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Abstract: Urban air quality mapping has been widely applied in urban planning, air pollution control
and personal air pollution exposure assessment. Urban air quality maps are traditionally derived
using measurements from fixed monitoring stations. Due to high cost, these stations are generally
sparsely deployed in a few representative locations, leading to a highly generalized air quality
map. In addition, urban air quality varies rapidly over short distances (<1 km) and is influenced by
meteorological conditions, road network and traffic flow. These variations are not well represented
in coarse-grained air quality maps generated by conventional fixed-site monitoring methods but
have important implications for characterizing heterogeneous personal air pollution exposures and
identifying localized air pollution hotspots. Therefore, fine-grained urban air quality mapping is
indispensable. In this context, supplementary low-cost mobile sensors make mobile air quality
monitoring a promising alternative. Using sparse air quality measurements collected by mobile
sensors and various contextual factors, especially traffic flow, we propose a context-aware locally
adapted deep forest (CLADF) model to infer the distribution of NO2 by 100 m and 1 h resolution
for fine-grained air quality mapping. The CLADF model exploits deep forest to construct a local
model for each cluster consisting of nearest neighbor measurements in contextual feature space, and
considers traffic flow as an important contextual feature. Extensive validation experiments were
conducted using mobile NO2 measurements collected by 17 postal vans equipped with low-cost
sensors operating in Antwerp, Belgium. The experimental results demonstrate that the CLADF model
achieves the lowest RMSE as well as advances in accuracy and correlation, compared with various
benchmark models, including random forest, deep forest, extreme gradient boosting and support
vector regression.

Keywords: air quality; mobile sensor; internet of things; machine learning

1. Introduction

Air pollution is regarded as the single biggest environmental threat to human health,
as it causes an estimated 4.2 million deaths annually, comparable to other major global
health risks, such as unhealthy diet and tobacco smoking [1]. Air pollution also has a great
impact on the health-related economic activities by increasing the welfare costs associated
with the incidence of disease and mortality as well as the reduction in labor productivity.
In the year of 2013, the World Bank estimated that lost labor income and welfare losses due
to PM2.5 exposure could reach up to USD 143 billion and USD 3.55 trillion, respectively [2].
In addition, the effect of air pollution on climate change and agricultural crops, as well
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as its damage to infrastructure and the environment, could lead to extra economic costs.
In this context, air pollution has received widespread and long-term global attention [3–6].

Urban air quality monitoring has been carried out in the traditional way of setting up
monitoring stations at fixed locations. However, due to high construction and maintenance
costs, fixed monitoring stations are sparsely distributed, even in high-income countries, not
to mention in low- and middle-income countries [7]. For example, there are currently only
94 regulatory NO2 monitoring stations in Belgium, a country with an area of 30,688 km2

and a population of more than 11.4 million inhabitants. On the other hand, the distribution
of air pollutants can vary dramatically over short distances (<1 km) in the urban envi-
ronment [8,9]. This is mainly due to the following two reasons: firstly, a large number of
emission sources are unevenly distributed, such as automobile emissions; secondly, the dis-
persion process of air pollutants in the urban environment is extremely complex. As a
result, air quality measurements obtained from the traditional fixed monitoring stations
tend to be specific for that location and/or can only provide average levels for a larger area.

With the benefits of low cost, ease of use and no electricity required to operate, passive
samplers have the potential to serve as an alternative to conventional active samplers in
regional-scale air quality assessments [10]. Passive samplers function by chemically absorb-
ing or physically adsorbing gaseous pollutants into the sampling medium. Currently, there
are many passive samplers that are capable of providing comparable performance to active
samplers [11]. However, there are some limitations of passive samplers. The sampling rate
of passive samplers is affected by a variety of factors, such as sampling duration, wind
speed, radiation, temperature and relative humidity. Additionally, they often require a
long sampling time to obtain sufficient mass for detection, so they are not able to identify
dynamic changes in air pollutants over short periods of time (<few hours).

The coarse-grained air quality maps derived from these measurements are not able
to accurately capture the spatial heterogeneity and temporal variability of air pollutants,
which is likely to mislead the assessment of individual exposure. Thus, in order to ac-
curately characterize personal air pollution exposure and identify localized air pollution
hotspots, there is a clear need for fine-grained air quality maps. The information provided
by fine-grained air quality maps also has a variety of applications, such as assisting in
establishing air quality standards, supporting improved relevant policies and helping to
promote environmental equity. Given that urban air pollution changes rapidly over short
distances and short periods of time, fine-grained air quality maps are valuable for provid-
ing personalized guidance to individuals. For example, an application of fine-grained air
quality maps is personal travel route planning, which recommends the best time and routes
for individuals (e.g., cyclists) while minimizing personal exposure to air pollution [12–14].

The development of low-cost sensors and Internet of Things (IoT) has turned people’s
attention to mobile monitoring, a promising approach to break the limitations of coverage
and spatial resolution of data collected from traditional fixed monitoring stations. Several
studies have conducted mobile monitoring campaigns using a variety of mobile platforms,
such as minivans [15], Street View cars [16], public buses [17,18], bicycles [19–22] and
pedestrians [23,24]. Unlike these studies, we installed mobile sensors on postal vans for
opportunistic mobile monitoring, which enables to improve spatial coverage by collect-
ing large amounts of data for a long period of time at a relatively small additional cost.
Nonetheless, due to the limited number of mobile sensors compared to the large measured
area, the collected measurements are still too sparse in both temporal and spatial dimen-
sions to meet the needs of fine-grained air quality maps with applications in personal air
pollution exposure assessment, epidemiology, air quality management, and environmental
equity. Therefore, air quality inference models need to be developed to fill the gaps.

