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Abstract—With the increasing traffic of Video on Demand
(VoD), network providers are seeking to deliver high Quality
of Experience (QoE) for their users. Many methods have been
proposed to assess VoD-related QoE. Some of them rely on
client instrumentation and reporting QoE information to network
elements, such as Server and Network Assisted DASH, others
are based on statistical methods that make QoE inferences using
monitored network conditions, such as throughput and delays.
In this article, we present a practical method to estimate QoE
for VoD using the widely supported Internet Control Message
Protocol (ICMP) probes. Measured network conditions are used
as input to a Machine Learning (ML) model that estimates QoE
in terms of Mean Opinion Score (MOS), based on the ITU-
T P.1203 Recommendation. The estimation encompasses video
quality switches and playback stalls. We estimate MOS with an
average Root Mean Square Error (RMSE) of 1.05 for a catalog of
25 different videos, training a model with sessions of the shortest
video, and evaluating the generalization to the full catalog. We
performed experiments using a virtualized setup as well as in a
Wide Area Network.

Index Terms—Quality of Service, Quality of Experience, DASH
video, Machine Learning

I. INTRODUCTION

Video content represents a significant amount of current IP
traffic. According to Cisco, 82 % of network traffic will be
composed by video by 2022 [1], being mostly comprised by
Video on Demand (VoD) services such as Netflix, YouTube,
among others. With the prominence of VoD services and the
pressure that they pose to network resources, operators are
expected to keep up with the increasing demand for perfor-
mance to satisfy user expectations. An Accenture survey shows
that 60% of users are dissatisfied with their connectivity and
network experience [2]. Network operators should assess user
satisfaction in order to avoid customer churn. Both industry
and academia have drawn their attention to Quality of Experi-
ence (QoE), which indicates the users’ degree of satisfaction
or annoyance when consuming services or applications [3].
Operators must then employ QoE measurements to improve
their resource provisioning and troubleshooting policies [4].

Most VoD services are now based on HTTP Adaptive
Streaming (HAS) [5], [6]. In HAS the QoE is degraded by
events such as playback stalls, initial buffering delay and video
quality variations [7]. Different methods have been proposed to
gather this information on user devices and estimate user QoE
[8], [9]. Although such information is easily computed on the
streaming client application, operators must reach agreements
with each video service provider to obtain it.

Due to the lack of interactions with the client’s playback
software, operators must resort to indirect QoE measurements.
This is the preferred method for operators because it maintains
their client’s privacy and avoids the introduction of specialized
equipment [9]. Limitations of the state of the art are the
reliance on technology-dependent information (e.g. quality of
signal [10]), limiting the application of the solution on network
with other technologies, and the use of monitoring software
that does not cover the last mile of the connection [11].

In this work, we propose and evaluate a method for QoE
assessment based on network-level Quality of Service (QoS).
To measure end-to-end QoS between the VoD server and
a VoD client, we employ active Internet Control Message
Protocol (ICMP) probing. The network QoS measurements are
fed into a regression tree ensemble-based Machine Learning
(ML) model. The model estimates Mean Opinion Score (MOS)
according to the ITU-T P.1203 Recommendation, encompass-
ing playback stalls, video quality switches and user equipment
characteristics [8]. We focus on deployments where small scale
Content Delivery Networks (CDNs) are deployed within Inter-
net Service Providers (ISPs) domains, known as CDN-ISP or
Mobile Edge Computing (MEC) [12], [13]. For such deploy-
ments, more flexibility in regards of probing frequency and
link monitoring is expected. However, deployments traversing
multiple domains can also be monitored due to the general
support of ICMP probing, albeit with more restrictions and
lower accuracy. Our method has the following benefits: (i) it
is widely supported by recent and legacy network equipment
due to the use of ICMP probes; (ii) it is privacy-preserving,
since active probing replaces Deep Packet Inspection (DPI)
techniques; (iii) it works with encrypted video traffic; and (iv)
it allows the operator to take preventive actions even before
the video flow starts.

We performed experiments using a controlled environment
to generate a dataset to train and evaluate the inference model.
We first provide a set of analyses about the relation between
network QoS conditions and the QoE they generate, giving
insights on the expected performance of the proposed method.
The method provided MOS inferences with Root Mean Square
Error (RMSE) of 1.05, for a model trained using samples of
all available videos in the catalog, as well as for a model
trained with samples of a single video. Furthermore, the model
trained with samples of a single video of the catalog was able
to generalize to the rest of the catalog.

This article is an improvement of our previous work [14],
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adding the following aspects:
• In previous work [14], we evaluated the inference model

using samples from a single video. We now compare a
similar model trained with data from a single video with
another one created with samples of all videos.

• The inference model now uses more network input
metrics such as percentiles and standard deviation of
measurements. The training dataset is now labeled using
Mode 3 of ITU.T P.1203. Mode 3 is more comprehensive,
considering more video characteristics, better reflecting
user’s perceived QoE.

• This article shows the feasibility of the method on more
realistic network conditions. We added experiments over
wireless links, and crossing different domains and geo-
graphically distributed testbeds.

• We evaluate the effects of lower probing rates, consider-
ing cases where ICMP probing rate is restricted on cross-
domain measurements. We present the results evaluating
sampling rates from 0.25 up to 42 samples per second.

• We provide a comprehensive analysis of the individual
impact of uplink and downlink network QoS condi-
tions on the resulting MOS, investigating the general
differences in network conditions between sessions that
presented high MOS and low MOS.

This article is organized as follows: Section II discusses
related work. Section III describes the proposed method, while
the setup of experiments are detailed in Section IV. The results
are presented and discussed in Section V. Section VII presents
the conclusion and future work. We use several acronyms
throughout the article, and a list of them can be found at the
end of the document.

II. RELATED WORK

Focusing on cellular networks, Costa et al. [11] use network
measurements to estimate Application QoS (AQoS) condi-
tions of video streaming, and from AQoS predict the user’s
QoE. They first use Decision Tree (DT) to map delay, jitter,
throughput and packet loss into AQoS metrics of startup time,
stall count and total stall time. Network measurements are
performed using NetMetric [15], requiring probes as close as
possible to the points of interest. The experiments do not
evaluate adaptive video streaming, being restricted to one
video with 1080p resolution and one with 720p resolution.

