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a b s t r a c t 

The free water elimination (FWE) model and its kurtosis variant (DKI-FWE) can separate tissue and free water 
signal contributions, thus providing tissue-specific diffusional information. However, a downside of these models 
is that the associated parameter estimation problem is ill-conditioned, necessitating the use of advanced esti- 
mation techniques that can potentially bias the parameter estimates. In this work, we propose the 𝑇 2 -DKI-FWE 
model that exploits the 𝑇 2 relaxation properties of both compartments, thereby better conditioning the parameter 
estimation problem and providing, at the same time, an additional potential biomarker (the 𝑇 2 of tissue). In our 
approach, the 𝑇 2 of tissue is estimated as an unknown parameter, whereas the 𝑇 2 of free water is assumed known 
a priori and fixed to a literature value (1573 ms). First, the error propagation of an erroneous assumption on the 
𝑇 2 of free water is studied. Next, the improved conditioning of 𝑇 2 -DKI-FWE compared to DKI-FWE is illustrated 
using the Cramér-Rao lower bound matrix. Finally, the performance of the 𝑇 2 -DKI-FWE model is compared to 
that of the DKI-FWE and 𝑇 2 -DKI models on both simulated and real datasets. The error due to a biased approxi- 
mation of the 𝑇 2 of free water was found to be relatively small in various diffusion metrics and for a broad range 
of erroneous assumptions on its underlying ground truth value. Compared to DKI-FWE, using the 𝑇 2 -DKI-FWE 
model is beneficial for the identifiability of the model parameters. Our results suggest that the 𝑇 2 -DKI-FWE model 
can achieve precise and accurate diffusion parameter estimates, through effective reduction of free water partial 
volume effects and by using a standard nonlinear least squares approach. In conclusion, incorporating 𝑇 2 relax- 
ation properties into the DKI-FWE model improves the conditioning of the model fitting, while only requiring an 
acquisition scheme with at least two different echo times. 
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. Introduction 

Diffusion-weighted magnetic resonance imaging (DW-MRI) is a non-
nvasive imaging modality with a unique sensitivity to the directional
isplacement of water molecules ( Stejskal and Tanner, 1965 ). Within
ypical experimental diffusion times of 30 to 50 ms, the mean displace-
ent of water molecules in living tissue is expected to be in the or-
er of a few tens of microns, allowing DW-MRI to probe the cellular
icrostructure of tissue in vivo, for example in the brain. To compen-

ate for the intrinsically low signal-to-noise ratio (SNR) of diffusion MRI
dMRI) data, one is typically bound to limited spatial resolutions mak-
ng the image voxels relatively large ( 2 3 to 3 3 mm 

3 ) and thus suscep-
ible to partial volume effects (PVEs). Consequently, the interpretation
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f diffusion metrics in voxels containing different tissue types may be-
ome ambiguous. A notorious example of a partial volume effect is the
resence of free-diffusing fluid such as cerebrospinal fluid (CSF) con-
amination or edema ( Metzler-Baddeley et al., 2012 ). Inside the CSF or
dema, water molecules can move freely, resulting in apparent diffusion
oefficients (ADC) that widely exceed the ADC measurements in normal
hite matter (WM) brain tissue. Diffusion metrics in the voxels affected
y partial volumes will represent a weighted average of tissue and free
ater and may therefore lose their reliability as biomarkers for tissue-

pecific changes. For this reason, correcting for PVEs in dMRI data is
f paramount importance for the characterization of tissue microstruc-
ure with reduced confounding effects in both healthy and pathological
onditions. To tackle this problem, we present a novel approach that is
ntwerp, Antwerp, Belgium. 
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ased on 1) combined diffusion kurtosis (DKI) and 𝑇 2 -weighted imag-
ng acquisitions and 2) a two-compartment model, which separates the
ignal contributions from tissue and free water. Our approach allows us
o extract partial volume-robust diffusion metrics and, at the same time,
reates a better-conditioned parameter estimation problem compared to
 2 -independent techniques. 

Pierpaoli and Jones (2004) were the first to propose a two-
ompartment diffusion model for partial volume correction in diffusion-
eighted imaging. Pasternak et al. (2009) expanded on this work and

ntroduced the free water elimination (FWE) model, which represents
he diffusion-weighted MR signal, 𝑆 FWE , as: 

 FWE = (1 − 𝑓 ) 𝑆 tissue + 𝑓𝑆 csf . (1)

In ( Pasternak et al., 2009 ), the signal contribution of the tissue,
 tissue , is modeled using the diffusion tensor imaging (DTI) model ( Basser
t al., 1994 ; Le Bihan et al., 2001 ), thus we will refer to this model as
TI-FWE. The parameter 𝑓 defines the fraction of the diffusion signal

hat corresponds to the free water compartment, also known as the free
ater fraction, and 𝑆 csf denotes the signal contribution of the free wa-

er compartment. To date, FWE is still the most used diffusion model
o eliminate free water-like signal contributions. When fitting the two-
ompartment DTI-FWE model to dMRI data, the fitting problem is ill-
onditioned for conventional single-shell acquisitions ( Pasternak et al.,
009 ). Therefore, standard estimation techniques like nonlinear least
quares (NLS) may easily converge to local minima due to a flat opti-
ization landscape. To stabilize the fitting problem for single-shell ac-

uisitions, still prevalent in clinical practice due to acquisition time con-
traints, careful parameter initialization and spatially regularized gradi-
nt descent algorithms can be used ( Ismail et al., 2018 ; Parker et al.,
020 ; Pasternak et al., 2014 , 2009 ). Although these approaches may
rovide plausible estimates, it has been recently pointed out that free
ater DTI estimates from single 𝑏 -valued diffusion data need to be in-

erpreted with care ( Golub et al., 2021 ). 
However, using multi-shell (at least two non-zero 𝑏 -values) data

an provide an initialization of the parameter estimates much closer
o the actual minima leading to more reliable DTI-FWE estimates that
an be obtained using linear and nonlinear least squares approaches
n combination ( Bergmann et al., 2020 ; Hoy et al., 2014 ). Recently,
he FWE model was adapted by describing 𝑆 tissue with the DKI model
 Jensen et al., 2005 ), resulting in the DKI-FWE model ( Collier et al.,
018 ). DTI parametrizes the Gaussian component of the displacement
robability density function (PDF) of water molecules, whereas DKI in-
ludes additional parameters that quantify non-Gaussian diffusivity. In
ost tissues, heterogeneity and biological restrictions, such as cell mem-

ranes and myelin sheets, cause the distribution of the water diffusion
o be non-Gaussian, hence DKI is considered to be a more accurate rep-
esentation of the DW-MR signal compared to DTI ( Jensen and Helpern,
010 ; Jensen et al., 2005 ). 

Like DTI-FWE, the main limiting property of the bi-exponential DKI-
WE model is represented by the ill-conditioned inverse problem of
stimating the model parameters from measured DW data. For DKI-
WE, the ill-conditionedness of the fitting problem was addressed by
sing statistical priors ( Collier et al., 2018 ). Although statistical priors
llow for a more stable model fitting procedure, they also impose cer-
ain assumptions on the parameter values that may bias the results. An-
ther pitfall of the aforementioned bi-exponential models is that they
ail to account for large differences in 𝑇 2 relaxation time of tissue,
 

tissue 
2 ≈ 70 − 100 ms ( Stanisz et al., 2005 ; Whittall et al., 1997 ), and CSF
r edema, 𝑇 csf 2 ≈ 500 − 2100 ms ( Piechnik et al., 2009 ; Qin, 2011 ). The
dvantages of specifically accounting for 𝑇 2 in the two-compartment dif-
usion model consist in a better conditioning of the model fitting prob-
em ( Collier et al., 2017 ) and a reduced bias in DTI metrics caused by
VEs ( Farrher et al., 2018 ). Moreover, the 𝑇 2 weighting term, if explic-
tly modeled, will no longer be incorporated in the parameter 𝑓 thus
aking 𝑓 a non- 𝑇 2 -weighted free water fraction. Since 𝑇 csf 2 >> 𝑇 tissue 2 ,
2 
he parameter 𝑓 in the 𝑇 2 -dependent model will be substantially smaller
han the 𝑓 in a 𝑇 2 -independent model, like DTI-FWE or DKI-FWE. 

Farrher et al. (2020) recently showed the potential of explicitly mod-
ling the differences in the transverse relaxation times between tissue
nd CSF using two dedicated anisotropic diffusion fiber phantoms. In
heir study, the first phantom was designed to mimic PVEs that occur
t the CSF-tissue interface, while the second phantom was intended to
imic the scenario of intra-tissue free water contamination. The authors
ointed out that not accounting for the two separate compartments (CSF
nd tissue) may significantly alter the quantification of diffusion and
elaxation properties in voxels affected by PVEs. Furthermore, the au-
hors showed that the free water fraction can be overestimated when
he model does not account for the echo time (TE) dependency of the
ignal decay. In the current work, we propose to incorporate the 𝑇 2 re-
axation terms into the DKI-FWE model. By exploiting the TE depen-
ency of the dMRI signal, the diffusion-related parameters can be esti-
ated more precisely ( Veraart et al., 2018 ), thereby also eliminating the
eed for advanced parameter estimation techniques to stabilize the fit.
oreover, combining diffusion and relaxation is also in line with recent

rends in the MR community towards multidimensional MRI methods
 Cheng et al., 2017 ; Fischi-Gomez et al., 2021 ; Jerome et al., 2016 ; Kim
t al., 2017 ; Lampinen et al., 2020 ; Slator et al., 2021 ; Tax et al., 2021 ;
opgaard, 2017 ; Wang et al., 2014 ). In the context of multi-modal MRI,
he advantages of the presented technique are its dependence on rou-
inely used optimization approaches and the improved tissue specificity
n the interpretation of diffusion metrics. 

