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Multi-Timescale Mitigation for Performance
Variability Improvement in Time-Critical Systems
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Abstract—Ensuring timing guarantee is crucial for time-
critical applications. However, this task becomes more chal-
lenging with the increasing performance variability generated
by complicated modern hardware and software. A widespread
solution to the problem is real-time scheduling, which depends
on worst-case execution time (WCET) and dynamic voltage
frequency scaling (DVFS). Although these techniques provide the
necessary guarantees, but they also exhibit important limitations
from the long switching time of DVFS and the overly pessimistic
execution time model of WCET. In this work, a multi-timescale
mitigation methodology is proposed to improve the way of
tackling performance variability in both timing guarantee and
energy saving. By using both the DVFS and heterogeneous
datapath (HDP) knobs, this methodology can push the timescale
of mitigation down to the sub-millisecond level. Moreover, this
methodology can calculate a tight upper bound of execution time
at run-time using dynamic scenarios. Simulation shows that the
proposed methodology can ensure zero deadline misses with a
smaller safety time margin than the method using only DVFS and
WCET. This advantage can translate into an energy reduction
by half compared to the conventional WCET-based method with
a single DVFS knob.

Index Terms—mitigation, variability, real-time scheduling

I. INTRODUCTION

W ITH modern hardware and software becoming more
dynamic, the increasing performance variability makes

the execution time of an application more dispersed. For time-
critical applications such as car auto-driving and multimedia
streaming, performance variability is a threat to ensuring
timing guarantees. There are two main sources of performance
variability. First, variability can originate from inherent dy-
namic structures in software and hardware design [1], such
as dynamic program flows, and non-deterministic hardware
protocols like cache contention. Second, variability can be
caused by the fluctuation in operating conditions [2], such as
voltage, temperature, aging, etc.

To deal with performance variability, modern processors
are equipped with knobs which allow processors to change
their speed at run-time. Some typical knobs include dynamic
voltage frequency scaling (DVFS) [14] and task mapping [4].
Among all knobs, DVFS, which allows processor cores to
change its supply voltage and clock frequency to vary its speed
and energy consumption, is especially popular since it is easy

J. Y. Lin and F. Catthoor are with imec, 3001 Leuven, Belgium, and also
with ESAT, Katholieke Universiteit Leuven, 3001 Leuven, Belgium (e-mail:
ji-yung.lin@imec.be; francky.catthoor@imec.be).

P. Weckx, S. Mishra and A. Spessot are with imec, 3001 Leuven,
Belgium (e-mail: pieter.weckx@imec.be; subrat.mishra@imec.be;
alessio.spessot@imec.be).

to use and provides a wide range of modes with good speed-
energy trade-offs. Nowadays, DVFS plays an important role
in modern mitigation methods for performance variability.

On top of the knobs, a run-time controller running the
real-time scheduling algorithm decides how to switch the
knobs, ensuring all deadlines are met. Some examples of these
algorithms can be found in [5] [7] [12]. These algorithms are
normally designed on the following principles: it schedules the
future jobs based on their worst-case execution time (WCET),
and then selects the most energy-saving mode that can still
ensure that all deadlines are met. If a job ends earlier than
the WCET, the unused execution time becomes extra time
resource, which is called slack. The slack can be exploited
to select a more energy-saving mode to further reduce the
energy. The algorithm normally runs in the firmware or the
operating system as a background process, and it is required
to be lightweight, so that its impact on the performance of the
main program is minimized.

The methods of real-time scheduling with WCET and DVFS
provide necessary timing guarantee for time-critical applica-
tions. Still, these methods exhibit some important limitations.
One of the limitations comes from the use of WCET, which is
overly pessimistic and much greater than the real execution
time. Therefore, the scheduling with WCET often results
in overestimation of the execution time, which makes the
controller overly conservative and use the modes of unnec-
essary high speeds and energy consumptions. Furthermore,
WCET assumes a static execution time model, which views the
job execution time as a predetermined statistical distribution.
However, with the highly dynamic modern hardware and
software with non-deterministic execution flows, calculation
of WCET becomes convoluted and even unrealistic. Therefore,
WCET is no longer sufficient to model the execution time
of modern applications. To avoid these problems, in previous
work some heuristics [13] [21] were invented to predict the
execution time. However, these heuristics cannot fully rule
out the possibility that the actual execution time is greater
than the prediction, so the chances of deadline misses exist.
Therefore, we consider that the best way to ensure timing
guarantee without being pessimistic at the execution time, is
to calculate a tight upper bound of the execution time based
on the situations at run-time.

Another limitation comes from the switching time of DVFS,
which is at least tens of microseconds [6]. The switching time
should be much shorter than the job execution time for two
reasons. First, the switching time cannot add too much time
overhead to affect the performance of the main application.
Second, if the switching time is too long, when a variability
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Fig. 1. Illustration of an example where the application misses its deadline
due to the switching time and an unexpected increase in the execution time
of Job(N-1) [17]

event occurs close to a time-critical deadline, the reaction time
will be too long to provide full guarantees, as illustrated in
Fig 1. Therefore, the smallest job length is constrained by
the switching time. Practically, we can assume the switching
time should be less than 1% of the job execution time. In this
case, the job execution time should be several milliseconds
at least, which becomes the limit of mitigation with DVFS.
For shorter jobs, DVFS is not feasible anymore, and knobs
with a shorter switching time must be adopted. Recently,
we proposed the heterogeneous datapath (HDP) [17] as a
promising fast-switching knob to mitigate for jobs at sub-
millisecond level. To extend the timescale view to the fullest,
one can envisage a multi-timescale mitigation methodology
using knobs of different timescales as a total solution to all
kinds of performance variability.