Relying on DPI for granular traffic analysis, the method pre-
sented by Huysegems et al. [16] reconstructs a video session
by analyzing packets that pass through an intermediate node.
Information such as number of segments, video duration and
quality levels are extracted from the manifest file, while other
information such as segment sizes and requested video quality
level are obtained through traffic inspection. The session
is then reconstructed to obtain the QoE-related parameters,
e.g. rebuffering events and bit rate variation. In view of the
increasing use of encrypted traffic [17], traffic inspection may
be infeasible. The method proposed by Ge and Wang [18]
overcomes this limitation using an HTTP proxy, however it
also requires flow inspection to identify video streams. The
QoE-related metrics estimated by the algorithm in [18] are

initial playback delay, number of rebuffering events and their
duration. For evaluation, the authors used one video encoded
in one representation, thus the performance of the system is
not clear when quality adaptation algorithms are active.

Addressing challenges imposed by encrypted traffic,
Khokhar et al. [17] present a method to estimate MOS
based on network-level measurements and ITU-T P.1203 [8].
The authors created a dataset by consuming YouTube videos
while emulating network impairments using Traffic Control
(TC)1. Throughput, packet inter-arrival times, chunk sizes and
other information were also included, totaling 48 features.
Multiple models were trained to estimate different QoE-related
playback characteristics, e.g. occurrence of playback stalls,
whether video playback started or not, occurrence of quality
switches and MOS. Despite using information about network
QoS (e.g. delay, jitter, bandwidth and loss rate), the work does
not address how to monitor this information in real networks.

Also focusing on encrypted YouTube traffic, the work by
Seufert et al. [19] presents ViCrypt: a stream-based ML
approach to predict stalling of video streaming in real time.
The video session is analyzed in one-second slots, but a
combination of all slots can be used to evaluate the complete
session. An ML model based on Random Forests (RF) is used
to predict whether a slot contains a stalling or not. For this the
model takes 208 input features, including uplink and downlink
TCP/UDP packet counts, upload versus download ratio, among
others. Prediction of stall occurrence achieves an accuracy of
94.67% using the complete set of features, however, train and
evaluation were performed using a highly unbalanced dataset,
in which over 70% of video sessions did not present stalls.
The work from Wassermann et al. [20] also employs ViCrypt
on a similar context as by Seufert et al. [19], but extends it to
also predict video resolution and bitrate. The dataset consisted
of videos in 6 different resolutions, with 55% of data with
vertical resolution of 480p. To estimate resolution the authors
used a classification method, achieving 66% accuracy with a
k-Nearest Neighbors (kNN) method. A RF method was used
for bitrate estimation, returning predictions with 233 kbps of
mean absolute error.

Table I summarizes the works analyzed in this section. The
first column references the work. Column QoS Metrics indicate
which network-level QoS information are used as input for
the QoE estimation, while column QoE Metrics describes the
QoE formulation. The Monitoring Type column describes how
the QoS metrics are obtained in the proposal: through active
or passive monitoring, specialized monitoring software, and
if DPI is employed. The column Video Catalog describes the
video catalog used in each work. The Generalization column
indicates whether the model was validated with videos outside
of the training set. As shown on the table, as far as we are
aware, the work presented in this paper is the first one to
explicitly evaluate model inference generalization. We focus
on works that utilize Network-level QoS (NQoS) to estimate
QoE, as we consider that NQoS can be directly influenced by
management actions of an ISP. Other approaches that focus
on mapping AQoS (e.g. initial buffering time, duration of

1http://man7.org/linux/man-pages/man8/tc.8.html
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resolution drops) to QoE such as the work by Bampis et al.
[21], were not included.

In this work we encode videos in 10 quality levels, thus the
Dynamic Adaptive Streaming over HTTP (DASH) adaptation
algorithm can adjust playback quality during a session as it
would perform on a real VoD service. Our MOS estimation
approach comprises playback stalls, stall duration, playback
quality, and quality switches through ITU-T P.1203 Recom-
mendation. Methods that estimate MOS based only on stalls
may fail to identify low QoE when playback is smooth but
at the lowest or oscillating video quality, also reducing user
experience [7]. Using active probing, our method is suitable to
monitor VoD services that transmit encrypted or unencrypted
traffic. Moreover, network monitoring is based on ICMP
probing that is widely supported by new and legacy network
equipment. This method is technology agnostic, and eliminates
the need for specialized monitoring tools.

III. PROPOSED SOLUTION

We propose a solution that is tailored to ISPs that manage
their networks using QoE-based Service-Level Agreements
(SLAs). It monitors network-level QoS through active ICMP
probing and employs an ML model to estimate the QoE level
of video flows. It overcomes one of the main challenges in
ISP traffic monitoring: how to obtain meaningful information
from both encrypted and unencrypted traffic while preserving
the user’s privacy. Our solution can be integrated into self-
management software in order to implement QoE-aware man-
agement, providing the necessary feedback for management
control loops. For example:

• Tuning Wi-Fi parameters: Moura et al. [24] use the
estimated MOS of user flows to reconfigure the channel
and the transmit power of Wi-Fi access points;

• Improved routing: Costa et al. [25] use a QoE inference
model for traffic routing.

• Scheduling in datacenters: Carvalho et at. [26] rely on
the inferred QoE to schedule containers on Kubernetes.

Before describing the implementation details, we present
the envisaged use cases.

A. Use cases

There are two use cases for our monitoring tool shown in
Figure 1. The first is in the context of CDN-ISP partnership or
MEC [12], [13], depicted in Figure 1a. This use case considers
a partnership between ISPs and Over The Top (OTT) services
to deploy a small scale VoD CDN within the ISPs domains.
The monitoring software is installed in the best vantage point
(near to the server), and the probes are free from third-party
traffic shaping. This is the ideal use case for the tool, and
also simplifies the identification of the startup of a new video
session, as well as the classification of the traffic as VoD.
Traffic classification is out of the scope of this article, however,
the methods presented by Dias et al. [27], and Lotfollahi et
al. [28] can be combined with our solution to detect and
classify VoD traffic. The first method classifies individual
flows that belong to a VoD session using a modified Naı̈ve
Bayes algorithm, taking features of IP headers of a flow as

input. The second method uses Deep Learning to automatically
extract features and classify traffic types and applications, by
processing packets as vectorized byte streams. Both methods
can perform real-time classification of a network flow and
determine that a VoD streaming session is in progress with
over 90 % accuracy.