In the last few decades, numerous methods have been developed to achieve air qual-
ity inference, including satellite remote sensing (RS) [25,26], chemical transport models
(CTMs) [27,28], and land-use regression (LUR) models [29,30]. Two types of moderate
resolution imaging spectroradiometer (MODIS) aerosol optical depth (AOD) data, Dark
Target (DT) and Deep Blue (DB), are combined with meteorology and land use information
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in [25] to estimate spatial and temporal variations of PM1 concentrations in China during
2005–2014. Ref. [26] employs satellite remote-sensing to estimate long-term PM2.5 concen-
trations over Krasnoyarsk, Siberia, with the help of ground-based meteorological and
radiosonde observations, and then calibrate the deviations in the satellite-derived PM2.5
concentrations using observations from the ground-based sensor network. The WRF-CAMx
chemical transport modeling system is developed in [27] to estimate spatial concentra-
tions of PM2.5 and PM10 for 20 Indian cities by using multi-pollutant high-resolution
emissions inventory. Ref. [28] integrates observations of PM2.5 concentrations from more
than 2500 stations in Europe and China during 2016–2020 with chemical transport model
simulations to derive the distribution of PM2.5 at high spatiotemporal resolution. In order
to measure and model street-level PM2.5 concentration in Seoul, South Korea, Ref. [29]
constructs LUR models using the OpenStreetMap (OSM) geospatial data and 169 h of data,
which is collected from a three-week sampling campaign across 5 routes by 10 volunteers
sharing 7 low-cost air quality sensors. The seasonal and annual LUR models are developed
in [30] based on 49 routine air quality monitoring stations to investigate the spatiotemporal
variation of PM2.5 in Guangzhou, China. However, each of these approaches has distinct
limitations. The spatial resolution of satellite remote sensing is usually between 1 km and
10 km [16], so the inferred air quality maps are coarse-grained and cannot capture the air
pollution caused by local emission. Additionally, satellite remote sensing is interrupted
fairly frequently and possibly for long periods of time by cloud cover [31]. CTMs are highly
reliable only with the complete underlying emissions inventories, and thus they are not
able to reveal unexpected emission sources. LUR models require all pollution sources to be
known, which is rarely the case.

Recently, deep learning methods and machine learning methods have been introduced
to try to solve some of these problems. A support vector machine (SVM) model is con-
structed in [32] with an air quality monitoring network using the radial basis function
kernel, and its capability to forecast ground-level PM2.5 in a populated city with complex
topography has been validated in Bogota, Colombia. Ref. [33] captures the non-linear rela-
tionship between the NO2 concentrations and predictors using random forest and develops
a spatiotemporal land use random forest (LURF) model to obtain accurate NO2 estimates
for prenatal exposure assessments in a metropolitan area of Japan. The extreme gradient
boosting (XGBoost) algorithm has been proven to be an effective and advanced machine
learning approach for urban air pollution monitoring using large amounts of mobile sensor
data in [34]. The AVGAE algorithm we proposed in [35,36] treats the air quality inference
problem as a matrix completion problem on graphs using the road-network topology and
the incomplete discretized measurements, and then addresses this problem with a novel
deep learning solution based on variational graph auto-encoders. However, deep learning
methods have common limitations, such as relying on expensive GPUs to support the
computation and poor explainability. The GCRF algorithm we proposed previously [37]
captures the correlation between air pollution and various contextual features through a
series of random forest (RF) models. In addition to the global RF model, it also constructs
a local RF model for each measurement by considering the K-nearest neighbors in both
geographical and feature space, which improves the accuracy but increases the computa-
tional cost. Moreover, neither of these models take into account traffic flow as an essential
contextual feature.

Another important aspect that needs to be considered in air quality inference models
is the variety of contextual factors that have important impacts on the spatiotemporal
distribution of air pollutants in urban environments. The most frequently mentioned
factors include meteorology, traffic flow and transportation network. The dispersion and
development of air contaminants are closely connected with meteorological features, such
as temperature, humidity, wind speed and wind direction [38–40]. Automobile emissions
along roadways, especially from older diesel engines, have been shown to be the leading
and direct source of traffic-related air pollution [41]. In addition, the local effect of traffic
flow on roads causes air pollutant concentration to fluctuate over short periods of time and
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over short distances. Urban expressways and main roads carry much more traffic volume
than local secondary roads, and hence the road type also takes a crucial role in measuring
traffic-related air pollutants. Other features of the transportation network, including road
length, road area, and number of major intersections, have been discovered to be applicable
by several studies [42–44].

In this study, we address these challenges of fine-grained urban air quality mapping
by exploring the potential of combining air quality data collected from mobile monitoring
with diverse contextual factors into a data-driven machine learning model. The mobile
monitoring campaign was conducted by 17 postal vans equipped with low-cost air quality
sensors and GPS devices in Antwerp, Belgium. Mobile platforms allow sensors to take mea-
surements at different locations in the city, significantly increasing the coverage of sensing
area without the constraints and additional costs of installing sensors at fixed locations.

Using these data and contextual factors, including meteorological information, road
type and traffic flow, we propose a context-aware locally adapted deep forest (CLADF)
model for air quality inference as an improved and extended version of our previously
proposed GCRF model [37]. The CLADF model exploits deep forests to construct a local
model for each cluster, composed of measurements that share similar contextual features.
In particular, traffic flow is adopted as an important contextual feature. The CLADF model
improves accuracy, reduces redundancy and saves computational costs compared to the
GCRF model.

The experimental results in Section 3.1 demonstrate that the CLADF model has en-
hanced performance with the metrics, such as root mean square error (RMSE), mean
absolute error (MAE), index of agreement (IA), accuracy and correlation coefficient (r)
compared to different baseline models, including random forest (RF), deep forest (DF),
extreme gradient boosting (XGBoost) and support vector regression (SVR). Our previous
work demonstrates the potential and feasibility of mobile air pollution monitoring using
low-cost sensors and contributes to the emerging field of combining mobile monitoring
and machine learning techniques. Our work in this paper illustrates the superiority of the
proposed CLADF model through extensive and diverse validation experiments. Overall,
our main contributions can be summarized as follows:

• We develop a general approach to integrate various contextual features and aggregate
sparse mobile air quality measurements into our air quality inference model for fine-
grained urban air quality mapping.