In this work, we propose a multi-timescale mitigation
methodology which improves the performance of mitigation
in both timing guarantee and energy saving. This methodology
has two features: first, it exploits the concept of dynamic
scenarios (DS) [8] and instantiates that towards a practical and
effective approach which is applicable in our strict real-time
scheduling context. This approach can derive a tight upper
bound of execution time at run-time, so it improves the way
of exploiting time resource for energy saving. Second, we pro-
pose an algorithm for deciding the modes for multiple knobs
of different timescales. We demonstrate the methodology with
the DVFS and the HDP knobs. Nevertheless, the principles
of the methodology can be extended to any combination of
knobs of different timescales. This work is an extension of
our previous work of [17]. In our previous work, we proposed
the HDP knob and elaborated how it can be used in run-time
mitigation. Then in this work, we further discuss the other
essential aspects in the realization of the overall mitigation
methodology, including the mode scheduling algorithm and
the multi-timescale concept which enables multiple knobs to
work together.

This paper is structured as follows. In Chapter II, the
proposed approach of dynamic scenarios with is elaborated
with a single knob. Then, in Chapter III, the approach is further
extended to the multi-timescale methodology using multiple
knobs. Chapter IV provides the detailed simulation setup of
our experiments on the proposed methodology. After that,
Chapter V discuss the results of the experiments and Chapter
VI is our conclusion.

II. DYNAMIC SCENARIO BASED APPROACH

The dynamic scenario based approach is a workload-
dependent mode scheduling approach which aims to proac-
tively respond to the run-time performance variability to
ensure timing guarantee. Its principle is to refine the execution
time calculation based on the situation observed at run-time.
In this way, the prediction can be less pessimistic than the
WCET, but still gives an upper bound of the real execution
time.

The conceptual framework of this approach is introduced
in [8], in which the theoretical basis is established on a
generalized mathematical model of real-time systems. Here,
we instantiate those principles for mitigating timing varia-
tions, in a novel context with a new approach tuned to our
specific objectives. Our approach is built upon the conceptual
framework and realized for the practical use in the processors
equipped with speed-varying knobs like HDP and DVFS. The
methodology contains two parts, the design-time process and
the run-time process. These two processes are explained in the
following sections.

A. Design-time process

Fig. 2 shows the design-time process of the proposed
dynamic scenario based approach. In the design-time process,
first the target application is profiled. Based on the analysis
of the profiling traces of execution time and energy, the
application is segmented into atomic units called thread nodes
(TN). Each TN is assigned a cycle budget, which represents
the average number of cycles each TN required. These cycle
budgets will be used as the references for scheduling at run-
time. The TNs should be the basic units of workload execution
at run-time, so their sizes must match the finest timescale of
the knobs. For example, if HDP is our finest knob, which
enables mitigation down to the job size of the order of tens
of microseconds, then the smallest size of a TN can be in the
size of tens of microseconds.

Then, the process of scenario set generation is performed,
which is illustrated in Fig. 2. In this process, the TNs are
classified into run-time situations (RTS) based on their char-
acteristics. For example, the TNs which perform different
iterations of the same loop can be classified into the same RTS.
Then, the RTSs are further clustered into dynamic scenarios.
Two main factors are taken into consideration during the
clustering process. First, the clustering of scenarios is based
on the run-time parameters, such as program variables and
metadata of the input files. Different scenarios are positioned
in different regions of the parameter space. Therefore, the
clustering can be treated as the segmentation of the parameter



3

Fig. 2. Process of generating a scenario set in the design-time process of the
dynamic scenario based approach

space into regions, each of which represents a scenario. Hence,
at run-time the active scenario can be easily determined by
reading the values of the run-time parameters. Second, each
scenario should contain RTSs with similar costs of execution
time and energy, so that when predicting the costs of the RTS
by its scenario, the error will be minimal. In this work, the
scenarios are clustered manually by analyzing the program
flow. For applications of high complexity or unknown program
flows, automatic clustering algorithms can be developed on the
same principles to perform this task systematically [11].

After the clustering process, statistics (the worst RTS cost,
average RTS cost, etc.) are recorded for each scenario to be
used at run-time for the likely case prediction and the refined
upper bound calculation of the execution time. These statistics
can be easily stored in a look-up table. Here, we record both
the worst number of cycles and the average number of cycles.
At the same time, the scenario detector is developed, which is
used at run-time to detect the scenarios of the upcoming TNs
the processor is going to run. The design of the detector is
merely querying the look-up table by the run-time parameters.

B. Run-time process

Fig. 3 show the block diagram of the run-time process of the
dynamic scenario based approach. At run-time, the controller
decides which mode to run at the start of every TN. The
controller is supposed to run in the optimized firmware or in a
standalone power management unit, so that the time overhead
is minimized.

The overall procedure of the run-time process is shown in
Algorithm 1. At the start of the workload, an optimal schedule
generated by scheduling with the average number of cycles
of each TN and the hard deadlines of the workload. This
schedule is the presumed ideal schedule which can ensure
timing guarantee and minimize energy consumption if there
is no variability. The goal of the algorithm is to make the
progress of the workload to be always ahead of the optimal
schedule, but as close as the optimal schedule as possible.
Then, the controller defines a deadline for each TN, which
is equal to the TN finish time in the optimal schedule. These
deadlines serve as checkpoints of the progress of the workload.
In addition, the controller creates a buffer to keep track of the
scenarios of a number of up-coming TNs, so the controller
can look into the buffer to evaluate the future workload.