(a) Use case example in a CDN-ISP context

(b) Use case example restricted to ISP domain

Fig. 1. Use cases of the proposed solution

Figure 1b shows a more complex deployment, where the
VoD server is outside of the domain of the ISP. Because the
tool is installed in the middle of the end-to-end path, multiple
instances of the Probing Module (PM) are required in order to
monitor all links involved. Information gathered for a common
link can be used to perform estimates for multiple clients, as
is the case between routers C and E. Measurements from the
multiple instances can then be combined following the process
described in Section 8 of ITU-T Y.1541 Recommendation
[29], and the QoE for each client can be estimated. This second
scenario is the most challenging for the tool, as routers outside
of the ISP may block ICMP traffic or perform rate limitations
(which may reduce the precision of the QoE estimation).

The use of our method may be limited in contexts where
clients are behind firewalls (restricting ICMP probing) or
Network Address Translation (NAT). However, the network
provider can still perform measurements until before the link
applying such restrictions, giving useful information about
whether QoE-impairing conditions occur in its own domain or
in the last-mile (e.g. user’s personal Wi-Fi network). Moreover,
with the wide adoption of IPv6, the reachability issues posed
by NAT tend to be diminished.

Our solution is composed of two modules: The PM mea-
sures QoS conditions between the VoD server and a VoD
client and adapts the probing frequency to varying network
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TABLE I
SUMMARY ON RELATED WORK

Reference QoS Metrics QoE Metrics Monitoring Type Video Catalog Generalization
[11] Delay, Jitter,

Throughput, Loss
A mathematical function de-
rived from observations in
[5], [22], [23]

Active measurements us-
ing NetMetric [15]

One video clip encoded in
two fixed quality levels (720p
and 1080p)

7

[16] TCP/HTTP session
reconstruction based
on DPI

Video quality, quality
switches, and playback stalls

Passive (using DPI) Not specified Not specified

[18] DPI and download
time of video seg-
ments

Initial playout delay, buffer
level, playback stalls, quality
switches

Passive monitoring of
TCP/HTTP session

One video encoded in one
quality level

7

[17] Up to 48 features MOS derived from ITU-T
P.1203 Recommendation [8]

Not specified A catalog of over 1 million
videos from YouTube

7

[19] 69 packet-level statis-
tics of the video flow

Initial delay, playback stalls,
and stall duration

Passive monitoring A catalog of videos from
YouTube

Not specified

[20] 69 packet-level statis-
tics of the video flow

Video resolution and bitrate Passive monitoring A catalog of videos from
YouTube

Not specified

This work RTT, Jitter, PLR MOS derived from ITU-T
P.1203 Recommendation [8]

Active ICMP probing 25 videos encoded in 10 qual-
ity levels

3

conditions. The second component is an MOS inference model
created using supervised ML. It receives the QoS measure-
ments and returns an MOS inference based on ITU-T P.1203
Recommendation.

B. Probing Module (PM)

We implement the PM based on the fping2 tool for ICMP
probing. It measures Round-Trip Time (RTT), jitter (i.e. delay
variation in a period) and Packet Loss Rate (PLR) between
VoD server and client. ICMP probing is a network probing
method widely supported by network devices, allowing the
PM to be adopted even on networks with legacy equipment.
Moreover, end-to-end measurements can be achieved without
requiring installation of new software on clients or servers. The
PM aims to obtain N probing samples during a window of T
seconds. To achieve this, it runs multiple probing threads, each
one performing independent requests and reporting to a central
thread. Each thread makes a probing attempt and waits for the
reply before reporting the observed RTT or a timeout, which
is treated as a packet loss, to the central thread. The interval
between probe attempts is adjusted on-the-fly according to the
observed RTT to avoid generating more traffic than needed
while still collecting N samples during T seconds.

For probing frequency adaptation we developed the Algo-
rithm 1. Input parameters are the monitoring time window (in
milliseconds), minimum amount of samples to be collected,
and the IP of the host to be probed. Line 1 creates a probing
thread and adds it to a list of probes. In the main loop
(line 2) the first operation is to gather and consolidate data
from probing threads (lines 3 to 5). Then, the algorithm
calculates the required statistics for the inference model: mean
RTT, median RTT, standard deviation of RTT, 10th and 90th
quantiles of RTT; mean jitter, median jitter, standard deviation
of jitter, 10th and 90th quantiles of jitter; PLR (line 7). Results
are published to other services like the QoE model in line 8.
Probing frequency adaptation starts in line 9, calculating if
the number of existing probes provide the required amount

2https://fping.org/

of samples. If the minimum sampling frequency cannot be
achieved, new probing threads are created (line 11).

Algorithm 1 Algorithm for ICMP probing
Input: timeWindow ms, minSamples, destination

1: probes.add(spawnProbe(destination))
2: while True do
3: for all probes do
4: probeData = getProbeData()
5: allData.concat(probeData)
6: if allData > 0 then
7: rtt, jitter, loss, statistics = getQoS(allData)
8: publishQoS(rtt, jitter, loss, statistics)
9: samplesPossible = timeWindow / rtt * probes.len()

10: if samplesPossible < minSamples then
11: probes.add(spawnProbe(destination))
12: if allData.length < 0.9 * minSamples or

allData.length > 1.2 * minSamples then
13: interval = max(1, ((timeWindow * probes.len()) /

(minSamples * 1.1)) - rtt)
14: for all probes do
15: probe.setInterval(interval)
16: removeOldData(allData, timeWindow)
17: if (samplesPossible > 1.5 * minSamples) and

(probes.len() > 1) then
18: probes.remove()

Line 12 checks if the sampling frequency for the threads is
adequate. Looser limits are defined to avoid constant correc-
tions caused by delay variation. The interval between ICMP
requests is calculated in line 13. A constant value of 1.1 is
multiplied to minSamples to account for other delay sources
during program execution (e.g. inter-process communication),
and was defined empirically. The calculated interval is applied
to all probes from line 14 to 15. Line 16 discards data older
than the time window. If network conditions change and the
number of probes is higher than the necessary, lines 17 and 18
remove probing threads. Each fping process waits a timeout
of 2 seconds before considering a packet loss. This value must
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be adjusted in case of higher network delays.