. Methods 

.1. 𝑇 2 -weighted diffusion kurtosis imaging free water elimination model 

In this work, we extend the well-known two-compartment magnetic
esonance diffusion model that separates the signal contributions of the
issue, 𝑆 tissue , and free water, 𝑆 fw , by including the compartment-specific
 2 relaxation times of tissue, 𝑇 tissue 2 , and free water, 𝑇 fw 2 , as: 

( 𝑏, 𝒈 , TE ; 𝜽tissue , 𝑓, 𝑑, 𝑇 tissue 2 , 𝑇 fw 2 ) 

= 𝑆 00 
(
(1 − 𝑓 ) exp 

(
− TE ∕ 𝑇 tissue 2 

)
𝑆 tissue ( 𝑏, 𝒈 ; 𝜽tissue ) + 𝑓 exp 

(
− TE ∕ 𝑇 fw 2 

)
𝑆 fw ( 𝑏 ; 𝑑) 

)
. (2) 

ere, 𝑏 and 𝒈 denote the diffusion weighting strength and direction,
espectively. 𝑆 00 and 𝑑 represent the non-diffusion-weighted signal
 𝑏 = 0 ms/μm 

2 ) at TE = 0 ms and the isotropic diffusivity of free wa-
er at body temperature, respectively, while 𝜽tissue denotes the param-
ter vector that characterizes the diffusion model used to represent
he signal contribution of the tissue compartment. Using the Einstein-
moluchowski relation ( Einstein, 1905 ), which relates the diffusivity of
 medium to its temperature, it is possible to analytically determine 𝑑
o be approximately equal to 3 μm 

2 /ms at body temperature. The free
ater signal contribution is thus modeled as: 

 fw ( 𝑏 ) = exp ( − 𝑏𝑑 ) , (3)

hile we choose to represent 𝑆 tissue with the DKI model: 

 tissue = 𝑆 DKI 
(
𝑏, 𝒈 ; 𝜽DKI 

)
= exp 

( 

− 𝑏 
∑3 
𝑖,𝑗=1 𝑔 𝑖 𝑔 𝑗 𝐷 𝑖𝑗 + 

𝑏 2 

6 

(∑3 
𝑖 =1 

𝐷 𝑖𝑖 

3 

)2 ∑3 
𝑖,𝑗,𝑘,𝑙=1 𝑔 𝑖 𝑔 𝑗 𝑔 𝑘 𝑔 𝑙 𝑊 𝑖𝑗𝑘𝑙 +  ( 𝑏 3 ) 

) 

= exp 
(
− 𝑏 

∑3 
𝑖,𝑗=1 𝑔 𝑖 𝑔 𝑗 𝐷 𝑖𝑗 + 

𝑏 2 

6 
∑3 
𝑖,𝑗,𝑘,𝑙=1 𝑔 𝑖 𝑔 𝑗 𝑔 𝑘 𝑔 𝑙 𝐾 𝑖𝑗𝑘𝑙 +  ( 𝑏 3 ) 

)
. (4) 

ere, 𝐷 ij represents the ij th element of the fully symmetric second-
rder diffusion tensor 𝑫 , which can be characterized by 6 indepen-
ent elements: 𝜽𝐷 = { 𝐷 𝑖𝑗 } 𝑖 ≤ 𝑗≤ 3 . Furthermore, 𝑊 𝑖𝑗𝑘𝑙 represents the ijkl th 

lement of the fully symmetric fourth-order diffusion kurtosis tensor
 , which can be characterized by 15 independent elements: 𝜽𝑊 

=
 𝑊 𝑖𝑗𝑘𝑙 } 𝑖 ≤ 𝑗≤ 𝑘 ≤ 𝑙≤ 3 . Our parametrization of the DKI model makes use of

he scaled apparent kurtosis tensor 𝑲 = 

(∑3 
𝑖 =1 

𝐷 𝑖𝑖 
3 

)2 
𝑾 = MD 

2 𝑾 with



V. Anania, Q. Collier, J. Veraart et al. NeuroImage 256 (2022) 119219 

M  

b  

f  

w  

w
 

c  

a  

i  

m  

F  

a  

𝑇

𝑆  

w  

D

𝑆  

2

 

v  

N  

i  

s  

i  

a  

t  

3
w  

r
 

w  

a  

5  

w  

0  

w  

t  

w  

a  

i  

a  

2  

6  

w  

(  

g  

f  

a  

s  

s  

a
 

f  

c  

b  

(  

(  

e  

c
 

t  

s  

m  

2

2

 

s  

o  

d  

a  

T  

t  

1  

c

𝜀  

w  

𝑆  

t  

t  

𝜽  

e  

c  

s
s  

i  

c  

c  

h  

a  

t  

𝑇  

𝑇  

i  

𝑾  

e

 

 

 

 

 

 

 

 

 

 

with 𝑏 the maximum 𝑏 -value selected in the acquisition settings. 
D the mean diffusivity. In summary, the DKI model is parameterized
y 21 independent parameters: 𝜽DKI = [ 𝜽𝐷 , 𝜽𝐾 = MD 

2 𝜽𝑊 

] . We will re-
er to the combined model (2) , where DKI models the tissue diffusion-
eighted MR signal, as the “𝑇 2 -weighted diffusion kurtosis imaging free
ater elimination model ”, or 𝑇 2 -DKI-FWE for short. 

In simulation experiments, the performance of 𝑇 2 -DKI-FWE will be
ompared in terms of accuracy and precision to that of the 𝑇 2 -DKI model
nd the DKI-FWE model. Comparison to 𝑇 2 -DKI is made to study the
mpact on the model parameters of accounting for PVEs by explicitly
odeling a free water compartment. Comparing 𝑇 2 -DKI-FWE to DKI-

WE will highlight the effect of accounting for the different 𝑇 2 of tissue
nd free water on the parameter estimation results. 𝑇 2 -DKI models the
 2 and diffusion-weighted signal as: 

 𝑇 2 −DKI ( 𝑏, 𝒈 , TE ; 𝜽DKI , 𝑇 2 ) = 𝑆 00 exp 
(
− TE ∕ 𝑇 2 

)
𝑆 DKI ( 𝑏, 𝒈 ; 𝜽DKI ) , (5)

hile the TE-independent, diffusion-weighted MR signal modeled by
KI-FWE, can be written as: 

 DKI−FWE ( 𝑏, 𝒈 ; 𝜽DKI , 𝑓, 𝑑) = 𝑆 0 
(
(1 − 𝑓 ) 𝑆 DKI ( 𝑏, 𝒈 ; 𝜽DKI ) + 𝑓𝑆 fw ( 𝑏 ; 𝑑) 

)
. (6)

.2. Data acquisition and pre-processing 

For the real data experiments, a DW-MRI dataset of one healthy male
olunteer (age: 29 years old) was acquired using a 3 T Siemens MAG-
ETOM PrismaFit system equipped with a 32-channel head coil and

nformed consent was obtained from the participant. During the acqui-
ition, three consecutive repetitions were performed with different TEs:
n particular, the first two repetitions were acquired with TE = 67 ms
nd the third one with TE = 120 ms. For the acquisition at TE = 67 ms,
he diffusion time Δ (time interval between diffusion gradients) was
3 . 4 ms and the pulse duration 𝛿 was 16 ms, while at TE = 120 ms, Δ
as 59 . 9 ms and 𝛿 42 . 5 ms. All other settings were kept constant across

epetitions. 
The datasets were acquired using an EPI/spin-echo (SE) diffusion-

eighted pulse sequence with an 88 × 88 acquisition matrix, from which
n image was reconstructed with an isotropic voxel size of 2 . 5 mm,
8 slices and pulse repetition time (TR) of 4300 ms. The diffusion-
eighted gradient settings consisted, for each repetition, of six 𝑏 =
 ms/μm 

2 images and three 𝑏 -value shells ( 𝑏 = 0 . 5 , 1 and 2 ms/μm 

2 )
ith 30 non-collinear magnetic field gradient directions for each of

he non-zero 𝑏 -value shells. In agreement with ( Collier et al., 2018 ),
e adopted a protocol with four shells (including the 𝑏 = 0 images) to
void an ill-conditioned optimization problem. The maximum 𝑏 -value,
.e., 2 ms/μm 

2 , was selected to ensure a balanced trade-off between the
ccuracy and the precision of the DKI model parameters ( Chuhutin et al.,
017 ). The range of available TEs for the selected 𝑏 -value range was
3–121 ms and, to set up a practical acquisition, we acquired diffusion-
eighted volumes at two different TEs: one in the lower part of the range

67 ms) and one in the upper part (120 ms). The gradient directions were
enerated using electrostatic repulsion resulting in a set of 30 directions
or each shell ( Jones et al., 1999 ; Papadakis et al., 2000 ). GRAPPA with
n acceleration factor 2 and adaptive combine reconstruction with a
patial matched filter (SMF) approach were used to accelerate the acqui-
ition. The acquisition time was 7 ∶ 08 min for each TE = 67 ms repetition
nd 7 ∶ 14 min for the TE = 120 ms repetition. 

After the acquisition, the following pre-processing steps were per-
ormed: first, the repetitions acquired with different TEs were con-
atenated in a single 4D image; next, the dMRI dataset was denoised
y exploiting its inherent redundancy using random matrix theory
 Veraart et al., 2016 ) and corrected for Gibbs ringing as described in
 Kellner et al., 2016 ). Finally, the data were corrected for motion and
ddy current induced distortions using in-house model-based motion
orrection software ( Bai and Alexander, 2008 ). 