Fig. 3. Block diagram of the run-time process of the dynamic scenario based
approach

Algorithm 1 Run-time process
1: Input: thread nodes TN1...N , buffer size B

Output: modes which each TN uses m1...N

2: CB1...N ← cycle budgets of TN1...N

3: DLi...N ← OptimalSchedule(CB1...N )
4: Initialize an empty buffer buf
5: for i← 1 to B do
6: Si ← ScenarioDetect(TNi)
7: Push Si to buf
8: end for
9: for i← 1 to N do

10: fmr ← RefinedUpperBound(buf)
11: fopt ← LikelyPrediction(buf)
12: mi ← the nearest faster mode of max(fmr, fopt)
13: Execute TNi under mode mi

14: Pop Si from buf
15: if i+B ≤ N then
16: Si+B ← ScenarioDetect(TNi+B)
17: Push Si+B to buf
18: end if
19: end for

At the start of the execution of each TN, the controller calls
the scenario detector to identify the scenario of the last TN in
the buffer. Then, two processes are performed to decide the
mode of the knob to run the next TN. First, the controller
calculates the timing guarantee criteria by a refined upper
bound process, shown in Algorithm 2. The timing guarantee
criteria are expressed by the minimum required speed for the
next TN, which is the slowest speed to run the next TN
while still ensuring timing guarantee. To calculate this, the
controller generates a schedule which could create the greatest
possible slack. This means that the controller assumes the
other scenarios in the buffer to be their worst RTS execution
time and run at the fastest mode. Only when the slack is
available beyond what is required to meet the strictest deadline,



4

Algorithm 2 Refined Upper Bound
1: procedure REFINEDUPPERBOUND(buf )
2: Tcur ← current time
3: fmax ← maximum frequency
4: B ← number of TNs in buf
5: DL1...B ← deadlines of TNs in buf
6: WC1...B ← worst cycles of scenarios of TNs in buf
7: PDLB ← DLB

8: for i← B downto 1 do
9: PDLi−1 ← min(PDLi −WCi/fmax, DLi−1)

10: end for
11: fmr ←WC1/(PDL1 − Tcur)
12: return fmr

13: end procedure

Fig. 4. Refined upper bound process to calculate the minimum required speed
for the next TN for ensuring timing guarantee

then that slack can be used for the next TN. Therefore, this
process is performed for each deadline of the TNs in the buffer,
and in the end only the strictest speed constraint is considered.
Fig. 4 gives a visual illustration of the principle of this process.

Second, likely prediction is performed to calculate the
optimal speed, which is the processor speed that is most likely
to minimize the total energy consumption for the TNs in the
buffer. This process is shown in Algorithm 3. In the beginning
of the process, it would predict the real execution time of
the TNs in the buffer, based on the statistics of the scenarios
acquired in the design-time process. Heuristics can be applied
to improve the accuracy of the prediction. In this work, we
predict the TN execution time to be the average execution
time of the scenario. Then, an optimal scheduling process
is performed, in which the scheduler considers the execution
time prediction to generate a schedule that minimizes the total
energy consumption for the TNs in the buffer, and thus the
mode to run the next TN is decided. Solving the optimal
schedule at run-time will not be feasible since it takes too
much computation, so heuristics need to be applied. In this
work, our heuristics are designed based on the concept that it
is near-optimal to run constantly at the slowest possible speed.
Therefore, the controller calculates the optimal speed which
is just enough to run all TNs to meet the deadline of the last
TN in the buffer. Finally, the controller finds the slowest mode
that is faster than both the optimal speed and the minimum
required speed, as shown in Line 12 of Algorithm 1. This
becomes the selected mode to run the next TN.

Algorithm 3 Likely Prediction
1: procedure LIKELYPREDICTION(buf )
2: Tcur ← current time
3: B ← number of TNs in buf
4: DL1...B ← deadlines of TNs in buf
5: AC1...B ← average cycles of scenarios of TNs in buf
6: fopt ← sum(AC1...B)/(DLB − Tcur)
7: return fopt
8: end procedure

Fig. 5. Variability sources and mitigation knobs arranged by the timescales,
which tells whether the knobs can react faster than the variability for
successfully mitigation.

III. MULTI-TIMESCALE MITIGATION METHODOLOGY

Different variability sources have different characteristics
in terms of timescales. For example, an occurrence of voltage
droop can happen in tens of nanoseconds, while the variability
of temperature fluctuation normally accumulates over hun-
dreds of microseconds. Likewise, knobs are different in their
switching times. For example, the switching time of DVFS is
normally several microseconds to tens of microseconds [6],
while the self-calibration process normally takes hundreds of
milliseconds. Fig. 5 shows a holistic view on the timescales
of variability sources and mitigation knobs. The timescales of
the knobs make them suitable for tackling different type of
variability sources. To successfully mitigate for a variability
source, knobs with a switching time faster than the variability
source must be adopted. Otherwise, the knobs will not be
able to react to the variability in time before the timing
guarantee is violated. Therefore, a total solution for all kinds
of performance variability should adopt multiple knobs of
different switching times, in which each kind of variability
is dealt with by the knobs of its respective timescale.

Here, we will demonstrate the concept of the multi-
timescale mitigation methodology with a realization using
HDP and DVFS. For these two knobs, there is a trade-off
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Fig. 6. Speed and energy trade-off of the ALUs running in each of the
possible combinations of the DVFS mode (0.5V-0.9V) and the HDP mode
(fast, mid, and slow)

between their reaction speed and impact ranges. An example
of the speed and energy of the DVFS and HDP modes is shown
in Fig. 6, which comes from our experiment of benchmarking
a JPEG-encoding workload on our HDP design of the ALU
of the Ariane core [9] with the simulation flow in Chapter IV.
DVFS enables a wide range of speed and energy variation,
but its switching time is longer, so it is suitable to react to the
large and slow variability. On the other hand, HDP can react in
a very short time and provide fine-grained modes to fine-tune
the running speed, but its speed range and energy variation
is limited, so it is suitable to response proactively to mitigate
the small and sudden variability. In this methodology, HDP
and DVFS work in a complimentary way, so the advantages
of both knobs can be exploited.

Regarding the design of the knobs, the speed-energy trade-
off is not the only factor to be considered, since the fast
switching time could allow the mode with lower energy
efficiency to have more energy saving in some situations. To
realize the full potential of the mitigation, the HDP design
should make the most of the energy-speed curve [20]. This
means that at the high-frequency end the HDP should push
the frequency as high as possible before the slope of the curve
becomes so steep that the additional energy investment is not
worth it any longer. Also, at the low-frequency end the HDP
should push the frequency as low as possible before the energy
is flattened. In this way, the processor can have a full range
of modes to tackle different kinds of situations.