C. QoE Model

Formulation: The QoE Model is an ML model that takes
QoS data as input and returns the inferred QoE in terms of
MOS. Methods based on Decision Trees (DT) have shown
better results (predictions with lower RMSE) when mapping
QoS to QoE than other methods [30], which motivated the use
of a DT-based approach. Through the last decades, ensemble
techniques such as boosting have been developed to combine
multiple DTs and create more accurate models. Boosting
is an ensemble technique, that combines several weak (or
low-accuracy) learners to build a strong learner capable of
performing accurate predictions. A weak learner performs
slightly better than random guessing, while a strong learner
is said to be close to the perfect performance [31]. During the
training process new trees are added to predict the residuals (or
errors) of the existing trees, and then combined to provide the
final predictions. Due to the superior performance achieved by
gradient boosting methods over many different ML problems
[32], we opted for this type of algorithm and the eXtreme
Gradient Boosting (XGBoost) framework [33].

The model is formally defined in (1), and is a function of
eleven variables: mean RTT, median RTT, standard deviation
of RTT, 10th and 90th quantiles of RTT; mean Jitter, median
Jitter, standard deviation of Jitter, 10th and 90th quantile
of Jitter; and Packet Loss Ratio. All these elements are
represented in 1 as QoS. The output of the model is a MOS
value between 1 and 5. The MOS values used in this work
are estimates based on ITU-T P.1203 Recommendation and
obtained using the software3 provided by Raake et al. [34]
and Robitza et al. [35].

f(QoS) 7→MOSITU ∈ R | 1 ≤MOSITU ≤ 5 (1)

PLR is calculated by 1 − (Prep/Preq) ∗ 100, where Prep

is the number of probe replies received and Preq are the
number of probe requests sent during the time window. It is
worth noting that the estimator does not perform throughput
measurements, however, metrics such as RTT and PLR have
been used in previous work to obtain effective throughput and
estimate link capacity. For example, Padhye et al. [36] and
Chen et al. [37] present a model to compute the throughput of
a TCP transfer as function of PLR and RTT, Chan et al. [38]
use RTT and packet dispersion to measure asymmetric link
capacity. As will be shown in the results section, the model
accuracy achieved is similar for various ranges of bandwidth
setups.

Training set: We created a labeled dataset to train the
model using supervised learning as follows. Each sample
is composed by the eleven QoS elements mentioned above
and a label, i.e. the MOS for the video session at the time
the input features were recorded. To create this dataset, we
setup a video server with a catalog of videos encoded with a
similar process as used by VoD services, and instrumented

3https://github.com/itu-p1203/itu-p1203

a client to record playback information such as resolution
and rebuffering events. The MOS for each data point was
then estimated based on the ITU-T P.1203 Recommendation
[8]. This client instrumentation process is required only for
model training, during system operation the MOS is estimated
without requiring client feedback. Further details about the
videos, their encoding format, and the complete data collection
process are provided in Section IV.

D. Assumptions, limitations and overhead

We now describe some assumptions of the proposal. Then,
we proceed to requirements and limitations related to the PM,
as well as an analysis of the generated overhead.

Assumption #1 - uniform video encodings: We aim to
create a QoE inference model suited for all videos hosted
by the same VoD server. Therefore, it is important to have
a standardized number of resolutions for the videos. To con-
textualize this, Figure 2 illustrates the typical operation of a
DASH-based VoD service. An HTTP server stores multiple
representations of a given video, each representation is a
version of the video that can be encoded in a different format
in terms of resolution, codec and bitrate. If each video is
encoded following a different standard in terms of resolution,
codec, bitrate, and other parameters, the relation between file
sizes of video segments and a specific video quality can have
little to no correlation. Therefore, our solution requires all
videos and their representations to be prepared following a
consistent standard (same number of representations and same
configuration for each representation). The bitrate ladder we
used for all videos is described on Table III.

Fig. 2. DASH server and client operation.

Assumption #2 - A high probing frequency is needed to
accurately measure packet losses: A preliminary analysis of
data collected in our testbed showed that MOS is strongly
affected by PLR, as shown in Figure 3 (data collection
methodology is detailed in Section IV). A PLR below 1 %
can make the MOS value drop from 5 to approximately 3,
a significant impact on user’s QoE. If we aim to detect PLR
with a granularity of 0.1 %, then we need historical data of
at least 1,000 probing attempts. Hence, the PM is configured
to store results of the last 1,000 attempts. The timeliness of
probing data is also relevant. The PM holds data only of a
recent window of time, which is configured as 30 seconds
in this work. This value was determined based on the buffer
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length of the VoD client: as our client was configured to buffer
up to 12 seconds of video, we used a window that is twice
as large as the buffer in a way that the playback conditions
reflect a recent network state, not a previous situation of when
the buffer was filled. Based on these requirements, a probing
rate of about 33 packets per second is necessary.

Fig. 3. MOS achieved according to PLR

Assumption #3 - Audio track is equal for every repre-
sentation: The audio track of a video usually is not an issue
in QoE for two reasons: first, a common audio track is usually
shared among all video quality levels, so it practically adds
a constant overhead to all video representations. Second, in
terms of file size, the audio track is much smaller than the
video.

Limitation #1 - Model considers symmetrical links: Our
method cannot differentiate uplink from downlink conditions,
as it is based on ICMP request-reply. ICMP brings already
mentioned benefits, such as operation without additional soft-
ware at the edges, however it limits the precision of the PLR
measurements. Section V-A will show how the precision of
VoD QoE is impacted by this limitation.

Limitation #2 - ICMP probing restricted on some net-
works: ICMP rate-limiting policies will reduce the precision
of the proposal. Because of that, section V-E evaluates the
precision using lower probing rates.