In vivo data used in this paper will be available via a formal request
o the corresponding author and a data sharing agreement should be
igned by both parties. Pre-processing was performed using functions
3 
ade available in the MRtrix3 software framework ( Tournier et al.,
019 ). 

.3. Estimation of the model parameters 

When solving ill-conditioned problems, the use of regularization or
tatistical priors can, on the one hand, help stabilize the model fit. On the
ther hand, it can also bias the results when the considered assumptions
o not entirely hold. Consequently, in this work, all model parameters
re estimated using a standard NLS approach, without regularization.
he NLS model fits are performed in MATLAB ( MATLAB, 2020 ) using
he fmincon function with the interior point algorithm ( Byrd et al., 2000 ;
999 ; Waltz et al., 2006 ). The objective function of the NLS estimator
an be formulated as: 

 NLS ( 𝜽) = 

1 
2 

𝑁 DWI ∑
𝑗=1 

( ̃𝑆 𝑗 − 𝑆 𝑗 ( 𝜽)) 2 , (7)

here the index 𝑗 iterates over the signal acquisition directions 𝑁 DWI ,
 ̃𝑗 is the measured signal and 𝑆 𝑗 represents the signal predicted from

he model, and thus expressed as a function of the model parameter vec-
or 𝜽. The size of 𝜽 depends on the model chosen to represent the data:

𝑇 2 −DKI−FWE = [ 𝑆 00 , 𝜽𝐷 , 𝜽𝐾 , 𝑓, 𝑇 tissue 2 ] is an array of 24 unknown param-
ters, while 𝜽𝑇 2 −DKI = [ 𝑆 00 , 𝜽𝐷 , 𝜽𝐾 , 𝑇 2 ] and 𝜽DKI−FWE = [ 𝑆 0 , 𝜽𝐷 , 𝜽𝐾 , 𝑓 ]
ontain 23 independent elements. When the 𝑇 2 -DKI-FWE model is cho-
en to fit the observed data, estimating the value of the parameter 𝑇 fw 2 
imultaneously with the other model parameters runs the risk of be-
ng unstable, leading to 𝑇 fw 2 estimates that are found near the posed
onstraints, thereby biasing 𝑓 ( Collier et al., 2017 ). Alternatively, one
ould estimate the value of 𝑇 fw 2 in a CSF region beforehand. This would,
owever, require additional 𝑏 = 0 images with a large TE range to reli-
bly estimate the large 𝑇 fw 2 value. Consequently, we propose to consider
he value of 𝑇 fw 2 as a constant which is determined from the literature:
 

fw 
2 = 1573 ms ( Qin, 2011 ). The impact of setting a constant value for
 

fw 
2 has been assessed in simulation experiments. To provide a phys-

cally plausible solution for the diffusion and kurtosis tensors ( 𝑫 and
 ), the following constraints were posed ( Tabesh et al., 2011 ; Veraart

t al., 2011 ): 

1. The apparent diffusion coefficient 𝐷 APP should be positive along
each possible gradient direction: 

𝐷 APP ( 𝒈 ) = 

3 ∑
𝑖,𝑗=1 

𝑔 𝑖 𝑔 𝑗 𝐷 𝑖𝑗 > 0 . (8)

2. The apparent kurtosis coefficient 𝐾 APP is assumed to be positive def-
inite, thus this constraint provides a lower bound on 𝐾 APP : 

𝐾 APP ( 𝒈 ) = 

MD 

2 

𝐷 APP ( 𝒈 ) 2 

3 ∑
𝑖,𝑗,𝑘,𝑙=1 

𝑔 𝑖 𝑔 𝑗 𝑔 𝑘 𝑔 𝑙 𝑊 𝑖𝑗𝑘𝑙 > 0 . (9a)

Considering that MD 

2 and 𝐷 APP ( 𝒈 ) 2 are always positive, the expres-
sion (9a) can be simplified as 

3 ∑
𝑖,𝑗,𝑘,𝑙=1 

𝑔 𝑖 𝑔 𝑗 𝑔 𝑘 𝑔 𝑙 𝑊 𝑖𝑗𝑘𝑙 > 0 , (9b)

or 
3 ∑

𝑖,𝑗,𝑘,𝑙=1 
𝑔 𝑖 𝑔 𝑗 𝑔 𝑘 𝑔 𝑙 𝐾 𝑖𝑗𝑘𝑙 > 0 , (9c)

where 𝐾 𝑖𝑗𝑘𝑙 = MD 

2 𝑊 𝑖𝑗𝑘𝑙 . 

3. The third constraint poses an upper bound on 𝐾 APP to ensure that the
log-transformed diffusion-weighted signal monotonically decreases
as a function of the 𝑏 -value: 

𝐾 APP ( 𝒈 ) 𝐷 APP ( 𝒈 ) 2 − 

3 𝐷 APP ( 𝒈 ) 
𝑏 max 

≤ 0 , (10)
max 
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Table 1 

Lower bounds (lb), upper bounds (ub) and initialization values (init. val.) used 
for the NLS estimates of all the non-DKI model parameters. 

Model parameter lb ub init. val. 

𝑆 00 ( T 2 -DKI, T 2 -DKI-FWE) 0 inf �̂� 0 
𝑆 0 (DKI-FWE) 0 inf �̂� 0 
𝑓 (DKI-FWE, T 2 -DKI-FWE) 0 1 [ 0 , 0 . 25 , 0 . 5 , 0 . 75 ] 
𝑇 tissue 2 ( T 2 -DKI-FWE) [ms] 5 200 75 
T 2 ( T 2 -DKI) [ms] 5 2500 75 
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Table 2 

Lower bounds (lb) and upper bounds (ub) on the simulated eigen- 
values ( 𝝀𝑎 and 𝝀𝑒 [μm 

2 /ms]) and axonal water fraction ( 𝑓 aw ) used to 
generate the WM signal. 

lb ub 

𝜆𝑎, 1 0 . 85 1 . 15 
𝜆𝑎, 2 = 𝜆𝑎, 3 0 0.2 
𝜆𝑒, 1 2 2 . 5 
𝜆𝑒, 2 = 𝜆𝑒, 3 0 . 6 1 
𝑓 aw 0 . 4 0 . 6 
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The constraints on the apparent diffusion and kurtosis coeffi-
ients can be implemented in the form of linear inequality constraints
 Veraart et al., 2011 ) and posed along 60 directions of a densely sam-
led hemisphere. In particular, the constrained NLS estimator can be
ritten as: 

̂= arg min 𝜽 𝜀 NLS ( 𝜽) , (11)

uch that: 

 ̂𝜽 ≤ 𝟎 , (12)

here 𝑪 is a matrix defining the linear inequality constraints. The ini-
ial values for the diffusion and the scaled kurtosis parameters (i.e.,
 𝑖𝑗𝑘𝑙 = MD 

2 𝑊 𝑖𝑗𝑘𝑙 ) were set to 0 . 5 for 𝐷 𝑥𝑥 , 𝐷 𝑦𝑦 , 𝐷 𝑧𝑧 , 𝐾 𝑥𝑥𝑥𝑥 , 𝐾 𝑥𝑥𝑦𝑦 , 𝐾 𝑥𝑥𝑧𝑧 ,
 𝑦𝑦𝑦𝑦 , 𝐾 𝑦𝑦𝑧𝑧 , 𝐾 𝑧𝑧𝑧𝑧 and 0 for 𝐷 𝑥𝑦 , 𝐷 𝑥𝑧 , 𝐷 𝑦𝑧 , 𝐾 𝑥𝑥𝑥𝑦 , 𝐾 𝑥𝑥𝑥𝑧 , 𝐾 𝑥𝑥𝑦𝑧 , 𝐾 𝑥𝑦𝑦𝑦 ,
 𝑥𝑦𝑦𝑧 , 𝐾 𝑥𝑦𝑧𝑧 , 𝐾 𝑥𝑧𝑧𝑧 , 𝐾 𝑦𝑦𝑦𝑧 , 𝐾 𝑦𝑧𝑧𝑧 . If not specified otherwise, the lower and
pper bounds on the non-DKI model parameters and the corresponding
nitialization values were chosen as indicated in Table 1 . 

In Table 1 , �̂� 0 represents the mean of the non-diffusion-weighted
i.e., 𝑏 = 0 ) images acquired at the lowest echo time (TE = 67 ms). For
he two-compartment models, the fitting procedure was repeated for
 different initial values of 𝑓 , namely 0, 0 . 25 , 0 . 5 and 0 . 75 . The final
stimates were selected as the ones that produced the smallest value of
he objective function (7) . This strategy is motivated by the fact that
electing an initial guess for 𝑓 far from the underlying ground truth
alue can cause the fitting algorithm to converge to a local minimum.
hus, with this strategy, we can better avoid local minima and obtain
ore robust parameter estimates. 

In real data experiments, we used one TE = 67 ms repetition and
he TE = 120 ms repetition when fitting the models that incorporate a
E dependency ( 𝑇 2 -DKI-FWE and 𝑇 2 -DKI), whereas we used both the
E = 67 ms repetitions when fitting the DKI-FWE model. In this way, all
odels could be compared with an equal amount of data points. Model
tting routines have been developed by the authors and the code will
e made available in open source. 