The flow diagram of the run-time process of the multi-
timescale mitigation methodology is shown in Fig. 7. The
algorithm sequentially selects the modes of the knobs from
the slow-switching ones to the fast-switching ones. In this
example, the first time is to select the DVFS mode, and the
second time is to select the HDP mode. The switching rates of
HDP and DVFS are different. HDP can switch at the start of
each TN. On the other hand, DVFS can only switch once
over multiple TNs. Otherwise, its switching time overhead
would greatly lengthen the execution time. Here, we limit

Fig. 7. Flow diagram of the run-time process of the multi-timescale DS based
approach, in which the modes of knobs are decided sequentially from the fast
ones to the slow ones

the interval between two DVFS switches to be larger than
a threshold value Tth,DV FS . That is to say, at the start of
each TN, the controller will check whether the time since
the last time the controller decided the DVFS mode is more
than Tth,DV FS , and it would only consider switching the
DVFS knob if the answer is yes. Here, the role of DVFS
is to react to the large slack accumulated over a long time
span which HDP is not sufficient to exploit due to its limit
impact range. The choice of Tth,DV FS is a balance between
the granularity of mitigation and the overhead on execution
time. If Tth,DV FS is too long, the DVFS might not be able
to react to the variability faster than Tth,DV FS . On the other
hand, if Tth,DV FS is too short, the DVFS might switch too
frequently so that the switching time significantly lengthen the
execution time. In our methodology, we set Tth,DV FS to 10
ms, so that the DVFS switching time overhead is less than 1%
of the execution time. The principle of our methodology can
be extended to any knobs of any timescales.

In principle, the process of deciding modes of multiple
knobs is compatible to any scheduling algorithms. However,
the dynamic scenario based approach can calculate the bound
of execution time in a finer timescale, so it can exploit the
benefits of multiple knobs much better than other algorithms.
Here, we instantiate the multi-timescale mitigation methodol-
ogy with an enhanced version of the dynamic scenario based
approach. Algorithm 4 shows the detailed flow of the run-time
process of the enhanced approach. In Line 10, the controller
would check whether the time since last DVFS decision point
is longer than Tth,DV FS to decide whether to select a new
DVFS mode.

In Line 11, the controller calls the multi-timescale version
of the refined upper bound process. The detail of the process
is shown in Algorithm 5. A major change is that the controller
would consider that the DVFS mode has to run over multiple
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Algorithm 4 Run-time Process of Multi-Timescale Mitigation
1: Input: thread nodes TN1...N , buffer size B

Output: DVFS & HDP modes which each TN uses
mDV FS,1...N , mHDP,1...N

2: CB1...N ← cycle budgets of TN1...N

3: DLi...N ← OptimalSchedule(CB1...N )
4: Initialize an empty buffer buf
5: for i← 1 to B do
6: Si ← ScenarioDetect(TNi)
7: Push Si to buf
8: end for
9: for i← 1 to N do

10: DV FS triggered← CheckDvfsTriggered()
11: fmr ← RefinedUpperBound MT (buf)
12: fopt ← LikelyPrediction MT (buf,

DV FS triggered)
13: fres ← max(fmr, fopt)
14: if DV FS triggered or i = 1 then
15: mDV FS,i ← the nearest faster DVFS mode of fres

assuming using fastest HDP mode
16: else
17: mDV FS,i ← mDV FS,i−1

18: end if
19: mHDP,i ← the nearest faster HDP mode of fres

assuming using mDV FS,i

20: Execute TNi under mode mDV FS,i,mHDP,i

21: Pop Si from buf
22: if i+B ≤ N then
23: Si+B ← ScenarioDetect(TNi+B)
24: Push Si+B to buf
25: end if
26: end for

Fig. 8. Enhanced refined upper bound process to calculate the minimum
required speed for the next TN for ensuring timing guarantee in multi-
timescale mitigation methodology

TNs until the next DVFS switch, as illustrated in Fig. 8.
Therefore, the worst-case situation is that the processor runs
in a certain DVFS mode for Tth,DV FS , and then switches to
the fastest DVFS mode until the end of the buffer. A speed
requirement is derived fmr based on this case, as shown in
Line 15-19. In addition, the controller also derives the speed
requirements to meet all deadlines before the next DVFS
switch. Based on all of these requirements, the controller de-
rives the lowest speed which can ensure all timing guarantees,
as shown in Line 21-23.

Algorithm 5 Refined Upper Bound of Multi-Timescale Miti-
gation

1: procedure REFINEDUPPERBOUND MT(buf )
2: Tcur ← current time
3: fmax ← maximum frequency
4: N ← number of TNs in buf
5: DL1...B ← deadlines of TNs in buf
6: WC1...B ← worst cycles of scenarios of TNs in buf
7: Tsw,DV FS ← DVFS switching time
8: Tth,DV FS ← period between two DVFS switching

9: // Propagate deadlines
10: PDLB ← DLB

11: for i← B downto 1 do
12: PDLi−1 ← min(PDLi −WCi/fmax, DLi−1)
13: end for

14: // Find the last TN of DVFS interval
15: j ← 1
16: while PDLj < Tcur + Tth,DV FS + 2Tsw,DV FS do
17: j ← j + 1
18: end while
19: fmr ← sum(WC1...j)/(PDLj−Tcur−2Tsw,DV FS)

20: // Check deadlines in this DVFS interval
21: for k ← 1 to j do
22: fmr ← max(fmr, sum(WC1...k)/(DLk−Tcur−

Tsw,DV FS))
23: end for
24: return fmr

25: end procedure

In Line 12, the controller calls the multi-timescale version
of the likely prediction process, which takes DVFS switching
time into consideration in calculation. The detail of the process
is shown in Algorithm 6. This enhanced version takes the
DVFS switching time into consideration. Finally, in Line 14-
18, the controller would only decide the new DVFS mode
when DVFS is triggered. Otherwise, the current DVFS mode
will be used for the next TN. To ensure the timing guarantees,
when deciding the new DVFS mode, the controller assumes the
fastest HDP mode is used. Once the DVFS mode is decided,
the new HDP mode will be decided based on the condition of
the selected DVFS mode.