Overhead: Probing overhead depends on: i) ICMP data
size; ii) protocol overhead; iii) timeWindow setting; iv) min-
Samples setting. Factors (i), (iii) and (iv) are configured in
the algorithm. Factor (ii) depends on overhead generated by
underlying networks. The per second probing overhead on a
given direction (Odir, where direction is downlink or uplink),
in bits per second, is given by Equation 2. The first term
gives the probing frequency required to obtain minSamples.
To calculate the overhead, timeWindow is used in seconds.
The result is multiplied by the size of the probes (Sicmp)
plus protocol overhead (Pov). This is an approximation, since
different technologies in the path may change the size of Pov .

Odir =
minSamples

timeWindowseconds
× (Sicmp + Pov) (2)

IV. EXPERIMENT SETUP

Figure 4 shows the setup used to perform the experiments,
composed by three Docker containers. A Server runs NGINX

HTTP server [39]. The DASH client is based on the reference
player provided by DASH Industry Forum4, modified to collect
playback metrics and executed using Firefox Web Browser.
Playback metrics are stored locally to avoid additional traffic
on the client’s network. Network impairments are generated
using TC. Server and QoS Monitor are deployed on the same
network point, so similar impairments are applied to both
containers.

Probing Module

Fig. 4. Experimental environment

TABLE II
SAMPLE VIDEOS

Video Duration Type
1Sony Another World (another) 00:03:11 Nature
1Sony Another World 2 (another2) 00:03:06 Nature
1Samsung: Around The World (aworld) 00:05:39 Documentary
1Panasonic Football Barcelona
(barcelona)

00:03:14 Sports

2Big Buck Bunny (bbb) 00:10:35 Animation
1Sony The Fountains Of Bellagio (bella-
gio)

00:03:43 Arts

1LG La Boheme (boheme) 00:04:29 Music Video
1Samsung Power of Curve (curve) 00:03:15 Promotional
1Samsung The Quiet Czech (czech) 00:03:24 Documentary
1Samsung Phantom Flex (flex) 00:03:07 Promotional
1LG Garden (garden) 00:03:05 Promotional
1LG Cymatic Jazz (jazz) 00:04:58 Concert
1Jimix Put Your Hands Up (jimix) 00:03:56 Music Video
1Samsung Landscape (landscape) 00:03:10 Nature
1Panasonic Lumix (lumix) 00:03:07 Documentary
4Sintel (sintel) 00:14:48 Animation
1LG Slam Dunk (slam) 00:02:56 Sports
1Sony Surfing (surfing) 00:02:59 Sports
1Samsung Lovely Swiss (swiss) 00:03:41 Documentary
3Tears of Steel (tearsofsteel) 00:12:14 Short film
1Samsung Travel With My Pet (travel) 00:02:35 Documentary
1TravelXP HDR/HLG (travelxp) 00:05:00 Documentary
1Samsung & RedBull See the Unex-
pected (unexpected)

00:03:18 Sports

1Life Untouched (untouched) 00:03:18 Nature
1Samsung 7 Wonders Of The World
(wonders)

00:03:51 Documentary

1http://4kmedia.org 2https://peach.blender.org/
3https://mango.blender.org/ 4https://durian.blender.org/

The server offers 25 videos listed in Table II. The table
shows video names on the source website, a short name in
parenthesis for reference in this work, video duration, and an
indication of content type. All videos were encoded in 10
representations (i.e. 10 versions of the videos with specific
resolutions and bitrates), as described on Table III. A Media
Presentation Description (MPD) file describes representations,

4https://dashif.org/
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location of files and directives for quality adaptation (e.g.
bandwidth field). For each representation the MPD bandwidth
field was fixed with the values shown in the fourth column.
The videos were split into segments of four seconds. The
DASH client adjusts playback quality by selecting segments
according to network conditions, then segments are assembled
and played sequentially. All videos were encoded using the
ffmpeg5 tool, H.264 codec (x264 implementation6) with no
audio track, as our focus is on video quality.

TABLE III
VIDEO REPRESENTATIONS

Representation Resolution Bitrate MPD Bandwidth
1 320x180 200 kbps 256,000 bps
2 320x180 400 kbps 512,000 bps
3 480x270 600 kbps 760,000 bps
4 640x360 800 kbps 1,020,000 bps
5 640x360 1,000 kbps 1,260,000 bps
6 768x432 1,500 kbps 1,900,000 bps
7 1024x576 2,500 kbps 3,160,000 bps
8 1280x720 4,000 kbps 4,960,000 bps
9 1920x1080 8,000 kbps 10,000,000 bps
10 3840x2160 12,000 kbps 15,000,000 bps

We used TC to limit network bandwith and insert delay,
jitter and PLR, setting different conditions in upstream and
downstream for each session. We drawn bandwidth and delays
values from a uniform distribution, the former between 0 and
500 Mbps, and the latter from 0 to 800 ms. For jitter we drawn
values based on the delay set for the session, being a random
uniform value between 0 and 0.5×session delay. Due to the
sensitivity of playback quality to PLR, we opted for a Gamma
distribution (with shape k = 0.3, and scale θ = 1) instead of
a uniform distribution. The Gamma distribution was derived
from the traffic characterization found on Measurement Lab
(M-Lab)7. Although we used a wide bandwidth range, the
throughput between containers is highly affected by delay,
jitter and PLR. Therefore, even settings with over 300 Mbps of
bandwidth could present low MOS due to other impairments.
Jitter and PLR values applied with TC are upper bounds for a
random uniform sampling, therefore, those values can oscillate
during a single video session.

For evaluation purposes and dataset creation, the video
streaming client was instrumented to collect the following
metrics in one second intervals: i) Current video representation
being played, as described in Table III; ii) Playback rate:
indicates whether the video playback is stalled or not; iii)
Timestamp: marks the time the metric was collected, used
to determine stall characteristics and to synchronize client
logs and ICMP measurements. The collected metrics were
used to calculate our ground truth MOS using ITU-T P.1203.
This standard defines four “modes of operation” (from 0 to
3) with increasing levels of inspection of media playback
and input complexity. We used the operation mode 3, which
offers the most accurate estimates of MOS. This way, the
MOS inferences returned by our method will better reflect the

5http://ffmpeg.org/
6https://www.videolan.org/developers/x264.html
7https://www.measurementlab.net/

user experience. MOS calculation used the software8 provided
by Raake et al. [34] and Robitza et al. [35], setting device
type as PC, display resolution as 3840x2160, and viewing
distance as 150 cm. The player was configured with a buffer
of 12 seconds. This way the network oscillations are more
quickly reflected on playback quality. Other configurations of
the player were kept as default.