.4. Simulating the white matter DW signal 

In the simulation experiments, the two-compartment WM model pro-
osed by Fieremans et al. (2011) was used to generate realistic DW-
R signals, originating from a single WM fiber bundle. This model

ssumes that WM consists of two non-exchanging compartments: the
ntra- and the extra-axonal space. Both compartments are modeled with
 compartment-specific diffusion tensor, 𝑫 𝑎 and 𝑫 𝑒 respectively, which
re characterized by their eigenvalues 𝝀𝑎 and 𝝀𝑒 and linked through the
xonal water fraction 𝑓 aw . The diffusion-weighted WM signal intensity,
 wm , can thus be described as: 

 wm 
(
𝑏, 𝒈 ; 𝑫 𝑎 , 𝑫 𝑒 , 𝑓 aw 

)
= 𝑆 0 

(
𝑓 aw exp 

(
− 𝑏 𝒈 𝑇 𝑫 𝑎 𝒈 

)
+ (1 − 𝑓 aw ) exp 

(
− 𝑏 𝒈 𝑇 𝑫 𝑒 𝒈 

))
. 

(13) 

The ground truth values for 𝝀𝑎 , 𝝀𝑒 and 𝑓 aw were defined in accor-
ance with the ranges reported in ( Fieremans et al., 2011 ), obtained
rom in vivo measurements in aligned WM fibers. In ( Fieremans et al.,
011 ), the axons were assumed to have a zero radius, effectively set-
ing the transverse diffusivity in the intra-axonal space to zero. How-
ver, in our work, the intra-cellular radial diffusivity was allowed to be
4 
arger than zero to include possible larger axons in the human brain
 Nilsson et al., 2013 ). The values used to simulate the WM signal were
andomly sampled from uniform distributions defined by the lower and
pper bounds indicated in Table 2 . 

From the simulated WM signals, corresponding ground truth DKI pa-
ameters were obtained by fitting the conventional DKI model (4) to
he generated signals using a constrained weighted linear least squares
WLS) approach ( Veraart et al., 2011 ). The DKI parameters were subse-
uently combined into the 𝑇 2 -DKI-FWE model, see Eq. (2) , with ground
ruth values for 𝑓 , 𝑇 tissue 2 and 𝑇 fw 2 to simulate the final, noise-free, DW
nd TE-dependent signal. Unless noted otherwise, the following val-
es were used as default settings to generate the data: 𝑇 tissue 2 = 70 ms,
 

fw 
2 = 1573 ms and variable 𝑓 to simulate different degrees of PVEs due
o free water contamination. Acquisition settings for 𝑏 , 𝒈 , and TE were
hosen in line with the real data acquisition. 

.5. Experiments 

.5.1. 𝑇 fw 2 error propagation study 

The goal of this first experiment was to evaluate the potential bias
nduced in the estimation of the 𝑇 2 -DKI-FWE model parameters, caused
y an erroneous approximation of the 𝑇 fw 2 value. As mentioned in
ection 2.3 , 𝑇 fw 2 was fixed to a literature value during the actual 𝑇 2 -
KI-FWE model fit, with the aim of improving the robustness of the pa-

ameter estimation problem. However, a poor preliminary assumption
n the 𝑇 fw 2 value may bias all other model parameter estimates. For this
xperiment, 500 DW signals of a WM voxel (with varying ground truth
arameter values) were simulated as described in Section 2.4 . The ac-
uisition settings were chosen in line with the TE-dependent acquisition
rotocol presented in Section 2.2 . During the simulations, the real 𝑇 fw 2 
as varied stepwise from 500 ms to 2100 ms (step size 25 ms) according

o the range of values reported in the literature ( Piechnik et al., 2009 ;
in, 2011 ). Subsequently, without adding noise, all 𝑇 2 -DKI-FWE model
arameters were estimated assuming 𝑇 fw 2 = 1573 ms. In this experiment,
he parameter 𝑓 was initialized to 0 . 25 and 𝑆 00 to its true value. The 𝑇 2 -
KI model, although independent of 𝑇 fw 2 specifically, was also fitted to

he data for reference. The experiment was repeated for three differ-
nt underlying ground truth values of the parameter 𝑓 , i.e., 0 . 1 , 0.2,
nd 0 . 3 . 

.5.2. Conditioning of the model fitting problem 

One of the main potential improvements of 𝑇 2 -DKI-FWE over DKI-
WE is the better stability of the model parameter estimation. It is
nown that the DTI-FWE and DKI-FWE parameter estimation problems
re ill-conditioned, thus we propose to remedy this by explicitly mod-
ling the 𝑇 2 -dependency of the signal. A better conditioning of the in-
erse estimation problem translates into an improved decoupling of the
odel parameters. To quantitatively illustrate this, we used the Cramér-
ao lower bound (CRLB), which gives insight on the maximal attainable
recision of an unbiased parameter estimator and the correlations be-
ween the model parameters ( Poot et al., 2010 ). The CRLB matrix is
efined as the inverse of the Fisher information matrix 𝑰 ( 𝜽) , which can
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e expressed as ( van den Bos, 2007 ): 

 ( 𝜽) = 𝔼 
{ 

𝜕 log 𝑝 ( 𝒚 |𝜽) 
𝜕 𝜽

𝜕 log 𝑝 ( 𝒚 |𝜽) 
𝜕 𝜽𝑇 

} 

, (14)

here 𝑝 ( 𝒚 |𝜽) denotes the conditional distribution of the data 𝒚 given the
arameters 𝜽. 

In this experiment, the CRLB matrix was derived assuming Gaus-
ian distributed data for the 𝑇 2 -DKI, DKI-FWE, and 𝑇 2 -DKI-FWE mod-
ls. Additionally, the 𝑇 2 -DKI-FWE model with simultaneous estimation
f 𝜽𝑇 2 −DKI−FWE and 𝑇 fw 2 was included in the analysis, and such model
ill be referred to as 𝑇 2 -DKI-FWE full . The ground truth diffusion and
urtosis tensors were calculated for a single WM voxel as described in
ection 2.4 . For generating the single-voxel WM signal, the simulated
igenvalues and the axonal water fraction were: 𝜆a , 1 = 0 . 87 μm 

2 /ms,

a , 2 = 𝜆a , 3 = 0 . 09 μm 

2 /ms, 𝜆e , 1 = 2 . 19 μm 

2 /ms, 𝜆e , 2 = 𝜆e , 3 = 0 . 90 μm 

2 /ms
nd 𝑓 aw = 0 . 43 . Fitting the DKI model (constrained WLS approach) to the
imulated signal resulted in a fractional anisotropy (FA) of 0 . 60 , MD of
 . 89 μm 

2 /ms and mean kurtosis (MK) of 0 . 91 . The other ground truth pa-
ameters were fixed to the following values: 𝑆 00 = 10 3 , 𝑇 tissue 2 = 70 ms,
 

fw 
2 = 1573 ms and 𝑓 = 0 . 1 . However, for the computation of the CRLB
atrix of the DKI-FWE model, the value of 𝑓 was converted into the

orresponding 𝑇 2 -weighted, TE-dependent free water fraction using the
ollowing relationship ( Veraart et al., 2018 ): 

 DKI−FWE = 𝑓 ∗ = 

𝑓 exp (− TE ∕ 𝑇 fw 2 ) 

(1 − 𝑓 ) exp (− TE ∕ 𝑇 tissue 2 ) + 𝑓 exp (− TE ∕ 𝑇 fw 2 ) 
. (15)

Similar to 𝑓 , the parameter 𝑆 00 was scaled according to the following
xpression: 

 0 , DKI−FWE = 𝑆 ∗ 0 = 𝑆 00 ((1 − 𝑓 ) exp (− TE ∕ 𝑇 tissue 2 ) + 𝑓 exp (− TE ∕ 𝑇 fw 2 )) . (16)

The acquisition settings ( 𝑏 , 𝒈 and TE) were chosen in line with the
eal data protocol for both the TE-dependent and the TE-independent
odels. The coefficients of variation and the correlation coefficients can

e computed from the CRLB matrix obtained for each model. A more de-
ailed description of how the CRLB matrix, the correlation coefficients,
nd the coefficients of variation were computed can be found in the
ppendix . 

.5.3. Model comparison 

In this experiment, the performance of the NLS estimator for dif-
erent diffusion models was compared on both simulated and real data.
igure 1 schematically illustrates how the single-voxel simulation exper-
ments were designed. For the simulation experiments, a single-voxel
ignal was generated using the 𝑇 2 -DKI-FWE model with the same un-
erlying ground truth parameters as presented in Section 2.5.2 , with
he only difference that multiple ground truth values for the parameter

were considered in the range [0, 0.1, ..., 0 . 6 ]. Assuming a Rician data
istribution, 10 4 noise realizations were simulated with an SNR = 50,
here the SNR is defined as the ratio of the noiseless 𝑏 = 0 signal of a
ure tissue voxel ( 𝑓 = 0 ) at TE = 67 ms and the standard deviation of the
oise. Note that for our simulation settings, an SNR of 50 at TE = 67 ms
orresponds to an SNR of 23 . 45 at TE = 120 ms. The value of the SNR was
hosen to roughly match with the average value of the SNR estimated
n white matter voxels of the raw in vivo data analyzed in this paper.
he SNR of the tissue compartment is proportional to ( 1 − 𝑓 ), thus it
ecreases as 𝑓 increases, meaning that the data will contain less and
ess (Fisher) information about the tissue parameters to be estimated.
onsequently, the estimation of tissue properties at high 𝑓 values be-
omes particularly challenging resulting in ever-decreasing estimation
recision, up to the point where reliable estimation is no longer possible.
herefore, we consider 𝑓 = 0 . 6 a reasonable upper bound for our sim-
lation analysis. Three different models were fitted to both simulated
ata and real data (after applying all the correction steps discussed in
ection 2.2 ): 𝑇 2 -DKI, DKI-FWE and 𝑇 2 -DKI-FWE. Specific metrics that are
tudied include 𝑓 (only for the two-compartment models), 𝑇 tissue 2 (only
or the TE-dependent models), FA, MD, and MK. The performance of the
5 
LS estimator in simulations was assessed in terms of the accuracy and
he precision of the metrics of interest. 