IV. SIMULATION SETUP

Fig. 9 shows the simulation flow of the proposed method-
ology. The methodology is simulated on the design of the
RISC-V Ariane core [9], which is a modern representative 64-
bit processor core. It is a building block of OpenPiton [18],
a RISC-V multi-core processor platform which is available
through open access.

A. Processor implementation and simulation

We equip the Ariane core with both the DVFS and HDP
knobs. The design of the HDP knob is the same on in [17],
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Fig. 9. The cycle-accurate simulation flow to acquire the execution time and energy consumption when running a workload under mitigation [17]

Algorithm 6 Likely Prediction of Multi-Timescale Mitigation
1: procedure LIKELYPREDICTION MT(buf ,
DV FS triggered)

2: Tcur ← current time
3: B ← number of TNs in buf
4: DL1...B ← deadlines of TNs in buf
5: AC1...B ← average cycles of scenarios of TNs in buf
6: Tsw,DV FS ← DVFS switching time
7: if DV FS triggered then
8: fopt ← sum(AC1...B)/(DLB−Tcur−Tsw,DV FS)
9: else

10: fopt ← sum(AC1...B)/(DLB − Tcur)
11: end if
12: return fopt
13: end procedure

which is implemented on the ALU unit by extending its
design to three units. The ALU has gone through the full
physical design process so that the accurate timing and energy
can be acquired in simulation. The summary of the HDP
implementation in shown in Table I. In our simulation, the
time and dynamic energy overheads of HDP switching are
not incorporated, since in the previous work it showed that
the HDP switching time is only tens of cycles [17], which
is only about 0.1% of execution time in our sub-millisecond
mitigation context, so it would only have negligible influence
on time and energy. Moreover, the energy overheads from the
idle ALUs are also very small compared to the energy of the
active ALU, thanks to the application of microarchitectural
power-gating technique [19]. Even through the duration of
power-gating can be as short as tens of microseconds, it is
still thousands of times longer than the break-even point,
which is approximately ten cycles [19]. Therefore, the energy
consumptions of the idle ALUs are also left out of the analysis.

TABLE I
SUMMARY OF THE ALU DESIGNS IN HDP [17]

Design Fast ALU Mid ALU Slow ALU
Clock frequency 3.69 GHz 3.39 GHz 2.46 GHz
Number of gates 18099 18092 12827

Multi-Vth libraries used LVT, SVT SVT, HVT SVT, HVT
Technology 3nm [15]

Operating condition TT/0.7V/25C

The DVFS knob is realized by a timing and energy calcula-
tion model. We create five DVFS modes, with voltages ranging
from 0.5V to 0.9V. The operating frequency of each mode is
simulated by static timing analysis on the ALU design, while
the energy consumption of each mode is calculated by scaling
from the energy consumption of the 0.7V mode, based on the
simple dynamic power consumption model as follows.

P = αCV 2f (1)

where α is the activity factor, C is the equivalent capacitance,
V is the voltage, f is the clock frequency respectively. We
assume that the number of cycles of a workload is constant
regardless of the DVFS mode, so the energy consumption can
be approximated as follows.

E = NcycleαCV
2 (2)

Therefore, the scaling of energy consumption among the
DVFS modes is proportional to V 2. Here, we do not consider
static energy, since in simulation we found it much smaller
than the dynamic energy due to all the leakage reduction
techniques (high-Vth library, power gating). A summary of
the DVFS model is shown in Table II, and the speed-energy
relations of all available DVFS and HDP modes are shown
in Fig. 6. In addition, we assume that the switching time of
DVFS is a constant of 100 µs regardless of the modes which
the processor switches from and to. This switching time is
at the same level of the empirical numbers measured from
modern processors [6].
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TABLE II
SUMMARY OF DVFS MODEL

Voltage (V) Frequency (GHz) Energy scaling
factor (∼V2)Fast HDP Mid HDP Slow HDP

0.9 4.67 4.46 3.33 1.65
0.8 4.24 3.98 2.97 1.31
0.7 3.69 3.39 2.46 1.00
0.6 2.80 2.08 1.60 0.73
0.5 1.79 0.98 0.79 0.51

To accurately simulate the execution time and the energy
consumption of the core, we have developed a cycle-accurate
processor simulation flow [17]. First, we ran RTL-level sim-
ulation on the RTL design of the core, running the target
workload. The input patterns of the ALU are extracted during
the simulation, and the execution time results are acquired at
the same time. Then, A gate-level simulation is performed
on the netlist of each ALU. The input patterns from the
RTL simulation are applied to the design in the simulation
to acquire the activities of each net in the ALUs. Afterwards,
these activities are used by the commercial power analysis tool
to compute the energy consumption of the ALUs.

B. Simulation of the multi-timescale mitigation methodology

During the design-time process simulation, first we profile
the application by the processor simulation with different input
files, to acquire the statistics of execution time and energy.
Then, based on its program flow, the application is segmented
into TNs of execution time of hundreds of microseconds. Once
the execution time and energy of all TNs are acquired, we
analyze these data to search for suitable run-time parameters
for scenario clustering. The statistics of each scenario are
calculated and stored in a look-up table. At run-time, this
table is read by the controller for timing guarantee criteria
calculation and TN cost prediction.