• We utilize three different types of contextual features, including meteorology, road
network and traffic flow to characterize the spatiotemporal distribution of NO2.

• We propose a novel air quality inference model called CLADF, which introduces deep
forests to build context-aware local models, to generate a fine-grained air quality map.

• We demonstrate through evaluation experiments on a real-world data set that the
CLADF model has superior performance in comparison with different baseline models,
including RF, DF, XGBoost and SVR.

The remainder of this paper is organized as follows: Section 2 describes the various
datasets used in this study, including air quality data and different contextual factors, as well
as the proposed algorithm for air quality inference. Section 3 provides the experimental
results, and Section 4 draws conclusions and possible extensions.

2. Materials and Methods

In this section, we first describe the opportunistic mobile monitoring campaign con-
ducted in the city of Antwerp and the air quality dataset collected to be used in this study.
Next, we explain the methods and procedures of air quality data processing and aggre-
gation. Then, we present the proposed model for air quality inference and the contextual
factors taken into account. Finally, we introduce validation experiments performed to
examine the performance of the proposed model and the metrics adopted to evaluate
its performance.
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2.1. Data Collection

The mobile air quality monitoring campaign was conducted in the city of Antwerp
from January 2018 to October 2021. It is the most populous city center in Belgium with
a population of 529,417. There is a six-lane high-speed ring road that bypasses most
of the city center and crosses urban residential areas, providing connections to other
cities. The high traffic volume and daily congestion on the ring road are the main local
source of traffic-related air pollutants. We focus on the city center of Antwerp as shown
in Figure 1, which has high population density, complex road network structure and
diverse microenvironments.

Figure 1. The location of study area in the city center of Antwerp and the road network in the area
of interest. The locations of three stationary regulatory monitoring stations are marked by different
colored triangles.

The Kunak AIR mobile sensor boxes were installed on 17 postal vans for opportunistic
air quality monitoring in Antwerp (https://www.imeccityofthings.be/en/projecten/b
el-air, accessed on 10 April 2022). A Kunak sensor box is equipped with three types of
Alphasense sensors for measuring the concentration of particulate matter (PM1, PM2.5,
PM10; OPC-N3), nitrogen dioxide (NO2; NO2-B43F) and ozone (O3; OX-B431), in-built
sensors for measuring temperature and relative humidity of the environment, as well as a
GPS for logging geographical coordinates (see Figure 2a) These sensors are continuously
powered by a 12 V power supply from the vehicle battery and are equipped with LTE-M
connectivity. The sensors also include a property algorithm to correct for the influence of
environmental context and cross-interference between gases [45]. There is mobile housing
provided by LABAQUA surrounding each Kunak sensor box to reduce the impact of
turbulent airflow on sensors while the vehicle is in motion (see Figure 2b).

Given the operating characteristics of postal vans, the sampling campaign is generally
conducted from 6:00 to 23:00 on weekdays and Saturday (see Figure 3), with relatively
random sampling routes. The sampling interval is configured to 10 s during the daytime
when the vehicle is operating and 10 min at night when the vehicle is parked, in order to
avoid unnecessary power consumption. As a result, air quality data are captured every 10 s
as the vehicle travels, including the concentrations of multiple air pollutants (PM1, PM2.5,

https://www.imeccityofthings.be/en/projecten/bel-air
https://www.imeccityofthings.be/en/projecten/bel-air


Remote Sens. 2022, 14, 2613 6 of 21

PM10, NO2 and O3), the ambient temperature and relative humidity, together with the
corresponding GPS coordinates and timestamps. The obtained temperature and relative
humidity are mainly used to correct the influence of environmental context on sensors and
reduce the uncertainty of the sensors.

(a) (b)
Figure 2. The Kunak AIR mobile sensor system used in this paper. (a) A Kunak sensor box contains
three types of Alphasense sensors for measuring the concentration of PM1, PM2.5, PM10 (OPC-N3),
NO2 (NO2-B43F) and O3 (OX-B431), in-built sensors for measuring environmental temperature and
relative humidity, as well as a GPS device. (b) The Kunak sensor box with a mobile housing is
mounted on the roof of a postal van.
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Figure 3. (a) The hourly evolution of the speed of mobile sensor K-A14 IMEC 6, (b) mobile sensor
K-A14 IMEC 8 and (c) all mobile sensors during each day of the week on May 2021. (d) The hourly
evolution of the number of NO2 measurements collected by all mobile sensors during each day of the
week on May 2021.
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Figure 4 indicates the number of NO2 measurements collected by mobile sensors per
day during the mobile monitoring campaign from January to June 2021, from which we
can observe a relatively high amount of data collected in May and June. Considering that
the company HERE Technologies (https://www.here.com/, accessed on 10 April 2022)
only provided traffic flow for a maximum of 30 days, we select data from May and June for
the subsequent data processing procedures. Based on the processed data, we then create a
dataset by selecting 30 days with the most measurements and highest spatial coverage.
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Figure 4. The number of NO2 measurements collected by all mobile sensors per day from January to
June 2021.

2.2. Data Processing

As the first step in data processing, we eliminate measurements that fall outside the
study area and measurements collected outside working hours, which are meaningless
because the vehicles are simply parked in the parking lot during these hours. In urban
environments, the locations determined by GPS are typically slightly off-track due to the
reflection of signals from high buildings and the synchronization of the measuring de-
vice [46]. Thus, map matching is employed to improve the accuracy of the GPS coordinates.
For this, we assume all vehicle samples are taken on roads, and we correct GPS positions
by projecting to the nearest road, as long as this correction is less than a threshold τ. Here
we set the maximum distance τ as 30 m, referring to [46].

Next we aggregate the data in both time and spatial dimension to construct the air
quality inference model and ultimately generate the fine-grained air quality map. Spatially,
the road network in the study area is divided into road segments of approximately ∆s
m in length. We represent each segment by its centroid coordinates; thus we obtain N
centroids {p1, p2, . . . , pN}, where N is the number of road segments. In the time dimension,
we quantize the timestamps of the measurements into uniform time slots of duration ∆t,
resulting in a set of T time slots {t1, t2, . . . , tT}. Consequently, for a given time slot tj, all
measurements located on the road segment i are allocated to the corresponding segment
centroid pi.