. Results 

.1. 𝑇 fw 2 error propagation study 

Figure 2 shows the relative error of the 𝑇 2 -DKI-FWE tissue param-
ters (tissue signal fraction, FA, MD, MK, and 𝑇 tissue 2 ) as a function of
he true underlying 𝑇 fw 2 , caused by an erroneous approximation of 𝑇 fw 2 
n the model. The relative error is reported for three different ground
ruth values chosen for the parameter 𝑓 ( 𝑓 GT = 0 . 1 , 0.2, and 0 . 3 ). During
he 𝑇 2 -DKI-FWE model fit, 𝑇 fw 2 was assumed fixed at 1573 ms, which is
ndicated with a vertical dashed line in Fig. 2 , and the optimization was
erformed as described in Section 2.3 . 

In Fig. 2 (a), the relative error of the 𝑇 2 -DKI estimates is compared to
hat of the 𝑇 2 -DKI-FWE estimates for FA, MD and MK. When the single-
ompartment model is fitted to the data, an underestimation of FA can
e observed ranging from approximately 31% for 𝑓 GT = 0 . 1 to approx-
mately 59% for 𝑓 GT = 0 . 3 , while MD is severely overestimated, with
he relative error ranging from 47% to 128% on average for 𝑓 GT = 0 . 1
nd 𝑓 GT = 0 . 3 , respectively. More peculiar is the behavior of MK for
hich we can point out a shift from an overestimation of approximately
3% when 𝑓 GT = 0 . 1 to an underestimation of 16% on average when
 GT = 0 . 3 . The comparison between 𝑇 2 -DKI-FWE and 𝑇 2 -DKI reveals that
hen the free water partial volume is not accounted for, the bias in-
uced in the estimates of the tissue diffusion metrics is substantially
arger compared to the bias caused by inserting a (biased) approxima-
ion of 𝑇 fw 2 in the 𝑇 2 -DKI-FWE model. Figure 2 (b) provides a close-up of
ig. 2 (a) with a focus on the 𝑇 2 -DKI-FWE tissue parameters only: the re-
ults show a relatively small percent error for most model metrics when
 GT = 0 . 1 , even when the true 𝑇 fw 2 is significantly smaller than the model
ssumption. The largest effect occurs for MK, with an overestimation of
pproximately 7% in the case of a true 𝑇 fw 2 = 500 ms. On the other hand,
he relative error due to an erroneous approximation of 𝑇 fw 2 increases
s 𝑓 GT increases, leading to an overestimation greater than 15% for MK
nd MD, an overestimation of approximately 9% for the tissue signal
raction (1 − 𝑓 ) and an FA underestimation of approximately 13% in
he case of a true 𝑇 fw 2 = 500 ms and 𝑓 GT = 0 . 3 . 

.2. Conditioning of the model fitting problem 

In Fig. 3 , the absolute coefficients of variation and the absolute
orrelation coefficients derived from the CRLB matrix are shown for
he four models of interest: 𝑇 2 -DKI, DKI-FWE, 𝑇 2 -DKI-FWE and 𝑇 2 -DKI-
WE full . The CRLB matrix was obtained by inverting the Fisher infor-
ation matrix and assuming Gaussian distributed data with an SNR of
0. By fixing the SNR, the corresponding noise level 𝜎 was computed
s 𝜎 = 𝑆 00 exp (− TE ∕ 𝑇 tissue 2 )∕ SNR and resulted in a value of 7 . 68 given
 00 = 10 3 , 𝑇 tissue 2 = 70 ms and TE = 67 ms. 

Although the 𝑇 2 -DKI model leads to lower absolute correlation coeffi-
ients (off-diagonal elements in Fig. 3 ) between the different parameters
ompared to the bi-compartment models, the single-compartment model
oes not allow us to account and thus to correct for PVEs. The high-
st correlation coefficients are instead obtained for the 𝑇 2 -DKI-FWE full 

odel which implies 𝑇 fw 2 as an additional parameter to be estimated.
he comparison between DKI-FWE and 𝑇 2 -DKI-FWE in terms of correla-
ion coefficients highlights that the incorporation of the compartment-
pecific 𝑇 2 relaxation terms with 𝑇 fw 2 assumed known a priori is bene-
cial for the identifiability (lower correlations) of the different param-
ters. The CRLB analysis of both 𝑇 2 -DKI-FWE and DKI-FWE shows high
orrelations between 𝑓 (or 𝑓 ∗ ) and 𝐷 𝑥𝑥 and 𝐷 𝑦𝑦 . More specifically, when
he DKI-FWE model is considered, the absolute correlation coefficient
𝑟 𝑓 ∗ ,𝐷 𝑦𝑦 | is found to be as high as 0 . 96 , while for the 𝑇 2 -DKI-FWE model
𝑟 𝑓 ,𝐷 𝑦𝑦 | decreases to 0 . 84 . Correlated estimates of 𝑓 and 𝐷 𝑥𝑥 and 𝐷 𝑦𝑦 
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Fig. 1. Flowchart of the single-voxel simulation experiments. First, ground truth DKI parameters are obtained by fitting the DKI model to the signal 𝑆 wm , representative 
of a single WM voxel. Subsequently, the T 2 -DKI-FWE model is used to generate diffusion-weighted signals with variable or single TE and the following ground truth 
values: 𝑆 00 , GT = 10 3 , 𝑇 tissue 2 , GT = 70 ms, 𝑇 fw 2 , GT = 1573 ms and 𝑓 GT in the range from 0 to 0 . 6 ( 0 . 1 step size). Next, the generated data are corrupted with noise according 
to a Rician data distribution and an SNR of 50 defined on the non-diffusion-weighted signal of a pure tissue voxel at the lowest TE, i.e., 67 ms. Finally, the T 2 -DKI 
and the T 2 -DKI-FWE models are fitted to the data generated with variable TE ( TE 1 = 67 ms and TE 2 = 120 ms), while the DKI-FWE model is fitted to the single-TE 
data ( TE 1 = TE 2 = 67 ms). The diffusion weighting directions are displayed on the unit sphere as colored dots, where the different colors reflect the corresponding 
𝑏 -values. �̃� denotes the noisy signal. 
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Table 3 

Mean of the absolute mutual correlation coefficients derived from the DKI-FWE 
and T 2 -DKI-FWE CRLB matrices for the parameter sets 𝜽𝑆1 and 𝜽𝑆2 . 

Metric Parameter set DKI-FWE T 2 -DKI-FWE 

Mean of off-diagonal elements 𝜽𝑆1 0.2002 0.1385 

𝜽𝑆2 0 . 1818 𝟎 . 𝟏𝟐𝟓𝟖 
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l  
ill result in correlated estimates of 𝑓 and MD. However, our CRLB re-
ults predict a less strong correlation between 𝑓 and MD for 𝑇 2 -DKI-FWE
han for DKI-FWE. The better decoupling of the free water fraction from
he other model parameters is also confirmed by the mean absolute cor-
elation coefficient between 𝑓 (or 𝑓 ∗ ) and the other parameters: 0 . 38
or DKI-FWE and 0 . 29 for 𝑇 2 -DKI-FWE. From Fig. 3 , it is clear that high
orrelations also exist between some diffusion and kurtosis tensor ele-
ents, e.g., between 𝐾 𝑦𝑦𝑦𝑦 and 𝐷 𝑦𝑦 and between 𝐾 𝑥𝑥𝑥𝑥 and 𝐷 𝑥𝑥 . Yet, in

oth cases, 𝑇 2 -DKI-FWE produces lower correlations compared to DKI-
WE ( 0 . 90 vs 0 . 96 for 𝐾 𝑦𝑦𝑦𝑦 and 𝐷 𝑦𝑦 and 0 . 88 vs 0 . 95 for 𝐾 𝑥𝑥𝑥𝑥 and 𝐷 𝑥𝑥 ,
espectively). 

To quantitatively summarize the differences between the mod-
ls, we propose a scalar measure that quantifies the correlation be-
ween the elements of a subset of parameters. It is calculated as the
ean of their mutual correlation coefficients that were derived from

he CRLB matrix, i.e., the mean of the corresponding off-diagonal el-
ments of the matrix shown in Fig. 3 . The models 𝑇 2 -DKI-FWE full 

nd 𝑇 2 -DKI are not included in this quantitative analysis since the
rst one is severely ill-conditioned and the latter one can be seen
s a particular case of the 𝑇 2 -DKI-FWE model when 𝑓 = 0 . Two
ubsets of parameters are considered of particular interest for our
nalysis: 

1. 𝜽𝑆1 = [ 𝜽𝐷 , 𝜽𝐾 , 𝑓 ] for 𝑇 2 -DKI-FWE and 𝜽𝑆1 = [ 𝜽𝐷 , 𝜽𝐾 , 𝑓 ∗ ] for DKI-
FWE; 

2. 𝜽𝑆2 = [ 𝜽𝐷 , 𝜽𝐾 ] . 

The values of the scalar measure for the models of interest are re-
orted in Table 3 . 