During the run-time process simulation, first we perform
the processor simulation running target workload with the
target inputs to acquire their execution time and energy. These
results are read by a controller simulator which, combined
with all the data provided by the design-time process, derives
the knob-switching decisions the controller makes during the
whole process of the workload. The results of these knob-
switching decisions are combined with the energy analysis
results to calculate the total energy consumption under run-
time mitigation.

V. EXPERIMENTAL RESULTS

The applications we target for are the ones the highly dy-
namic workload with strict real-time requirements. To evaluate
the effectiveness of our methodology in mitigation for this kind
of applications, we select two representative workloads in the
experiments. The first one is the lower sub-band quantization
block of the ADPCM-encoding application of TACLeBench
[16]. The second one is the JPEG-decoding application of
MiBench [10]. Both workloads represent typical real-time
signal and data processing applications, where the input of
workload is a sequence of frames, and the deadlines for
processing these frames are periodic, called frame period.

In conventional real-time scheduling, a job is defined as
processing a single frame, but in our methodology, more
fine-grained mitigation can be achieved by cutting the job
of processing a frame into multiple TNs, each of which has
an execution time of tens to hundreds of microseconds. The
execution time of these workloads is highly dispersed with
different input data. Therefore, they are representative of the
highly dynamic workload that our methodology targets for.

In the experiment, we compare six methodologies of dif-
ferent algorithms and knobs. In terms of the algorithms, we
select three different configurations, each is representative of
an algorithm type: the first type is the best-effort (BE) algo-
rithms, represented by the algorithm of Pering et al [21]. The
controller of this type always greedily predicts the execution
time of processing one frame regardless of the content of
the frame. In Pering’s algorithm [21], the prediction is the
exponential moving average of the executed cycles of the
past frames. This way, the prediction will be close to the
real execution time most of the time, so the controller can
aggressively reduce energy. However, this algorithm cannot
ensure timing guarantee, so it is not a viable algorithm for
mitigation for time-critical applications. Here, it only serves as
a reference of the best-case energy consumption. The second
type is the WCET-based algorithms, represented by the cycle-
conserving algorithm of Pillai et al [7]. In this type, the
prediction of the execution time of processing a frame is
always the WCET regardless of the content of the frame. This
configuration represents the conventional algorithm of real-
time scheduling. The third type is the dynamic scenario (DS)
based approach we proposed.

In terms of the knobs, we have two different configurations.
The first one is the single-DVFS configuration, which only
switches the DVFS knob, and the HDP knob always stays in
the fast mode. This configuration represents the conventional
mitigation method which only has the DVFS knob and one
datapath designed for high frequency. The best-effort and the
WCET algorithms of this configuration can switch DVFS
modes only in the beginning of a frame, since they are ignorant
of the TNs, while the DS algorithm can switch at the start of
a TN. The second one is the multi-timescale configuration,
which uses both the DVFS and the HDP knob. This con-
figuration represents the proposed multi-timescale mitigation
methodology. For the best-effort and the WCET-based algo-
rithms, their multi-timescale versions are implemented based
on the flow in Fig. 7. Therefore, they can switch the knobs
at the start of a TN. Still, their execution time predictions
are frame-based and are constant in spite of the run-time
situation, so they cannot fully enjoy the advantages of a finer
timescale. Combining different configurations of the knobs
and the algorithms, we have six different methodologies for
comparison. By comparing results of different configurations,
we can decouple the impacts from two different features of our
methodology: either from the knobs or from the algorithms.

A. Case I: Quantization of ADPCM Encoding

Here, we assume an application of the lower sub-band
quantization block of ADPCM-encoding, where frames of
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TABLE III
SCENARIO LOOK-UP TABLE FOR THE ADPCM QUANTIZATION

APPLICATION

Scenario Volume Avg cycle count Max cycle count
1 0 42276 42276
2 1 - 104 56180 76640
3 104 - 105 100451 124669
4 105 - 4×106 147584 169068
5 4×106 - 7×106 164788 206888
6 >7×106 202253 265514

Fig. 10. Distribution of the instruction count of the TNs of the ADPCM
quantization workload, in which the great difference between WCET and
realistic cases are shown

audio samples are sequentially fed as the inputs, and frames
of quantization levels come out as the outputs. Though the
original application includes the entire ADPCM encoding flow,
we only experiment on the quantization block of the low
sub-band, which is the most dynamic part in the flow, to
maximize the dynamism of the workload. It is not unrealistic
to run the quantization block alone, since one can easily
modify the ADPCM encoding application to parallelize the
quantization part from the other parts. Technically, we simulate
the entire ADPCM encoding application, but only record the
execution time and energy consumption of the lower sub-band
quantization part of the application. The execution time and
energy consumption of different frames are summed up to
represent the case that the quantization part is run alone. The
inputs of the application are audios of 22050 Hz sample rate.
The frame size of the audio stream is 2000 samples. We divide
the workload in a way that each TN represents processing of
100 samples, which means that one frame is composed of 20
TNs.

In the design-time process, we profile six audio files of 10-
second long. Fig. 10 shows the distribution of the number of
instructions of all profiled TNs. From the distribution, we can
observe that the workload is highly dynamic. It also clearly
shows that the number of instructions of the WCET case
derived from program flow analysis is much greater than the
maximum number of instructions we observe. Therefore, it
proves our point that WCET is too pessimistic to represent the

real execution time. In scenario clustering, we use the volume
as the run-time parameter. The volume is defined as the sum
of the absolute values of all samples in the TN. Six scenarios
are created with these profiling results of 1000 TNs, whose
inputs are composed by an audio stream of 100 TNs repeated
by ten times. The total execution time of this workload is 34
ms under the 0.7V DVFS mode and the fast HDP mode.

