query results for SP? triple
patterns with a high cardinality for all versions.
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Fig. 22: Average VM query results for S?O triple
patterns with a low cardinality for all versions.

Fig. 23: Average VM query results for ?PO triple
patterns with a low cardinality for all versions.

Fig. 24: Average VM query results for ?PO triple
patterns with a high cardinality for all versions.

Fig. 25: Average VM query results for SPO triple
patterns for all versions.

Fig. 26: Average DM query results for S?? triple
patterns with a low cardinality from version 0 to all
other versions.

Fig. 27: Average DM query results for S?? triple
patterns with a high cardinality from version 0 to all
other versions.

Fig. 28: Average DM query results for ?P? triple
patterns with a low cardinality from version 0 to all
other versions.

Fig. 29: Average DM query results for ?P? triple
patterns with a high cardinality from version 0 to all
other versions.
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Fig. 30: Average DM query results for ??O triple
patterns with a low cardinality from version 0 to all
other versions.

Fig. 31: Average DM query results for ??O triple
patterns with a high cardinality from version 0 to all
other versions.

Fig. 32: Average DM query results for SP? triple
patterns with a low cardinality from version 0 to all
other versions.

Fig. 33: Average DM query results for SP? triple
patterns with a high cardinality from version 0 to all
other versions.

Fig. 34: Average DM query results for S?O triple
patterns with a low cardinality from version 0 to all
other versions.

Fig. 35: Average DM query results for ?PO triple
patterns with a low cardinality from version 0 to all
other versions.

Fig. 36: Average DM query results for ?PO triple
patterns with a high cardinality from version 0 to all
other versions.

Fig. 37: Average DM query results for SPO triple
patterns from version 0 to all other versions.
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Fig. 38: Average VQ query results for S?? triple
patterns with a low cardinality.

Fig. 39: Average VQ query results for S?? triple
patterns with a high cardinality.

Fig. 40: Average VQ query results for ?P? triple
patterns with a low cardinality.

Fig. 41: Average VQ query results for ?P? triple
patterns with a high cardinality.

Fig. 42: Average VQ query results for ??O triple
patterns with a low cardinality.

Fig. 43: Average VQ query results for ??O triple
patterns with a high cardinality.

Fig. 44: Average VQ query results for SP? triple
patterns with a low cardinality.

Fig. 45: Average VQ query results for SP? triple
patterns with a high cardinality.

Fig. 46: Average VQ query results for S?O triple
patterns with a low cardinality.

Fig. 47: Average VQ query results for ?PO triple
patterns with a low cardinality.
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B.    BEAR-B-daily Query Evaluation results

In this appendix section, we list all measured
BEAR-B-daily query evaluation durations. Each fig-
ure contains the durations for each storage approach,
being OSTRICH, COBRA, HDT-IC, HDT-CB, Jena-
IC, Jena-CB, Jena-TB and Jena-CB/TB.

C.    BEAR-B-hourly Query Evaluation results

In this appendix section, we list all measured
BEAR-B-hourly query evaluation durations. Each fig-
ure contains the durations for each storage approach,
being OSTRICH, COBRA, HDT-IC, HDT-CB, Jena-
IC, Jena-CB, Jena-TB and Jena-CB/TB.

Fig. 48: Average VQ query results for ?PO triple
patterns with a high cardinality.

Fig. 49: Average VQ query results for SPO triple
patterns.

Fig. 50: Average VM query results for ?P? triple
patterns for all versions.

Fig. 51: Average VM query results for ?PO triple
patterns for all versions.

Fig. 52: Average DM query results for ?P? triple
patterns from version 0 to all other versions.

Fig. 53: Average DM query results for ?PO triple
patterns from version 0 to all other versions.

Fig. 54: Average VQ query results for ?P? triple
patterns.

Fig. 55: Average VQ query results for ?PO triple
patterns.
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Fig. 56: Average VM query results for ?P? triple
patterns for all versions.

Fig. 57: Average VM query results for ?PO triple
patterns for all versions.

Fig. 58: Average DM query results for ?P? triple
patterns from version 0 to all other versions.

Fig. 59: Average DM query results for ?PO triple
patterns from version 0 to all other versions.

Fig. 60: Average VQ query results for ?P? triple
patterns.

Fig. 61: Average VQ query results for ?PO triple
patterns.