The results in Table 3 confirm that, on average, the 𝑇 2 -DKI-FWE pa-
ameters of interest are less correlated compared to the DKI-FWE pa-
ameters. As a further validation, we repeated our CRLB analysis on
wo additional parameter sets, the results of which are included in Sec-
ion A of the supplementary material. More specifically, the matrices
f the correlation coefficients and coefficients of variation are shown
or: 
6 
1. a voxel with the same diffusion and relaxation properties as the ones
discussed in Section 2.5.2 but with a higher underlying free water
signal fraction, i.e., 𝑓 = 0 . 5 (Fig. S1); 

2. a voxel with the same free water fraction as the one originally se-
lected ( 𝑓 = 0 . 1 ) but with different diffusion properties to cover a
wider range of realistic diffusional kurtosis estimates ( Lätt et al.,
2013 ): FA = 0 . 70 , MD = 0 . 75 μm 

2 /ms and MK = 1 . 12 (Fig. S2). 

Given the severe ill-conditionedness of 𝑇 2 -DKI-FWE full , this model
as not included in the simulation and real data experiments carried
ut to evaluate the performance of the NLS estimator ( Section 3.3 ). 

.3. Model comparison 

.3.1. Simulation experiments 

In this set of experiments, the following diffusion models are com-
ared in a Monte Carlo simulation framework: 𝑇 2 -DKI, DKI-FWE and
 2 -DKI-FWE. The results obtained from the single-voxel simulation ex-
eriments for 𝑓 GT = 0 . 1 , 0.2 and 0 . 3 are shown in Figs. 4 and 5 , where the
rror distributions of the metrics of interest are given for each model.
he error terms were computed as �̂� 𝑖 − 𝑝 GT where �̂� 𝑖 is the parameter
stimate associated with the i th repetition of the experiment and 𝑝 GT is
he ground truth value of the same parameter. 

It is clear from Fig. 4 that the 𝑇 2 -DKI model is biased and overes-
imates MD while underestimating FA. It is also noticeable that the ef-
ect of partial volumes tends to translate into an overestimated MK for
ower 𝑓 values ( 0 . 1 ) and an underestimated MK for higher 𝑓 values (0.2
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Fig. 2. Propagation of the relative error of the analyzed model metrics: the tissue signal fraction ( 1 − 𝑓 ), FA, MD, MK, and 𝑇 tissue 2 as a function of the true 𝑇 fw 2 and 
for three different ground truth values of the free water fraction 𝑓 GT ( 0 . 1 left, 0.2 center and 0 . 3 right). Full lines denote the errors on the T 2 -DKI-FWE parameter 
estimates assuming 𝑇 fw 2 = 1573 ms, while the dashed lines denote the errors on the T 2 -DKI estimates. Figure (b) shows a close-up of figure (a) with a focus on the 
T 2 -DKI-FWE parameter estimates. 
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nd 0 . 3 ). This is confirmed by the mean value of the MK error distri-
utions obtained for the 𝑇 2 -DKI model: 0 . 0328 for 𝑓 GT = 0 . 1 , −0 . 0920
or 𝑓 GT = 0 . 2 and −0 . 2033 for 𝑓 GT = 0 . 3 . The 𝑓 value for which the MK
nderestimation effect becomes noticeable depends on the underlying
round truth value of the metric as pointed out in noise-free simulations
iscussed in Section B of the supplementary material. 

Although biased, the single-compartment 𝑇 2 -DKI model achieves the
ighest precision. Given the higher precision and the relatively small
ias of the MK estimates, 𝑇 2 -DKI outperforms 𝑇 2 -DKI-FWE in terms of the
ean squared error (MSE) of MK when 𝑓 GT is 0 . 1 ( 0 . 0013 vs 0 . 0055 , re-

pectively). In contrast, starting from 𝑓 GT = 0 . 2 , the 𝑇 2 -DKI-FWE model
esults in a lower MSE of MK compared to 𝑇 2 -DKI due to the more sig-
ificant negative bias in the 𝑇 2 -DKI MK estimates. Fig. 5 shows the error
istributions for 𝑓 and 𝑇 tissue 2 , where the DKI-FWE 𝑓 estimates are cor-
ected for the 𝑇 2 bias using the relationship presented in Eq. (15) . The
round truth 𝑇 2 values of tissue and free water were used to make the
orrection. The parameter 𝑓 is estimated with a lower precision when
sing the DKI-FWE model compared to 𝑇 2 -DKI-FWE ( Fig. 5 (a)) and 𝑇 tissue 2 
s significantly overestimated by 𝑇 2 -DKI ( Fig. 5 (b)). While Figs. 4 and
 show results for 𝑓 values up to and including 0 . 3 , larger values of 𝑓
an also be observed in in vivo data, especially in voxels located at the
order of the lateral ventricles. Therefore, Fig. 6 shows the performance
f 𝑇 2 -DKI-FWE and DKI-FWE in terms of bias, variance and MSE of the
iffusion-related metrics for 𝑓 values up to and including 0 . 6 . The 𝑇 2 -DKI
odel has not been included in this comparative plot since its perfor-
ance was found to be inferior. This is because it produces parameter
7 
stimates that suffer from a severe bias (cf. Fig. 4 ), which becomes larger
ith an increasing value of 𝑓 . 

Our results suggest that the bias of FA, MD, and MK is relatively
ow in the analyzed range of 𝑓 values and thus, the precision of the
arameter estimates becomes the dominant factor when assessing the
erformance of the models in terms of the MSE. In the whole 𝑓 range
from 0 to 0 . 6 ) and for all three metrics, the 𝑇 2 -DKI-FWE model fits
esulted in lower MSE values compared to the DKI-FWE model. We also
bserved that the DKI-FWE model fitting produced different results at
 = 0 . 6 when using different initial guesses in the optimization routine,
hich suggests an increased risk that the global optimum is not found.
he MSE of FA, MD, and MK for all three models in the analyzed range
f 𝑓 values can be found in Table S2 (Section C of the supplementary
aterial). 

To conclude our simulation analysis, Figs. 7 (a) and (b) provide a
catter plot of the DKI-FWE and 𝑇 2 -DKI-FWE estimates of 𝑓 versus MD
nd of MD versus MK for 𝑓 GT = 0 . 1 , respectively. As previously de-
cribed, the DKI-FWE 𝑓 estimates were corrected for the 𝑇 2 bias. From
ig. 7 (a), it is clear that the scatter plot for the 𝑇 2 -DKI-FWE model
s less elongated compared to that of the DKI-FWE model, indicating
 smaller correlation between 𝑓 and MD. This is confirmed by the
earson correlation coefficients, which are: 𝑅 = −0 . 91 for the 𝑇 2 -DKI-
WE model and 𝑅 = −0 . 98 for DKI-FWE. Note that there still exists
 strong correlation between 𝑓 and MD when using the 𝑇 2 -DKI-FWE
odel, however, the two parameters are better decoupled and more
recisely estimated compared to DKI-FWE. Similarly, Fig. 7 (b) high-
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Fig. 3. Absolute values of the correlation coefficients (off-diagonal elements) and coefficients of variation (main diagonal elements), derived from the CRLB matrix, 
for the T 2 -DKI, DKI-FWE, T 2 -DKI-FWE and T 2 -DKI-FWE full models. Parameters from 2 to 22 are the same for all models: 𝐷 𝑥𝑥 (2), 𝐷 𝑥𝑦 (3), 𝐷 𝑥𝑧 (4), 𝐷 𝑦𝑦 (5), 𝐷 𝑦𝑧 (6), 
𝐷 𝑧𝑧 (7), 𝐾 𝑥𝑥𝑥𝑥 (8), 𝐾 𝑥𝑥𝑥𝑦 (9), 𝐾 𝑥𝑥𝑥𝑧 (10), 𝐾 𝑥𝑥𝑦𝑦 (11), 𝐾 𝑥𝑥𝑦𝑧 (12), 𝐾 𝑥𝑥𝑧𝑧 (13), 𝐾 𝑥𝑦𝑦𝑦 (14), 𝐾 𝑥𝑦𝑦𝑧 (15), 𝐾 𝑥𝑦𝑧𝑧 (16), 𝐾 𝑥𝑧𝑧𝑧 (17), 𝐾 𝑦𝑦𝑦𝑦 (18), 𝐾 𝑦𝑦𝑦𝑧 (19), 𝐾 𝑦𝑦𝑧𝑧 (20), 𝐾 𝑦𝑧𝑧𝑧 (21), 
𝐾 𝑧𝑧𝑧𝑧 (22). The free water fraction was 0.1 for the models incorporating T 2 relaxation (namely T 2 -DKI-FWE and T 2 -DKI-FWE full ) and converted to its TE-dependent 
version for the DKI-FWE model ( 𝑓 ∗ = 0 . 22 ). For the models with explicit T 2 dependency, 𝑆 00 was set to 10 3 , while for DKI-FWE, 𝑆 ∗ 0 resulted in a value of 441 . 42 . 
𝑇 tissue 2 = 70 ms and 𝑇 fw 2 = 1573 ms were assumed. The highest coefficients of variation were clipped to 1 for the sake of visualization. 
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ights that MD and MK are less correlated and can be estimated with
igher precision by 𝑇 2 -DKI-FWE. These results are in line with the find-
ngs of the CRLB analysis ( Section 3.2 ). The Pearson correlation coef-
cients between 𝑓 and MD and between MD and MK for the analyzed
ange of 𝑓 values are presented in section C of the supplementary file
Table S3). 