Fig. 11 shows the selected DVFS and HDP modes during
the entire run of the 1.0-ms frame period case. And Fig.
12 shows the traces of slack of all mitigation methods. The
slack is defined as the amount of time by which a TN ends
before its deadline. The optimal behavior of the slack trace
is to be always positive and as close to zero as possible,
which means that the processor runs in the slowest possible
speed without any deadline violations. For the BE methods,
the slack is close to zero all along the workload, which is
near-optimal for energy saving. However, as shown in Fig. 12,
their slacks can sometimes be negative, which means potential
deadline violations. Therefore, these methods cannot ensure
timing guarantee.

For the methods that can ensure timing guarantee (WCET
and DS), we can identify three phases of mitigation over the
entire workload from the traces of slack. First, in the beginning
of the workload, fast modes are used to accumulate slack
to ensure a safe margin to avoid deadline violations. Then,
when sufficient slack is secured to ensure timing guarantee,
the processor run at a speed in which the slack keeps at a
stable level. In this phase, the processor can switch among
neighboring modes to fine-tune the running speed or react
to small variability. Finally, when the workload is about to
finish, the processor would exploit the slack to save energy by
running in slow modes.

While all four curves generally follow the three phases of
mitigation, their behaviors are quite different. Comparing the
traces of different knob configurations, we observe that the
traces of the single-DVFS configuration tend to have sharp
turns, while the traces of the multi-timescale configuration
are much smoother. This shows that the fine-grained modes
and the small timescale enabled by HDP can make mitigation
performed in a smoother way. Furthermore, by comparing
the traces of the two DS methods, it also shows that the
multi-timescale method requires less slack to ensure timing
guarantee, which results in less time and slower modes in
the first phase. Also, the multi-timescale method starts the
third phase earlier, so it can exploit more slack by the end of
the workload. These behaviors show the benefits of the multi-
timescale mitigation in providing more energy saving.

In terms of the algorithms, the benefit of the dynamic sce-
narios is shown Fig. 11a and Fig. 12 by comparing the results
of the two methods with the single-DVFS configuration, in
which the dynamic scenario based approach can start the
second phase much earlier than the WCET-based method. This
shows that the dynamic scenario based approach requires less
slack to ensure timing guarantee due to the tight upper bound
execution time calculation. The smaller slack indicates that
the processor can run at a slower speed, which is certainly
beneficial to energy saving. Finally, combining the benefits
of both features, the proposed methodology has a smooth
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Fig. 11. Selected modes over the entire run of the ADPCM quantization workload with the 1.0-ms frame period. (a) DVFS mode (b) HDP mode
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Fig. 12. Trace of slack over the entire run of the ADPCM quantization
workload with the 1.0-ms frame period

mitigation process over the whole workload with only the
least amount of slack required to be secured. Its curve is
always positive and close to zero, which is near to the optimal
behaviors we described above. This means it is the best method
among all in keeping the processor in the slowest possible
speed without violating any deadlines.

Fig. 13 shows the energy consumption of different methods
under different time-criticality situations, represented by dif-
ferent frame period. The energy differences among all methods
are more prominent in the middle of the curves. At the left
end of the curves, the timing is so strict that all methods use
the fastest mode most of the time, while at the right end of
the curves, the timing is so relaxed that all methods use the
slowest mode most of the time. In these situations the choice
of the mitigation method is less relevant.

Comparing different methods, Fig. 13 shows that the pro-
posed multi-timescale DS methodology has remarkable energy
saving of 32% in average and 46% in maximum, compared
to the conventional WCET-based single-DVFS method. Also,
the benefit is significant in all time-criticality situations. As
compared to the single-DVFS best-effort method, which are
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Fig. 13. ADPCM quantization workload energy consumption of different
methods under different time-criticality conditions

near-optimal for energy saving, the energy consumption of
the multi-timescale DS methodology is larger by only 17% in
average and 33% in maximum. Regarding the timing guaran-
tee, the single-DVFS best-effort method misses 13% deadlines
in average, while the multi-timescale DS methodology has
zero deadline misses. Since the best-effort method can cause
potential deadline misses, it is not an available solution for
time-critical applications. For these applications, the multi-
timescale DS methodology is the best solution, in which a
small energy overhead is a reasonable price to pay to ensure
the timing guarantee.

The separate contributions of each feature can also be
derived from Fig. 13. Regarding the algorithm, the benefit of
the DS based algorithm can be evaluated from the comparison
between the DVFS WCET method and the DVFS DS method.
It shows that the algorithm improves the energy consumption
by 17% in average. Its benefit is more prominent in the
time-critical region, since its advantage of deriving a tighter
execution time upper bound is more important in the time-
critical situation. Regarding the knobs, the benefit of the multi-
timescale methodology using multiple knobs can be evaluated
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Fig. 14. Selected modes over the entire run of the JPEG decoding workload with a 8.0-ms frame period. (a) DVFS mode (b) HDP mode
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Fig. 15. Trace of slack over the entire run of the JPEG decoding workload
with a 8.0-ms frame period

from the comparison between the DVFS DS method and
the multi-timescale DS method. It shows the improved knob
configuration saves extra 16% energy in average. Its benefit is
more prominent when the timing is loose, since its advantage
of allowing the processor to run in slower modes for longer
time, is more prominent in the non-time-critical situation. In
conclusion, it is the combined effect of both features which
makes our methodology have a significant energy saving in
all time-criticality situations.

B. Case II: JPEG Decoding

The inputs of the application are streams of JPEG images
extracted from sample QCIF videos (174 x 144 resolution).
Each JPEG image represents a frame of the video. The JPEG
images are sequentially provided to the application to simulate
a multimedia streaming workload of a constant frame rate.
The JPEG decoding application generally consists of two main
parts. The first part is the initialization phase, in which the
application builds up the data structure and reads the input
image. Then in the second part, the application decodes the
image by rows of Minimum Coded Units (MCU). Each MCU

TABLE IV
SCENARIO LOOK-UP TABLE FOR THE JPEG-DECODING APPLICATION

Run-time parameters Scenario Cycle count
Program flow Bits per pixel max avg
Initialization 0 - 4.00 1 4771771 4703069
Decode the

first MCU row
0 - 1.35 2 1423793 1271159

1.35 - 4.00 3 1614701 1434089

Decode a
middle MCU row

0 - 1.35 4 1609520 1414888
1.35 - 2.10 5 1864506 1569669
2.10 - 4.00 6 2175664 1767012

Decode the
last MCU row

0 - 1.45 7 1838664 1661917
1.45 - 2.50 8 2055572 1790937
2.50 - 4.00 9 2266653 1991362

row is a 174 x 16 fraction of the image. In this case, a TN is
defined as the process of initialization or decoding an MCU
row. Since one image is composed of nine MCU row, the
process of decoding one image is divided into 10 TNs in this
way.