V. RESULTS

A. Data Analysis

We executed a total of 183,876 sessions, being 63,879 of
the “travel” video and the remaining with the other videos
(an average of 5,000 sessions each). Each second of a video
session became a data point in our dataset, resulting in over
44 million samples, with more samples of the “travel” video
due to its shorter duration.

Table IV shows the Spearman correlation between the
QoS metrics and the resulting MOS. The first eight rows
of the table show the correlation between values set with
TC and the resulting MOS. The last seven rows show the
correlations between the main metrics collected by the PM
and the resulting MOS. The bandwidth values showed a weak
correlation with MOS. This was caused by the wide bandwidth
range used for tests. Sessions with lower bandwidth values
presented a stronger correlation with MOS, so we performed
a more in-depth analysis for all variables.

TABLE IV
QOS AND MOS SPEARMAN CORRELATION

QoS Condition Correlation to MOS p-value
Downlink Bandwidth 0.0230 p < 0.001
Uplink Bandwidth 0.0003 0.0884
Downlink Delay −0.2732 p < 0.001
Uplink Delay −0.1650 p < 0.001
Downlink Jitter −0.2697 p < 0.001
Uplink Jitter −0.1246 p < 0.001
Downlink PLR −0.7175 p < 0.001
Uplink PLR −0.0067 p < 0.001

RTT (mean) −0.2956 p < 0.001
RTT (median) −0.3065 p < 0.001
RTT (std. dev.) −0.1993 p < 0.001
Jitter (mean) −0.2437 p < 0.001
Jitter (median) −0.2745 p < 0.001
Jitter (std. dev) −0.1960 p < 0.001
PLR −0.4346 p < 0.001

Figure 5 shows the absolute correlation values for each
metric. The figure shows that the effect of downlink bandwidth
decreases from 0.66 (on sessions with bandwidth below 5
Mbps) to 0.27 (on sessions with bandwidth up to 25 Mbps).
On the other hand, the correlation with downlink PLR quickly
scales from 0.10 (at 0.1 %) to 0.61 (at 2 %). We can
also observe that while the correlation between MOS and
bandwidth drops, it becomes slightly stronger with delay and
jitter. Correlations with uplink bandwidth and PLR are low for
the entire evaluated range. PLR showed dissonant values for
uplink and downlink. Downlink PLR showed strong correla-
tion with MOS while uplink loss shows a weak correlation. It

8https://github.com/itu-p1203/itu-p1203
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is important to highlight this difference, since our PM does not
differentiate downlink from uplink loss. The implications of
this limitation will be shown later in this section. It should be
noted that a configured bandwidth of 80 Mbps, for example,
does not translate into 80 Mbps of throughput. The effective
throughput is also subject to conditions like delays and PLR.

Fig. 5. Correlation according to network impairment limits

Figure 6 shows the distribution of values found in two
distinct classes of sessions. We compare the distribution of
QoS values for sessions with high QoE (MOS > 4) and
sessions with low QoE (MOS < 2), in order to highlight
the differences between sessions with high overall QoE and
sessions with low overall QoE. Figure 6a shows that sessions
with low QoE had a slightly higher amount of samples with
downlink bandwidth between 0 and 10 Mbps. On the other
hand, for delay and jitter (Figures 6b and 6c), we see that
sessions of high quality had usually lower values, specially in
downlink. Figure 6d highlights the different effect of packet
losses in uplink and downlink: while high quality sessions
had downlink PLR closer to zero, the uplink PLR of high
quality and low quality shows the same distribution curve.
These observations obtained through the experimental setup
can be leveraged to define queuing policies regarding packet
dropping, buffer length allocation and other control operations
to optimize QoE for VoD.

B. Model Training
We evaluate two approaches for model training. The first

uses data from all 25 videos to train a model (hereby referred

Fig. 6. Distribution of QoS values on sessions with high overall quality (MOS
> 4) and sessions with low overall quality (MOS < 2).

as Full model). The second uses only data of the “travel”
video for training, and generalization is evaluated with the
remaining videos. This second model is referred as Reduced.
The “travel” video was selected due to its shorter duration,
which allows us to collect more video sessions on a given
period of time. With this approach we were also able to
execute more sessions with different QoS conditions. If this
model shows satisfactory generalization capacity, the building
time of the inference model can be significantly accelerated.
For the Full model, a third of the sessions of each video were
used for hyperparameter tuning, training and Cross Validation
(CV), leaving the other two thirds for generalization analysis.
For the Reduced model we used data from 55,893 sessions
of the “travel” video for hyperparameter tuning, training and
CV. 7,986 sessions of “travel” and all sessions of the other
videos were used to evaluate the generalization of the Reduced
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model.
We used random search to define the models’ hyperparame-

ters9 [41]. Combinations of randomly selected hyperparameter
values are evaluated and the set that yields the best model
is selected. Random search has shown many advantages over
grid search (another widely used technique for hyperparameter
tuning), usually generating better models and requiring less
computational time [41].

Table V describes the evaluated and selected values after
200 trials, for each model. The first three parameters introduce
randomization to the training and improve the generaliza-
tion capacity. Column Sampling by Tree (colsample bytree)
defines the percentage of randomly selected features to be
used during creation of each tree. Column Sampling by Level
(colsample bylevel) has a similar effect, but for each level
of depth in a tree. Row Sampling (subsampling) determines
the percentage of training data to be sampled and used for
training at each iteration. The Learning Rate (learning rate)
determines model updates and training speed. Alpha is a
regularization term that impacts training performance and
model accuracy. The Maximum Depth of each decision tree is
determined by max depth, and the maximum number of trees
in all cases were 1000. We also used early stopping to interrupt
the training after 20 iterations without accuracy improvement.