.3.2. Real data experiments 

The real data analysis was performed in WM voxels of a region of
nterest (ROI) made up of 8 axial slices where PVEs are likely to be ob-
erved. The WM mask was extracted using a thresholding approach after
pplying multi-shell multi-tissue (MSMT) constrained spherical decon-
olution (CSD) ( Jeurissen et al., 2014 ) to the diffusion-weighted images
cquired at the lowest TE, i.e., 67 ms. We assessed the tissue-related
odel metrics in voxels for which the free water signal fraction 𝑓 es-

imated by 𝑇 2 -DKI-FWE was lower than 0 . 6 . For higher 𝑓 values, the
issue-specific metrics start to become meaningless due to the insuffi-
ient tissue signal contribution. Additionally, the MK estimates in voxels
orresponding to such high 𝑓 estimates often resulted in outlier values
either extremely low or extremely large). Thus, the exclusion of the
oxels for which 𝑓 > 0 . 6 ( 0 . 39 % of the total number of voxels included
n the fitting) was beneficial in terms of visualization. The real data
aps are shown in Fig. 8 for one slice of the selected ROI. A visual in-
8 
ication of the spatial location where the estimated parameters were
lose to the posed constraints can be found in the supplementary ma-
erial (section D, Fig. S5). When comparing 𝑇 2 -DKI-FWE and DKI-FWE,
n Figs. 8 (c) and (b), we notice that DKI-FWE produces larger 𝑓 values,
hich is in line with the simulation results. Furthermore, relevant dif-

erences are captured by the diffusion-related parameter maps (FA, MD,
nd MK). Compared to 𝑇 2 -DKI, in the genu of the corpus callosum we
bserve a reduced effect of free water partial volumes on the metrics of
nterest when 𝑇 2 -DKI-FWE or DKI-FWE are used: in this area we can in
act highlight more plausible higher FA and MK values while lower MD
nd 𝑇 tissue 2 values. 

The comparison between 𝑇 2 -DKI and 𝑇 2 -DKI-FWE is also illustrated
n the histograms in Fig. 9 where we report the distributions of the
etrics of interest for the same slice as the one shown in Fig. 8 and

or voxels affected by a certain degree of free water contamination
 0 . 05 ≤ 𝑓 ≤ 0 . 6 ). The results in Fig. 9 confirm the trends observed in our
imulation analysis: when using the single-compartment 𝑇 2 -DKI model,
A results in lower values compared to the 𝑇 2 -DKI-FWE estimates while
D and 𝑇 tissue 2 are significantly higher, often resulting in implausibly

arge values (greater than 3 μm 

2 /ms for MD and greater than 200 ms
or 𝑇 tissue 2 ). Finally, no clear shift of the distribution of the 𝑇 2 -DKI MK
stimates can be highlighted suggesting, in agreement with simulations,
hat the effect of partial volumes on MK depends on both the level of
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Fig. 4. Error distributions of the diffusion-related metrics of interest for three different ground truth values of the free water fraction 𝑓 GT ( 0 . 1 left, 0.2 center and 0 . 3 
right): (a) fractional anisotropy (FA), (b) mean diffusivity (MD) and (c) mean kurtosis (MK). The error distributions are compared for the three models discussed in 
this work: T 2 -DKI (orange bins), DKI-FWE (yellow bins), and T 2 -DKI-FWE (blue bins). 
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ree water contamination and on the actual underlying value (unknown
or real data). The distributions of the metrics of interest for all three
odels are shown in Section D of the supplementary material for both

oxels not affected by PVEs (Fig. S6) and contaminated voxels (Fig. S7).
nterestingly, Fig. 9 shows that MK and FA are more widely distributed
or the 𝑇 2 -DKI-FWE model compared to 𝑇 2 -DKI and we hypothesize that
hen the model fit is performed using the bi-compartment model, the
bserved distributions are more likely to capture the actual variability
f FA and MK observed in the tissue while the 𝑇 2 -DKI parameter es-
9 
imates are confounded by PVEs. Our ROI was intentionally selected
o include in the analysis voxels for which free water contamination is
ikely to be observed. Consequently, the analyzed ROI contains a variety
f voxels with different diffusion profiles: highly coherent white matter
tructures as well as voxels for which the underlying diffusion proper-
ies are more similar to gray matter structures. While MD shows a lower
ariability across adult brain tissue ( Beaulieu, 2014 ), the different de-
ree of anisotropy is expected to result in wider FA and MK distributions
hat reflect the heterogeneous diffusion characteristics of the analyzed
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Fig. 5. Error distributions of 𝑓 (a) and 𝑇 tissue 2 (b) for three different ground truth values of the free water fraction 𝑓 GT ( 0 . 1 left, 0.2 center and 0 . 3 right). In (a) the 
DKI-FWE estimates of 𝑓 are corrected for the T 2 bias using the true 𝑇 tissue 2 and 𝑇 fw 2 values. When looking at 𝑓 , the error distributions are compared for DKI-FWE 
(yellow bins) and T 2 -DKI-FWE (blue bins), whereas for 𝑇 tissue 2 the error terms from T 2 -DKI (orange bins) and T 2 -DKI-FWE (blue bins) are assessed. 
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oxels. As an additional validation, we show that the distributions of
A and MK observed in real data can be reproduced to a good extent
hen fitting the 𝑇 2 -DKI-FWE and the 𝑇 2 -DKI models to synthetic data,

etrospectively generated from the 𝑇 2 -DKI-FWE parameter estimates (cf.
ig. S8, Section D of the supplementary material). 

. Discussion 

.1. Motivation 

The beneficial effects of accounting for PVEs in dMRI data through
 bi-compartment model have already been extensively described in
he literature, including applications on schizophrenia ( Pasternak et al.,
012 ), aging ( Metzler-Baddeley et al., 2011 ; Sasson et al., 2013 ) and
lzheimer’s disease ( Bergamino et al., 2021 ; Hoy et al., 2017 ). Because

t is known that DKI provides a better description of the diffusion process
n brain tissue compared to DTI, we use the DKI model to represent the
issue compartment. However, the combination of the bi-exponential
WE model with DKI leads to a severely ill-conditioned parameter esti-
ation problem ( Collier et al., 2018 ). Such ill-conditionedness may be
itigated through advanced parameter estimation techniques and the
se of statistical priors ( Collier et al., 2018 ), having as a drawback that
hese types of prior information can potentially bias the parameter esti-
ates. 
i  

10 
As a solution to this drawback, we introduce the bi-exponential 𝑇 2 -
KI-FWE diffusion model which eliminates free water PVEs by separat-

ng the signal contributions of the tissue and free water compartments,
hile explicitly accounting for the different compartmental 𝑇 2 . In sim-
lation experiments, we show how not accounting for this free water
artial volume effect can severely bias tissue-related diffusion and re-
axometry metrics, leading to an underestimation of FA, and an over-
stimation of MD and 𝑇 tissue 2 ( Figs. 4 and 5 ). When estimating MK in
M voxels without correcting for free water partial volumes, our find-

ngs reveal an interesting behavior consisting of a shift from over- to
nderestimation of the actual underlying MK. The comparison between
he MK estimates obtained from 𝑇 2 -DKI and the ones extracted by 𝑇 2 -
KI-FWE shows that the metric starts to be underestimated from free
ater fraction values close to 0.2, although this value depends on the
ctual underlying 𝜽DKI (cf. Table S1 and Fig. S3 of the supplementary
le). We can thus refer to overestimation as the effect of partial vol-
mes on MK at a low 𝑓 regime and to underestimation as the effect at a
igh 𝑓 regime. In previous work ( Collier et al., 2018 ), however, only an
verestimation of MK has been reported to be the consequence of not
ccounting for PVEs, and therefore it is important to highlight the main
ifferences between our work and ( Collier et al., 2018 ). In the current
tudy, we explicitly model the 𝑇 2 relaxation terms of both compartments
f interest, whereas in ( Collier et al., 2018 ) the conventional DKI model
s compared to DKI-FWE and, in simulations, a distribution of free water
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Fig. 6. Squared bias, variance and mean squared error (MSE) of the diffusion-related parameters as a function of the underlying ground truth free water signal 
fraction 𝑓 GT : (a) fractional anisotropy (FA), (b) mean diffusivity (MD) and (c) mean kurtosis (MK). The DKI-FWE (yellow curves) and the T 2 -DKI-FWE (blue curves) 
models are compared. In the left column, displaying the squared bias of the metrics of interest, a green dashed line is shown as reference (unbiased). 

Fig. 7. (a) Scatter plot of the DKI-FWE (yellow) and T 2 -DKI-FWE (blue) estimates of 𝑓 versus MD. The DKI-FWE estimates of 𝑓 are corrected for the T 2 bias using 
the true 𝑇 tissue 2 and 𝑇 fw 2 values. (b) Scatter plot of the DKI-FWE (yellow) and T 2 -DKI-FWE (blue) estimates of MD versus MK. Ground truth values are indicated by a 
red dot. The results are given for an underlying free water fraction ( 𝑓 GT ) of 0 . 1 and the corresponding Pearson correlation coefficients are shown in the legend. 

11 
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Fig. 8. Real data maps of the metrics of interest ( 𝑓 , FA, MD, MK and 𝑇 tissue 2 ) for one slice of the analyzed in vivo data and the three models discussed in this work: 
(a) T 2 -DKI, (b) DKI-FWE and (c) T 2 -DKI-FWE. 

Fig. 9. Distributions of the metrics of interest (FA, MD, 
MK, and 𝑇 tissue 2 ) for one slice of the analyzed in vivo 
data and for voxels affected by free water contamination 
( 0 . 05 ≤ 𝑓 ≤ 0 . 6 ). The estimates obtained from the T 2 -DKI 
(orange bins) and the T 2 -DKI-FWE (blue bins) model fit- 
ting are compared. Outlier values have been clipped for 
the sake of visualization. 