Furthermore, we regard the mean value of these measurements as the measured value
at the location pi in the time slot tj. To ensure data quality, we calculate the mean value
based on at least four 10-s measurements (based on the previously mentioned sampling
interval of 10 s), which covers approximately 100 m at an average speed of 2.47 m/s for all
mobile sensors. Accordingly, we set ∆s to 100 m. In addition, we set ∆t to 1 h so that we
can compare the inferred measurements with the reference measurements from the fixed
monitoring station subsequently.

https://www.here.com/
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Table 1 shows the number of measurements after data processing procedures. The data
aggregation process yields 176,460 measurements at 9550 different locations (from which
a spatial coverage of 67.5% can be derived) for 884 working hours in May and June 2021.
Some insights into the distribution of NO2 concentration can already be drawn using these
aggregated NO2 measurements. Figure 5 categorizes the road segments into five functional
classes, with Class 1 representing main roads, Class 2 and Class 3 representing primary
roads I and II, Class 4 representing secondary roads, as well as Class 5 representing local
roads within neighborhoods. Figure 6 displays the temporal and spatial distribution of
NO2 in the city center of Antwerp during May and June 2021. The diurnal pattern of the
NO2 distribution can be identified from Figure 6a. Combined with the map of road types
given in Figure 5, it can be observed that on all types of roads, except the ring road, the NO2
concentration is relatively high during morning rush hours, falls back during midday and
rises again during evening rush hours. It is worth noticing that the morning peak is more
concentrated from 6:00 to 9:00 and has a small drop at 7:00, which may correspond to the
diverse commuting time. As for the evening peak, it keeps climbing from 16:00 to 19:00,
and after a little trough, it goes up slightly at 9:00 and 10:00. These two peaks coincide with
the end times of work and entertainment activities, respectively. Figure 6b–d depicts the
spatial distribution of NO2 during the morning rush hours, midday hours and evening rush
hours, respectively. The daily pattern that NO2 concentration on road network fluctuates
up and down over time is illustrated more clearly.

Table 1. The number of NO2 measurements after each data processing step.

Data Processing Procedure Number of Measurements

Remove data outside study area 3,619,540

Remove data outside working hour 3,486,617

Map matching 2,000,188

Data aggregation 176,460

Road types [14,147]

1 [443]
2 [1588]
3 [988]
4 [1575]
5 [9553]

Figure 5. The distribution of distinct road types. The quantity of different road types of road segments
is shown by the numbers marked in brackets.
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Figure 6. (a) The hourly evolution of NO2 concentration on different types of roads. The map of
average NO2 concentration at 100 m road segments during (b) morning rush hours (6:00∼10:00),
(c) midday hours (11:00∼15:00) and (d) evening rush hours (16:00∼20:00), respectively.

The map of all aggregated NO2 measurements after data processing steps is displayed
in Figure 7a. The spatial coverage is high when all two-month measurements are put
together. However, even for the hour with the most measurements among the two months
(see Figure 7b), it is clear that the collected mobile measurements are still too sparse for
fine-grained air quality mapping. For example, the majority of the measurements are
located on the main roads, while the other areas have much fewer measurements. To tackle
this issue, we develop an air quality inference model in Section 2.3.2 to create a fine-grained
air quality map from these sparse measurements.
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(a) (b)

Figure 7. (a) The map of all aggregated NO2 measurements after data processing procedures. (b) The
map of aggregated NO2 measurements at 11:00 on 9 June 2021. The color bar represents various NO2

concentration level and the number followed means the amount of measurements at that level.

2.3. Methodology
2.3.1. Contextual Features

As mentioned earlier, contextual features have the capability of impacting the distri-
bution of NO2 concentration, making contextual features critical information to build an
air quality inference model. In general, depending on the type of contextual features, they
can be classified into three categories:

• Time variant but space invariant: contextual features change over time but remain
constant within a certain region. Meteorology belongs to this category, as it can change
instantaneously during a day but can differ slightly across a city. The meteorologi-
cal features we consider of interest are temperature, relative humidity, wind speed,
and wind direction, owing to their important influence on the dispersion and transport
processes of air pollutants. We acquired the hourly aggregated meteorological data
from a stationary monitoring station (M802) in Antwerp provided by the Flanders
Environment Agency (VMM). These data can be downloaded from VMM’s website
(https://www.vmm.be/, accessed on 10 April 2022).

• Space variant but time invariant: contextual features change according to geographical
location but remain unchanged over a short period of time, such as a road network.
Features, such as road type and speed limits, differ from segment to segment, but re-
main constant for a long time. We extract the road network of study area from Open-
StreetMap (OSM) (https://www.openstreetmap.org/, accessed on 10 April 2022).
Figure 5 displays the functional classes of road segments defined by the “Flanders
Spatial Structure Plan” (Ruimtelijk Structuurplan Vlaanderen). Class 1 represents
main roads, connecting between large areas and cities, which are always busy with
high traffic volumes and fast speeds. Class 2 denotes primary roads I, serving as
a supplement to main roads. Class 3 indicates primary roads II that give access to
the city center and limit traffic flow by increasing traffic signals. Class 4 indicates
secondary roads that link different small towns. Class 5 represents local roads with
access to communities.

• Time- and space variant: these contextual features change both over time and space.
For example, traffic flow can vary considerably by road segment and time slot. The av-
erage speed of vehicles on the road and the traffic density are the two traffic features
we concern mainly. The traffic flow data used in this study are provided by the
company HERE Technologies (https://www.here.com/, accessed on 10 April 2022).

https://www.vmm.be/
https://www.openstreetmap.org/
https://www.here.com/
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As an example, Figure 8 provides the evolution of traffic volumes on the road network
at four time points (9:00, 13:00, 17:00 and 21:00) during a given day (10 June 2021).
Taking into account road types in Figure 5, it is easy to find the temporal variation
and spatial distribution of traffic flow. Due to the capacity and location of roads, it
is not surprising that the six-lane highway ring road carries the heaviest traffic flow,
followed by main roads with relatively more vehicles, and finally, the smaller traffic
volume is on minor roads in some neighborhoods. In addition, as it was a weekday,
the morning peak (Figure 8a) and evening peak (Figure 8c) contributed heavily to the
traffic flow. The road network was still busy during the midday hour (Figure 8b) but
less so than in the morning rush hour, and there was much less traffic volume when
night fell (Figure 8d).