TABLE V
XGBOOST HYPERPARAMETERS EVALUATED AND SELECTED WITH

RANDOM SEARCH

Hyperparameter Evaluated Values Selected Values
Full Reduced

colsample bytree uniform(0.1, 1) 0.76 0.88
colsample bylevel uniform(0.1, 1) 0.86 0.62
subsample uniform(0.1, 1) 0.11 0.43
learning rate loguniform(0.005, 0.5) 0.07 0.10
alpha uniform(1, 5) 2 2
max depth uniform(1, 5) 4 4

Table VI shows the overall results obtained with each model.
The first row shows the RMSE of 3-Fold CV and the standard
deviation during this phase. The lower RMSE obtained by
the Reduced model in 3-Fold CV is due to using data from
the same video for train and validation, which offers less
variation of video content. The same effect is observed when
the final model is evaluated. On the other hand, the Full model
generalized better than the Reduced model, which is expected
since it was trained using samples of all videos.

TABLE VI
OVERALL INFERENCE ACCURACY OF TRAINED MODELS

Evaluation MOS RMSE
Full Reduced

3-Fold CV (Std. Dev.) 1.0462 (0.0050) 1.0364 (0.0051)
Final Model 1.0211 1.0065
Generalization 1.0376 1.0419

9Hyperparameters are configurations that cannot be inferred from data
during training and impact on model accuracy and generalization [40]. More
information about the hyperparameters can be found on https://sites.google.
com/view/lauraepp/parameters

C. Generalization Analysis

For the generalization analysis we evaluate how much accu-
racy is lost when we train the model using data from sessions
of a single video. Table VII shows the RMSE obtained with
the Full and Reduced models for sessions of each individual
video. The data used for this test was not part of training or
hyperparameter search phases. The first column indicates the
video, the second column shows the inference RMSE using
the Full model, the third column gives the RMSE with the
Reduced model, and the last column indicates the percent dif-
ference between RMSE values. Negative values in the fourth
column indicates that the Reduced model generalized better for
a given video than the Full model. This occurred for 11 videos,
while for the other 14 videos the Full model generalized better.
The Full model obtained a slightly lower average RMSE.
Nevertheless, the results show that the accuracy loss by using
the Reduced model is negligible, with the advantage that this
model can be built faster.

TABLE VII
INFERENCE RMSE ACCORDING TO VIDEO

Video Full Reduced % Difference
another 1.0468 1.0411 -0.5460
another2 1.0122 1.0197 0.7382
aworld 1.0493 1.0458 -0.3341
barcelona 1.1185 1.1184 -0.0089
bbb 1.0167 1.0110 -0.5622
bellagio 1.0659 1.0581 -0.7344
boheme 1.0664 1.0676 0.1124
curve 1.0572 1.0609 0.3493
czech 1.0364 1.0341 -0.2221
flex 1.0492 1.0673 1.7103
garden 1.0780 1.0820 0.3703
jazz 1.0665 1.0759 0.8775
jimix 1.0491 1.0536 0.4280
landscape 1.0710 1.0785 0.6978
lumix 1.1126 1.1108 -0.1619
sintel 1.0015 1.0016 0.0099
slam 1.0845 1.0758 -0.8054
surfing 1.0250 1.0232 -0.1757
swiss 1.0370 1.0442 0.6919
tearsofsteel 0.9841 0.9880 0.3955
travel 1.0352 1.0298 -0.5230
travelxp 1.0734 1.0793 0.5481
unexpected 1.0479 1.0614 1.2800
untouched 1.0479 1.0486 0.0667
wonders 1.0635 1.0625 -0.0940
Average 1.0518 1.0535 0.1649

D. MOS Inference

Figure 7 shows the error according to MOS range using
the Reduced model. We observed higher inference errors in
cases where the MOS is high (between 4 and 5). On the
other hand, when MOS is below 4, the distribution of error
values is similar for all classes of MOS, with errors below 1
in approximately 80 % of samples. This result can be taken
as a pessimistic behavior of the method, inferring a low QoE
when the client is actually receiving a high QoE, making the
method more precise when the client is not receiving optimal
QoE. This is a consequence of the limitation of the PM to
distinguish downlink from uplink PLR.
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Fig. 7. MOS inference error by MOS class

We also analyzed the RMSE obtained for sessions with
different configurations of bandwidth, since this metric is not
measured by the PM. We split the data into 9 different ranges
of downlink bandwidth and analyzed the distribution of errors
for each class. The results shown in Figure 8 indicate that
inference errors per class were consistent with the average
RMSE shown on Table VII. Even though the PM does not
monitor bandwidth, the relation between the other QoS metrics
and user MOS can still be captured by the inference model.

Fig. 8. MOS inference error by bandwidth range

E. Probing Module Performance

Network devices can be configured to limit ICMP probing
rate and affect the precision of inferences. We performed a
set of experiments to evaluate the accuracy loss when a lower
probing rate is selected either to reduce probing overhead, or
due to limitation by endpoints. In Figure 9 we show the ab-
solute error obtained for each “minSamples” configuration of
Algorithm 1. Results indicate similar errors for configurations
of 8, 16 and 32 samples. From 64 to 1,024 samples the median
error dropped from 1 to 0.6. These results indicate that it is
possible to obtain estimates even with probing restrictions,
albeit with slightly higher error. Based on Equation 2 we
estimated a probing overhead of 27 Kbps during monitoring.
The traffic generated to constantly monitor a video session
for one hour would generate approximately 11.5 MBytes of

additional traffic, using minSamples configuration of 1,000.
This value can be even lower if the PM is configured to use
fewer samples or monitor for shorter intervals. This overhead
can take up to 1.4% of traffic if the video is served at lowest
quality. If we consider the video served at highest quality the
value is negligible.

Fig. 9. Inference error according to number of collected samples

VI. TESTBED RESULTS

We performed experiments on a production network us-
ing four videos with different content, namely “another”,
“barcelona”, “jimix”, and “travel”. Our experiments were
performed using two distinct testbeds in Belgium, shown in
Figure 10. The first is Virtual Wall10 in the city of Ghent, and
the second is CityLab11 [42] in the city of Antwerp, both
separated by approximately 53Km crossing administrative
domains of Ghent University and University of Antwerp. We
deployed the VoD server at the Virtual Wall testbed. Using
CityLab we set up 10 different pairs of Wi-Fi Access Point
(AP) and Clients, detailed on Table VIII. With the exception
of Setup 1, used as baseline, we selected pairs that the
testbed reported less than ideal connectivity conditions (e.g.
asymmetric link reliability, or high noise). On the table we
also show the number of other APs that our nodes detected
operating on the same channel. The APs were connected to
the server and allowed the clients to consume the videos. The
monitor container, also deployed at Virtual Wall, performed
ICMP probing and MOS inferences. More information about
node specifications and locations can be found on the testbed
website.