12 
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ractions with mean 0 . 26 and standard deviation 0 . 24 was chosen. Given
hat 𝑓 in the DKI-FWE model represents a 𝑇 2 -weighted signal fraction,
he transition between the low regime effect and the high regime effect
ccurs at higher 𝑓 values (cf. Table S1 and Fig. S4 of the supplementary
le) making overestimation the most pronounced tendency for the con-
idered 𝑓 distribution. Furthermore, the different estimation technique
ight also play a role: in this work we use a constrained NLS approach

s opposed to ( Collier et al., 2018 ) where a Bayesian estimation frame-
ork is proposed. 

.2. Incorporating 𝑇 2 relaxation properties 

To stabilize the ill-conditioned DKI-FWE parameter estimation prob-
em, we include compartment-specific 𝑇 2 relaxation properties. Our
RLB analysis shows in fact how the absolute correlation coefficients
etween the different model parameters become lower when the 𝑇 2 -DKI-
WE model is used compared to DKI-FWE ( Fig. 3 and Table 3 ), thus
ndicating a better decoupling of the different parameters and hence
n improved conditioning of the model fitting problem. These findings
re confirmed by our Monte Carlo simulation experiments, where we
bserved that the introduction of the 𝑇 2 relaxation terms into the DKI-
WE model yields less correlated and more precise parameter estimates
 Figs. 6 and 7 ). 

An important consequence of including the compartment-specific
 2 relaxation properties consists in the fact that now, the parameter 𝑓
ill no longer incorporate the 𝑇 2 -weighting term ( Farrher et al., 2020 ;

erome et al., 2016 ; Veraart et al., 2018 ), as opposed to the 𝑓 extracted
rom DKI-FWE (see Eq. (15) ). Even though 𝑇 2 -DKI-FWE accounts for the
ifferent 𝑇 2 relaxations of tissue and free water, the parameter 𝑓 still
eeds to be regarded as a signal fraction, and not as a volume fraction,
ecause the different proton densities and 𝑇 1 properties of the two com-
artments are not explicitly modeled. Finally, the 𝑇 2 -DKI-FWE model
lso provides the tissue-specific 𝑇 tissue 2 parameter, thereby yielding an
dditional potential biomarker. 

.3. Model assumptions, limitations and future perspectives 

We showed that explicitly estimating 𝑇 fw 2 as an additional parameter
egatively impacts the conditioning of the model fitting (see Fig. 3 𝑇 2 -
KI-FWE full ). Therefore, during the 𝑇 2 -DKI-FWE model fit, 𝑇 fw 2 is not
stimated together with the other model parameters but fixed to its lit-
rature value of 1573 ms ( Qin, 2011 ). Alternatively, 𝑇 fw 2 could be es-
imated before the fitting procedure, however, this would require the
cquisition of multiple extra 𝑏 = 0 images with a very wide range of
Es to precisely capture the long 𝑇 2 of the free water compartment. For
hese reasons, a fixed 𝑇 fw 2 value is used to avoid the parameter esti-
ation problem becoming even more ill-conditioned compared to the
KI-FWE model ( Collier et al., 2017 ). As a downside, making an erro-
eous choice for 𝑇 fw 2 will bias the other parameter estimates (see Fig. 2 ).
his bias increases as the free water fraction 𝑓 increases and is larger
or MK and MD. Fortunately, considering an over- or underestimation
f our fixed 𝑇 fw 2 by 500 ms and 𝑓 GT variable from 0 . 1 to 0 . 3 , the error
ntroduced in the tissue-related metrics stays between −4 % and +7 . 7 %,
ith the lower and upper bounds obtained for FA and MK respectively
hen 𝑇 fw 2 = 1000 ms and 𝑓 GT = 0 . 3 . Despite the introduced error, keep-

ng 𝑇 fw 2 fixed to a reference value seems the most reasonable choice to
revent the model degeneracy that estimating it as an additional param-
ter would imply. 

Another implicit model assumption is that 𝑇 1 is the same for both
ompartments, which is not the case as typical 𝑇 1 values reported in
he literature at 3 T vary from 728 to 1735 ms for WM and from 3817
o 6837 ms for CSF ( Bojorquez et al., 2017 ). Incorporating and subse-
uently estimating 𝑇 1 properties into the model would result in a more
xtensive acquisition protocol, as multiple repetition times would then
e required. Moreover, depending on which 𝑇 1 we would try to esti-
ate, the conditioning of the parameter estimation problem might be
13 
egatively affected, thus losing the benefits given by the incorporation
f the 𝑇 2 relaxation terms. When using 𝑇 1 values reported in the lit-
rature instead of estimating them, the multi-TR acquisition protocol
ould no longer be necessary, however, we would run the risk of in-

roducing an additional source of bias when 𝑇 1 values are not chosen
orrectly. Further research on the impact of incorporating 𝑇 1 properties
s thus required, before including the longitudinal relaxation term in the
odel. 

Furthermore, it should be reported that when fitting the discussed
odels to real datasets, we observed a few implausible outliers in the MK

stimates (all models) and MD estimates (mainly 𝑇 2 -DKI). This may be
he result of a combination of factors including model complexity, noise
ensitivity, and imaging artifacts, but further investigation is needed to
dentify the exact cause. 

Finally, we would like to point out that nowadays multi-TE diffusion
atasets are rarely acquired in clinical practice, implying that ad hoc

cquisitions would be needed to benefit from the approach presented
n this work. Even when diffusion data acquired with multiple TEs are
vailable, it is important to keep in mind that most clinical scanners offer
o control over the DW gradient amplitude, and consequently over the
iffusion time Δ which is typically around 30 to 60 ms. When acquiring
ultiple TEs, it is likely that Δ changes between TEs, thus impacting the
iffusion parameters. Based on the work of ( Fieremans et al., 2016 ), the
xial and radial diffusivities in human white matter show a pronounced
nd weaker diffusion time dependency, respectively. In other studies,
he effect of the diffusion time, in the range of 30–60 ms, on diffusion
ensor-derived metrics is considered negligible ( Clark et al., 2001 ; Le Bi-
an et al., 1993 ). In future work, the diffusion time dependency of the
 2 -DKI-FWE model should be thoroughly explored. Therefore, if avail-
ble, acquisition protocols that allow for constant Δ with varying TEs
re advised to avoid a potential source of bias. While ensuring a con-
tant Δ could be beneficial in terms of bias reduction, using optimal
 -values and TEs may maximize the precision of the diffusion param-
ter estimates. Therefore, in future work, we aim to optimize the data
cquisition in terms of the precision with which the parameters of in-
erest can be estimated by using CRLB-based optimality criteria. 

. Conclusions 

In conclusion, incorporating 𝑇 2 relaxation properties in the ill-
onditioned DKI-FWE model ensures a better conditioning of the pa-
ameter estimation problem, while only requiring the use of at least
wo different TEs in the acquisition phase. We show that by doing so,
recise and accurate parameter estimates relating to the diffusion prop-
rties of the tissue can be obtained using standard estimation techniques
ike a constrained NLS estimator without regularization. In addition to
artial volume corrected diffusion metrics, a further benefit of the pre-
ented approach includes the modeling of an additional clinically rele-
ant tissue-related parameter, 𝑇 tissue 2 . 
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ppendix. Computation of the CRLB matrix and derived metrics 

In Eq. (14) , 𝒚 represents a set of 𝑁 magnitude diffusion-weighted
mages, 𝜽 the model parameter vector of size 𝑁 𝑝𝑎𝑟 and 𝑝 ( 𝒚 |𝜽) the joint
robability density function (PDF) of 𝒚 given 𝜽. The CRLB matrix was
erived assuming Gaussian distributed data, which is a valid approx-
mation of the Rician distribution of the magnitude MRI data for SNR
alues larger than 2 ( Gudbjartsson and Patz, 1995 ). Given a model 𝐴 𝑖 ( 𝜽)
ith 𝑖 = 1 , … , 𝑁 and 𝑁 being the number of independent Gaussian dis-

ributed data with the same 𝜎, the Fisher information matrix can be
xpressed as ( van den Bos, 2007 ): 

 ( 𝜽) = 

1 
𝜎2 

𝑁 ∑
𝑖 =1 

𝜕 𝐴 𝑖 

𝜕 𝜽

𝜕 𝐴 𝑖 

𝜕 𝜽𝑇 
, (A.1)

here the derivatives of 𝐴 𝑖 with respect to 𝜽 depend on the model se-
ected to represent the data. By inverting 𝑰 ( 𝜽) we obtain the CRLB matrix
f size 𝑁 𝑝𝑎𝑟 ×𝑁 𝑝𝑎𝑟 , from which the absolute correlation coefficients can
e derived as: 

𝑟 𝑖𝑗 
||| = 

||||||
𝐶 𝑖𝑗 √
𝐶 𝑖𝑖 𝐶 𝑗𝑗 

||||||, (A.2)

ith 𝐶 𝑖𝑗 the 𝑖𝑗 th element of the CRLB matrix. Finally, the absolute coef-
cients of variation are extracted as: 

𝐶𝑜𝑉 𝑖 
|| = 

||||||
√
𝐶 𝑖𝑖 

𝜃𝑖 

||||||, (A.3)

ith 𝜃𝑖 the ground truth value of the 𝑖 th parameter. While the corre-
ation coefficients provide information about the identifiability of the
odel parameters, differences in the coefficients of variation quantify
ifferences in attainable precision. More precisely, a reduction of the co-
fficients of variation means that the model parameters can be estimated
or, identified) with higher precision. 
14 
upplementary material 

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.neuroimage.2022.119219 . 
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