(a) (b)

(c) (d)

Figure 8. Traffic volume (i.e., the number of vehicles passing per 5 min) on road segments in study
area at (a) 9:00, (b) 13:00, (c) 17:00 and (d) 21:00 on 10 June 2021. A small region is enlarged for better
visualization in the bottom right corner.
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According to the temporal and spatial distribution of NO2 shown in Figure 6 and
different functional classes of roads displayed in Figure 5, it can be discovered that the
NO2 concentration on the ring road is higher compared with other roads. Outside the
morning and evening rush hours, the NO2 concentration on the ring road is still quite
high at noon. In addition, the NO2 concentration on primary roads is also higher than
that on local roads between neighborhood most of the time, which makes the temporal
distribution of NO2 on different types of roads shown as Figure 6a appear as a gradient
effect. Combined Figure 6 with Figure 8, it can be recognized that the distribution of
the NO2 concentration on road network is generally consistent with the distribution of
traffic volume. It is mentioned earlier that automobile emissions on the roadways are the
primary and direct source of NOx, so the variation of traffic flow has a direct impact on
the NO2 distribution. Furthermore, the functional class of the road is assigned based on its
connectivity and accessibility, which can reflect the traffic volume on the road, so the road
type has an indirect impact on NO2 distribution.

2.3.2. Creating a Fine-Grained Air Quality Map from Sparse Measurements

Based on the opportunistic mobile monitoring campaign and data processing proce-
dures, we derived a large number of aggregated NO2 measurements. All aggregated NO2
measurements are used to construct a series of NO2 concentration maps {M1, M2, . . . , MT},
where Mt represents the NO2 concentration map for a certain time slot t ∈ {1, 2, . . . , T}
and consists of NO2 measurements at time slot t. By accumulating all NO2 concentration
maps, the collected measurements cover all time slots and majority of road segments as
shown in Figure 7a. However, when extracting a NO2 concentration map for a specific
time slot, the collected measurements are still relatively sparse (see Figure 7b), because it is
difficult for a limited number of mobile sensors to traverse all road segments in the entire
region in one hour. Thus, we can only obtain a series of sparse NO2 concentration maps
based on the mobile measurements.

Aiming to generate a complete fine-grained NO2 concentration map from sparse
mobile measurements and various contextual features, we propose a context-aware locally
adapted deep forest (CLADF) model. As an upgraded and improved version of our
previously proposed geographically context-aware random forest (GCRF) model in [37],
the CLADF model introduces deep forest (DF) [47], replacing the existing random forest
(RF) [48] to construct context-aware local models, enabling representation learning by
forests. Figure 9 illustrates the structure of deep forest. The GCRF model simply builds
a local model for each measurement, which is prone to redundancy, as well as requires
high computational and memory costs. To address these issues, the CLADF model first
clusters all measurements according to the similarity of contextual features, and then builds
a local model for the measurements within each cluster. Moreover, in terms of contextual
features, the CLADF model incorporates traffic flow in addition to the meteorology and road
network that have been considered in the GCRF model, due to the important contribution
of on-road automobile emissions to NO2 concentrations and the local effect of traffic flow
on the spatiotemporal variation of NO2 concentrations. As a result, the CLADF model
improves accuracy, reduces redundancy and saves computational costs compared to the
GCRF model. Figure 10 displays the workflow of the CLADF model. Overall, the whole
process consists of three steps: input feature generation, global/local model construction
and final estimation.
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Figure 9. Illustration of the deep forest and its forest structure. Assume that there are N levels in
deep forest and each level has 4 forests. The input features are fed into the first level, and each forest
in the first level generates the corresponding estimations. These estimations will be concatenated
with original features to compose augmented features, which are input to the next level until the
final level derives the final outcome. Moreover, the structure of each forest is shown in the dashed
box. A random part of input features is selected to build Ntree decision trees, and the estimations
generated by all trees in the same forest are averaged.
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Figure 10. The workflow of proposed CLADF model.

In the phase of input feature generation, we put all NO2 measurements into a vec-
tor y = [yi], i ∈ {1, 2, . . . , N} and take their corresponding contextual features as a set
of vectors X = {xi}, i ∈ {1, 2, . . . , N}, where xi = [xij], j ∈ {1, 2, . . . , F}, N is the total
number of measurements and F is the dimension of contextual features. The following
contextual features are considered in this study: day of the week, hour of the day, geo-
graphical location, temperature, relative humidity, wind speed, wind direction, road type
and traffic density. In order to find measurements that have similar contextual features,
K-means clustering algorithm is used to classify each measurement yi into one of clusters
Ck, k ∈ {1, 2, . . . , K} based on its contextual features xi. The objective of K-means algorithm
is to find a set of clusters {C1, C2, . . . , CK} for all measurements based on their contextual
features {x1, x2, . . . , xN} that minimizes the within-cluster sum-of-squares criterion:

arg min
C

K

∑
i=1

∑
xj∈Ci

‖xj − µi‖2 (1)

where µi is the mean of contextual features of measurements in the cluster Ci. We need to
specify the number of clusters K which determines the number of local models and also
affects the performance of the CLADF model. Thus, we build the CLADF models using
clusters with different K values and find the optimal K that minimizes the performance
metric RMSE mentioned in Section 2.4.2 of the CLADF model. The aggregated features are
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generated by merging NO2 measurements and their contextual features on the correspond-
ing timestamps and geographical locations. Therefore, the aggregated features fed into the
global/local model are represented as a series of vectors A = {ai}, i ∈ {1, 2, . . . , N}, where
ai = [aij], j ∈ {1, 2, . . . , F + 1}.