At design-time, we profiled 12 video streams. The num-
ber of frames of each video ranges from 150 to 494. Two
parameters are selected as the run-time parameters for the
scenario detector. One is the different processes in the program
flow (initialization, decoding the first MCU row, decoding a
middle MCU row, decoding the last MCU row). Each of these
processes exhibits distinct characteristics of execution time
and energy consumption. An especially interesting observation
is that even in the iteration of the main loop of decoding
MCU rows, the costs of the first and the last iterations are
systematically different from the intermediate iterations. This
shows that the program flow can serve as a parameter for
predicting execution time, and has much to be exploited for
mitigation.

The other one is the bit per pixel (BPP) of the image,
which is defined as the length of encoded bit stream divided
by the number of pixels. BPP represents the data density
of the image, which is related to the computation effort to
decode an image. In simulation, BPP is highly correlated to
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TABLE V
MITIGATION RESULT SUMMARY WITH DIFFERENT METHODOLOGIES AND BENCHMARKS

Methodology

Benchmark
Case I: Quantization of

ADPCM encoding
Case II: JPEG

decoding
Deadline
miss rate

Energy ratio* Deadline
miss rate

Energy ratio*

min avg max min avg max
DVFS BE 13% 0.47 0.59 0.95 52% 0.74 0.84 0.93

Multi-timescale BE 29% 0.49 0.58 0.92 46% 0.72 0.85 1.00
DVFS WCET 0% 1.00 1.00 1.00 0% 1.00 1.00 1.00

Multi-timescale WCET 0% 0.72 0.90 1.00 0% 0.82 0.91 0.99
DVFS DS 0% 0.66 0.83 1.00 0% 0.80 0.89 1.00

Multi-timescale DS 0% 0.54 0.68 0.97 0% 0.75 0.84 0.92
* Energy ratio is calculated w.r.t. the energy of the DVFS WCET method.
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Fig. 16. JPEG decoding workload energy consumption of different methods
under different time-criticality conditions

the execution time of decoding the image. Also, the calculation
of BPP is simple and can be done before reading the content
of the encoded bit stream. Therefore, BPP calculation can
be performed for the upcoming TNs in the buffer to detect
the scenario. These properties make BPP a suitable run-time
parameter for scenario detection.

As a result, 9 dynamic scenarios are created. The details of
the scenario set are shown in Table IV. At run-time, an image
stream of 10 images is used as the target workload, which
totals 100 TNs.

Fig. 14 shows the DVFS and HDP modes selected during
the entire run of the 8.0-ms frame period case. And Fig. 15
shows the traces of slack of each of these mitigation methods.
The behaviors of each methodology in these figures are similar
to Case I, though the application is different. This shows that
the characteristics of methodologies we discussed in Case I are
not specific to a certain application. They are universal across
workloads. Under a different workload, the multi-timescale DS
method can still run in a smooth slack curve which is always
positive and close to zero. This proves that the merits of this
method are general and independent of workload.

Fig. 16 shows the energy consumption of different methods
under different frame periods. Compared to the conventional
single-DVFS WCET-based method, the multi-timescale DS
method can save 16% energy in average and 25% energy in
maximum. And compared to the DVFS best-effort method,
the energy consumption of the multi-timescale DS is about
the same and 5% greater in the worst case. In some cases, the

multi-timescale DS method consumes even less energy, which
is 6% in the best case. This result does not mean that the
proposed method can ensure timing guarantee without an en-
ergy penalty, since the energy consumption can be affected by
multiple factors, such as the energy efficiency of the selected
modes and the activities in the workload. Nevertheless, it
shows that in some context the energy penalty can be minimal.
Also, the energy differences among the methodologies are
smaller than Case I, which indicates that the JPEG-decoding
workload is less dynamic, so the potential of energy saving by
mitigation is smaller. Therefore, the energy saving achieved by
mitigation is highly workload dependent.

C. Result Summary

We summarize the mitigation results of both benchmarks
under all frame periods in Table V, in which the average
energy ratio is calculated w.r.t. the energy of the DVFS
BE method. The differences in results of both benchmarks
may be attributed to several factors. First, the degree of
dynamism of the workload could affect the performance of
mitigation methodologies. A workload which is more dynamic
in execution time, like Case I, could provide more potential of
mitigation benefits. This explains why the energy consumption
differences of methodologies are more prominent in Case I.
Second, for the BE algorithm, the deadline miss rate varies
between benchmarks, depending on the differences between
the prediction and the real execution time. On the other hand,
the WCET-based algorithm and the DS algorithm can both
achieve zero deadline misses regardless of the benchmark.

VI. CONCLUSIONS

We propose a multi-timescale mitigation methodology for
ensuring timing guarantee. The proposed methodology im-
proves the way to derive the upper bound of execution
time at run-time with the dynamic scenario based approach.
Furthermore, it incorporates both the HDP and DVFS knobs
to push the timescale of mitigation down to sub-millisecond
level. Simulation shows that when running a highly dynamic
workload, the proposed methodology can ensure meeting all
deadlines, and at the same time reduce the dynamic energy
consumption by 32% in average and 46% in maximum com-
pared to the conventional WCET-based method with a single
DVFS knob.
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