The connection between VirtualWall and CityLab nodes
(i.e., between VoD server and the AP) was stable, achieving
throughput of over 500Mbps with RTT of 3.01 ms, jitter lower
than 0.5 ms, and 0 % of PLR. Therefore, network impairments
during tests were caused by interference and connectivity
issues on the wireless segment. We performed 10 repetitions
for each video in each setup. Figure 11 shows the distribution
of MOS of the sessions performed in the testbed, indicating

10https://doc.ilabt.imec.be/ilabt/virtualwall/
11https://doc.lab.cityofthings.eu/wiki/Main Page
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Fig. 10. Experimental testbed in Belgium

TABLE VIII
SETUP OF TESTBED NODE PAIRS AND OTHER APS DETECTED

CONFIGURED ON THE SAME CHANNEL

Setup Node Pair Other APs
AP Client AP Client

1 6 72 6 6
2 71 6 9 6
3 24 28 1 5
4 14 18 10 4
5 34 35 7 27
6 14 15 4 1
7 4 5 4 4
8 3 5 5 4
9 8 12 1 0
10 4 36 8 18

30 % of samples with the highest level of MOS. However, we
still have significant amount of samples around MOS values
of two, three and four.

Fig. 11. Distribution of MOS values during sessions in the testbed

Table IX shows the inference RMSE obtained for each video
and setup of the testbed, using the Reduced Model. The last
column of the table shows the RMSE achieved using all videos
on the same setup. Similarly, the last row shows the RMSE
for each video across all setups. The cell on the bottom right
shows the overall RMSE achieved in the testbed experiments.
We observed that on setups 2, 4, 5, and 10 the RMSEs were
above the expected. Comparing with Table VIII, these setups
had more networks configured on the same channel near to
our nodes, which may cause higher link fluctuations and link
asymmetry. Such link asymmetry may reduce the accuracy
of the models, as mentioned on Limitation #1. Nevertheless,
the results indicate that the method is capable of providing
MOS estimates within the expected error margin, especially
considering the challenges posed by the wireless connections.

TABLE IX
INFERENCE RMSE ON TESTBED

RMSE by Video and Setup
another barcelona jimix travel All videos

Setup 1 0.30 0.26 0.24 0.28 0.27
Setup 2 1.68 1.17 1.44 1.06 1.38
Setup 3 1.19 1.13 1.14 1.26 1.17
Setup 4 1.89 1.45 1.93 1.85 1.78
Setup 5 1.76 1.62 1.83 1.58 1.71
Setup 6 1.08 1.28 1.27 0.77 1.15
Setup 7 1.02 0.88 1.01 1.18 1.02
Setup 8 0.97 0.76 0.75 0.81 0.82
Setup 9 1.08 0.77 1.13 1.13 1.04
Setup 10 1.79 1.64 1.46 1.40 1.58
All Setups 1.37 1.18 1.32 1.21 1.28

Figure 12 shows the distribution of inference errors of both
models on the testbed experiments. For the testbed results we
observe that the Full Model is slightly more accurate. This
is expected since this model was trained using more data
and from more different videos. These results are also in line
with the results of Table VII, that shows the Full Model with
marginally better performance. The results obtained with the
wireless testbed indicate that despite not using data collected
on wireless networks, the method can still provide relevant
feedback across different technologies.

Fig. 12. Distribution of RMSE on testbed using both Full and Reduced models

VII. CONCLUSION AND FUTURE WORK

In this work we propose a practical method for QoE
inference for DASH VoD. Different from other methods in
the literature, ours does not require instrumentation of client
devices, modification of existing network elements, deploy-
ment of monitoring tools in multiple network points, or deep
inspection of video traffic. Instead, a Probing Module performs
active ICMP probing using a freely available ping tool. As
ICMP is widely supported by network devices, the PM can
be used even with legacy equipment. Network measurements
are fed to a ML model that takes QoS values as input and
estimates MOS based on the ITU-T P.1203 Recommendation.

We evaluated two methods of creating such model and
concluded that a model trained using samples obtained with
a single video can perform MOS inferences with similar
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accuracy if the videos available on a VoD server are prepared
following a consistent bitrate ladder. The monitoring overhead
can take up to 1.4 % of traffic if the video is served at lowest
quality, however, at the highest quality levels the probing
overhead is negligible. Results in a production networks show
the applicability of the solution, despite ICMP rate limiting
policies. In future work we plan to perform more experiments
in real deployments and with clients that employ different
quality adaptation techniques. We will also investigate the
combination of QoS measurements provided by different mon-
itoring tools, for example, using In-band Network Telemetry
(INT) to measure QoS within the provider’s network, and the
ICMP measurements to cover the last mile of links. We aim
to apply this method as a feedback signal for an automated
network control loop. We will evaluate methods to identify
asymmetric links and their applicability to enhance the PM.
This way we can improve QoE estimation accuracy over
asymmetric packet loss conditions.
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GLOSSARY

AP Access Point
AQoS Application QoS
CDN Content Delivery Network
CV Cross Validation
DASH Dynamic Adaptive Streaming over HTTP
DPI Deep Packet Inspection
DT Decision Tree
HAS HTTP Adaptive Streaming
ICMP Internet Control Message Protocol
INT In-band Network Telemetry
ISP Internet Service Provider
MEC Mobile Edge Computing
ML Machine Learning
MOS Mean Opinion Score
MPD Media Presentation Description
NAT Network Address Translation
NQoS Network-level QoS
OTT Over The Top
PLR Packet Loss Rate
PM Probing Module
QoE Quality of Experience
QoS Quality of Service
RF Random Forests
RMSE Root Mean Square Error

RTT Round-Trip Time
SLA Service-Level Agreement
TC Traffic Control
VoD Video on Demand
XGBoost eXtreme Gradient Boosting
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