In order to develop the global/local model, there are two branches in parallel. The first
branch feeds all aggregated features A into a deep forest to train a global model. The other
branch utilizes the aggregated features in each cluster ak ∈ Ck to train a local model k,
k ∈ {1, 2, . . . , K}. To infer the unmeasured NO2 concentration ŷ on a certain location at a
specific time slot, its corresponding contextual features xj are used to find the closest cluster
Cj, j ∈ {1, 2, . . . , K} in the training set it belongs to. Then, the global model outputs an
estimated NO2 concentration ŷg by feeding its contextual features xj, which is derived from
all measurements. The local model for the cluster Cj it belongs to produces another NO2
estimation ŷl , which is inferred from the measurements sharing similar contextual features
with it, such as the NO2 concentration at another location with similar traffic flow during
the same time slot. The global estimation reflects the heterogeneity of all measurements,
and the local estimation demonstrates the homogeneity of similar measurements.

Finally, we introduce a weighting factor w to combine these two estimations into the
final estimation ŷ = w · ŷg + (1− w) · ŷl . In this way, the final prediction of the overall
CLADF model integrates the advantages of both global and local estimations. For the setting
of the weighting factor w, we calculate the performance metric RMSE (see Section 2.4.2)
of the CLADF model with different w ranging from 0 to 1 with step 0.1 and choose the
optimal w that minimizes the RMSE of the CLADF model.

2.4. Performance Evaluation
2.4.1. Validation Experiments

Given that the company HERE Technologies only shared traffic flow for up to 30 days
as mentioned in Section 2.1, we select 30 days with the most measurements and highest
spatial coverage among May and June 2021, and create a dataset accordingly. The dataset
that consists of hourly aggregated NO2 measurements from these 30 days combined
with their corresponding contextual features (including day of the week, hour of the day,
geographical location, temperature, relative humidity, wind speed, wind direction, road
type and traffic density) is used for the validation experiments of the CLADF model and
different baseline models.

In our study area, there are six stationary monitoring stations provided by VMM. They
can be divided into three types of microenvironments according to their locations in the
road network, namely, roadside, street canyon and highway. Removing stations close to
each other, we consider three typical fixed-location monitoring stations located at roadside
(R802), street canyon (R805) and highway (R804) respectively in the leave-one-station-out
validation experiments, to compare the performance of various air quality inference models
in different microenvironments. First, hourly measurements from these three stationary
monitoring stations are concatenated with hourly aggregated measurements from mobile
sensors. Next, for each stationary monitoring station, the measurements from this station
and the mobile measurements at the same location are eliminated, and the remaining
measurements located at other locations are used to train the model. Finally, the estimated
values inferred from the model are compared with the ground-truth values from this
reference station to calculate various performance metrics. This leave-one-station-out
validation experiment is repeated for each of three reference stations. For each reference
station, the number of NO2 measurements in training set and test set is shown in Table 2.

With the aim of evaluating the effect of contextual features on the performance of
the model and comparing the inference ability of the model under different scenarios,
5-fold cross validation experiments based on road functional class were conducted. All
hourly aggregated measurements are split into five groups according to road functional
class. In each group, we randomly select 75% of measurements as the training set, with the
remaining 25% of measurements as the test set. This cross validation experiment is iterated
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for each group from Functional Class 1 through 5. Table 2 presents the number of NO2
measurements in the training set and test set for each class.

Table 2. The number of NO2 measurements in training set and test set for each validation experiment.

Dataset Reference Station Road Functional Class
R802 R804 R805 Class 1 Class 2 Class 3 Class 4 Class 5

Training 103,027 103,046 103,016 1317 17,678 10,536 14,136 33,859
Test 445 426 456 395 5901 3488 4909 11,253

2.4.2. Performance Metrics

The results of the validation experiments are evaluated by the following performance
metrics: root mean squared error (RMSE), mean absolute error (MAE), index of agreement
(IA), accuracy, correlation coefficient (r), normalized mean bias (NMB) and normalized
mean standard deviation (NMSD), which are calculated as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(mi − ei)2 (2)

MAE =
1
N

N

∑
i=1
|mi − ei| (3)

IA = 1− ∑N
i=1(mi − ei)

2

∑N
i=1(|ei − m̄|+ |mi − m̄|)2

(4)

Accuracy = 1− ∑N
i=1 |ei −mi|
∑N

i=1 mi
(5)

r = ∑N
i=1[(ei − ē)(mi − m̄)]√

∑N
i=1(ei − ē)2

√
∑N

i=1(mi − m̄)2
(6)

NMB =
ē− m̄

m̄
(7)

NMSD =
σe − σm

σm
(8)

where mi is the measured value, ei is an estimated value, m̄ and ē are the mean of measured
values and the mean of estimated values, and σm and σe are the standard deviation of
measured values and the standard deviation of estimated values. RMSE and MAE represent
the difference between the estimated and measured values for measuring the errors in air
quality inference, so the smaller these two metrics, the better. IA and accuracy indicate
the similarly between the estimated and measured values ranging from 0 to 1, where 1
represents perfect agreement. Correlation coefficient r reflects the linear correlation between
the estimated and measured values and ranges in [−1, 1], where 0 means no correlation
and 1 (or −1) means the perfect linear (anti) correlation. IA and accuracy are independent
of the relationship between variables while r only represents the linear relationship, and
hence we consider IA and accuracy in preference to r. NMB denotes the normalized
bias of mean estimated values compared to mean measured values, and NMSD denotes
the normalized difference between standard deviation of estimated values and standard
deviation of measured values. The positive and negative of both metrics show whether the
model is over- or underestimated.

Although the above statistical performance metrics can generally provide an insight
into the performance of a model, they cannot indicate whether the model has reached a
level of quality that can be applied. Here, the model quality indicator (MQI) introduced
by [49] determines whether a model meets the minimum level of quality for policy use.
The calculation is as follows:
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RMSu =

√
∑N

i=1(u95(mi))2

N
(9)

u95(mi) = uRV
95,r

√
(1− α2)m2

i + α2 · RV2 (10)

MQI =
RMSE
βRMSu

(11)

where uRV
95,r is 0.24, RV is 200 µg/m3 and α is 0.2 for NO2 according to their recommended

settings. The proportionality coefficient β is set to 2, which means that the deviation
between the estimated values and measured values is allowed to be as large as twice
the measurement uncertainty RMSu. MQI is the main performance indicator, and when
MQI ≤ 1, the quality of the model is able to achieve the objective.

3. Results and Discussion
3.1. Model Performance

In the experiments of this study, the benchmark methods used for performance com-
parison with the proposed CLADF model are support vector regression, extreme gradient
boosting, random forest and deep forest. Support vector regression (SVR) [50] is an exten-
sion of the support vector machine (SVM) applied to regression problems. The extreme
gradient boosting (XGBoost) [51] is based on gradient boosting decision tree (GBDT)
but with some optimization to make it efficient, flexible and portable. GBDT is a boosting
ensemble algorithm that incorporates multiple weak learners into a single strong learner.
In general, GBDT is an additive model that can be considered a linear addition of many
base methods (i.e., CART regression trees). XGBoost has been reported as a state-of-the-art
machine learning method to derive urban air quality maps [34]. Random forest (RF) [48]
combines the ensemble learning method with the decision tree framework to create a
number of decision trees from the data, averaging the results to output a new result that
often leads to strong predictions. Deep forest (DF) [47] is a decision tree ensemble algorithm
with a cascade structure that enables representation learning through forests. Meanwhile,
multi-granularity scanning can strengthen its representation learning capability, potentially
making deep forest context aware. Its hyperparameters are much fewer than deep neural
networks, and its complexity can be auto-determined based on the data.

The hyper-parameters of different methods for optimizing the performance metrics
are set as follows:

• SVR model: radial basis kernel function (rbf) with kernel coefficient γ = 0.1 and
regularization parameter C = 1.

• XGBoost model: number of gradient boosted trees n_estimators = 200.
• RF model: number of trees in the forest n_estimators = 200.
• DF model: maximum number of cascade layers max_layers = 20, number of estimator

in each cascade layer n_estimators = 4, number of trees in each estimator n_trees = 200.
• Proposed CLADF model: number of estimator in each cascade layer n_estimators = 4,

number of trees in each estimator n_trees = 200, weighting factor w = 0.2, number of
clusters K = 120, 200, 40 for R802, R804, R805 respectively in leave-one-station-out
validation experiments and K = 5, 20, 10, 10, 40 for Class 1 to 5 in the five-fold cross
validation experiments based on road type.

The results of leave-one-station-out validation experiments are illustrated in Table 3.
For all three reference stations, the proposed CLADF model stands out among all compared
methods. In general, the CLADF model decreases RMSE from 20.12 to 15.95 µg/m3,
increases Acc. from 0.52 to 0.61 with respect to accuracy, and improves both IA (0.54→ 0.6)
and r (0.36 → 0.45) in terms of correlation. Additionally, it fulfills the quality criterion
required for policy purposes, i.e., that MQI ≤ 1 [49]. It is worth noting that the XGBoost
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model performs relatively well on most metrics (only worse than CLADF model) for R802
and R805; however, it performs worse (only better than RF model) at R804.

Table 3. Comparison of performance metrics of methods at three different reference stations.

Model Station RMSE MAE IA Acc. r NMB NMSD MQI

RF R802 21.80 17.04 0.49 0.36 0.30 0.45 0.40 0.79
DF R802 16.49 13.46 0.61 0.50 0.38 0.30 0.12 0.63

SVR R802 13.41 10.73 0.54 0.60 0.28 0.13 −0.32 0.55
XGB R802 13.08 10.34 0.62 0.61 0.42 0.10 −0.14 0.56

CLADF R802 13.03 9.88 0.70 0.63 0.50 −0.01 0.05 0.54

SVR R805 14.11 10.81 0.50 0.59 0.25 −0.23 −0.27 0.64
RF R805 13.16 10.09 0.61 0.62 0.35 0.06 −0.06 0.55
DF R805 12.17 9.59 0.64 0.64 0.41 0.06 −0.13 0.51

XGB R805 11.97 9.17 0.52 0.66 0.30 −0.04 −0.37 0.52
CLADF R805 11.55 8.66 0.71 0.67 0.50 0.00 −0.04 0.49

RF R804 41.27 35.57 0.33 0.14 0.25 0.83 0.42 1.01
XGB R804 39.21 32.87 0.38 0.20 0.34 0.74 0.38 0.98
DF R804 36.41 29.56 0.36 0.28 0.30 0.67 0.14 0.94

SVR R804 32.85 26.44 0.35 0.36 0.29 0.56 −0.43 0.90
CLADF R804 23.28 18.88 0.39 0.54 0.35 0.34 0.08 0.72

RF Avg 25.41 20.90 0.48 0.37 0.30 0.45 0.25 0.78
DF Avg 21.69 17.54 0.54 0.47 0.36 0.34 0.04 0.69

XGB Avg 21.42 17.46 0.51 0.49 0.35 0.27 −0.04 0.69
SVR Avg 20.12 15.99 0.46 0.52 0.27 0.15 −0.34 0.70

CLADF Avg 15.95 12.47 0.60 0.61 0.45 0.11 0.03 0.58

As shown in Figure 1, these reference stations correspond to different microenvi-
ronments: roadside (R802), street canyon (R805) and highway (R804), respectively, so by
comparing the performance of various methods at different stations, we can observe the
impact of training data on model performance. All methods misplay at R804 and give
the worst results of three experiments. Station R804 poses a challenge for all methods
since the limited number of measurements from mobile sensors are collected from the
ring road and due to the far distance (40 m) from the nearest road segment compared to
the other two reference stations located close to roads (12 m for R802 and 6 m for R805).
Moreover, the contextual features of measurements on the ring road are special and less
similar to other measurements. Nevertheless, the proposed CLADF model outperforms
other methods on all metrics, and even improves many metrics more obviously (reducing
RMSE by ~29% from 32.85 to 23.28 and enhancing Acc. by 50% from 0.36 to 0.54) than
at the other two stations. Consequently, our proposed model not only performs well on
datasets with abundant training data, but also performs excellently on datasets with limited
training data.

Table 4 demonstrates the comparison of performance metrics of different methods in
5-fold cross-validation experiments based on road type. The five sub-datasets divided by
the road functional class represent five diverse scenarios. The functional class of the road
is defined in the “Flanders Spatial Structure Plan” (Ruimtelijk Structuurplan Vlaanderen).
Class 1 indicates main roads (i.e., the ring road in this case), which link large regions and
cities with high traffic flow, big traffic capacity and numerous heavy-duty vehicles, such as
coaches and trucks. Class 2 indicates primary roads I, which complement the connection
function of main roads. Class 3 indicates primary roads II, which provide access to central
urban areas and have increased traffic signals. Class 4 indicates secondary roads, which
mainly connect small towns and allow mixed traffic. Class 5 indicates local roads, which
are accessible to communities and have lower traffic speeds. Overall, the CLADF model
shows better performance than the other methods on all metrics in all scenarios. The DF
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and RF model are the next best and perform more comparably, while the SVR model has
the worst performance.

Table 4. Comparison of performance metrics of models on five different types of roads.

Model Road Type RMSE MAE IA Acc. r NMB NMSD MQI

SVR Class 1 37.33 27.91 0.38 0.56 0.45 −0.12 −0.81 1.15
RF Class 1 23.45 17.33 0.87 0.73 0.80 −0.01 −0.25 0.62

XGB Class 1 22.80 16.95 0.89 0.73 0.81 −0.01 −0.17 0.60
DF Class 1 22.95 16.51 0.89 0.74 0.81 −0.01 −0.16 0.60

CLADF Class 1 21.80 15.40 0.90 0.76 0.83 −0.01 −0.16 0.57

SVR Class 2 26.17 18.02 0.46 0.41 0.40 −0.16 −0.66 1.13
XGB Class 2 21.47 14.63 0.77 0.52 0.65 0.02 −0.29 0.83
DF Class 2 21.02 14.01 0.78 0.54 0.66 0.02 −0.32 0.82
RF Class 2 20.76 13.91 0.78 0.54 0.67 0.03 −0.32 0.81

CLADF Class 2 20.66 13.77 0.79 0.55 0.68 0.02 −0.28 0.80

SVR Class 3 20.14 14.31 0.47 0.37 0.41 −0.17 −0.66 0.94
XGB Class 3 16.26 10.89 0.79 0.52 0.66 −0.01 −0.24 0.70
DF Class 3 15.55 10.19 0.81 0.55 0.70 0.00 −0.26 0.67
RF Class 3 15.51 10.18 0.81 0.55 0.70 0.00 −0.28 0.67

CLADF Class 3 15.43 9.97 0.82 0.56 0.70 0.00 −0.22 0.66

SVR Class 4 24.07 14.77 0.47 0.33 0.42 −0.29 −0.66 1.15
XGB Class 4 19.17 11.51 0.79 0.48 0.66 −0.02 −0.25 0.82
DF Class 4 19.04 10.80 0.80 0.51 0.68 −0.01 −0.20 0.80
RF Class 4 18.72 10.66 0.81 0.52 0.69 0.00 −0.29 0.78

CLADF Class 4 17.98 10.46 0.81 0.53 0.71 0.00 −0.18 0.77

SVR Class 5 17.09 11.29 0.56 0.34 0.46 −0.26 −0.56 0.83
XGB Class 5 13.42 9.07 0.80 0.47 0.69 0.00 −0.29 0.62
DF Class 5 12.61 8.24 0.83 0.52 0.74 0.02 −0.26 0.58
RF Class 5 12.58 8.16 0.84 0.53 0.74 0.02 −0.25 0.57

CLADF Class 5 12.39 7.98 0.85 0.54 0.75 0.01 −0.22 0.56

As illustrated in Table 2, the number of measurements in Class 1 is much smaller
than in Class 5. Due to the fact that there is a discrepancy in the number of different types
of roads, most measurements from mobile sensors were collected from local roads and
secondary roads, with a minority from primary roads and very few from highways. It is ev-
ident from Table 4 that maximum RMSE (21.8∼37.33 µg/m3) and MAE (15.4∼27.91 µg/m3)
are observed in Class 1 as there are fewest measurements, while IA, Acc. and r are generally
high, owing to the homogeneity of measurements in highways. In contrast, Class 5 indicates
small roads between neighborhood, which is of a big amount but widely scattered, leading
to the minimum RMSE (12.39∼17.09 µg/m3) and MAE (7.98∼11.29 µg/m3), but not the
highest IA, Acc. and r of all classes. The most obvious enhancement of the CLADF model
for RMSE and MAE is observed in Class 1 with decreases of 5% and 6.7%, respectively.
This validation experiment demonstrates that the CLADF model can be applied not only to
scenarios with sufficient data, but also to those with sparse data.

In order to validate the necessity of the local model, the weighting factor w is set to
1. In this case, the CLADF model degrades to the global model (i.e., DF model) without
considering the local model. It is evident that all performance metrics of the CLADF model
are superior to the global model in all scenarios as shown in Tables 3 and 4.

4. Conclusions

In this study, based on NO2 measurements collected from an opportunistic mobile
monitoring campaign in Antwerp and three categories of contextual features including



Remote Sens. 2022, 14, 2613 19 of 21

meteorology, road network and traffic flow, we propose an air quality inference model
named CLADF to create fine-grained air quality maps. The CLADF model utilizes deep
forest to construct a local model for each cluster that members have similar contextual
features, as well as emphasizing the role of traffic flow as a contextual feature. A variety of
validation experiments demonstrate that the CLADF model outperforms various baseline
methods in all performance metrics.
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