
Learning Keypoints from Synthetic Data for
Robotic Cloth Folding

Thomas Lips, Victor-Louis De Gusseme and Francis wyffels
AI and Robotics Lab (AIRO), IDLab, Ghent University - imec

Thomas.Lips@UGent.be

Fig. 2: Left - Examples of the synthetic data used to train the keypoint detector. Center/Right - Successful folds on towels from the evaluation
set. Each image pair shows the initial state with the detected keypoints (yellow dots) and the final state after attempting to grasp and fold.

Abstract—Robotic cloth manipulation is challenging due to its
deformability, which makes determining its full state infeasible.
However, for cloth folding, it suffices to know the position of a
few semantic keypoints. Convolutional neural networks (CNN)
can be used to detect these keypoints, but require large amounts
of annotated data, which is expensive to collect. To overcome
this, we propose to learn these keypoint detectors purely from
synthetic data, enabling low-cost data collection. In this paper,
we procedurally generate images of towels and use them to
train a CNN. We evaluate the performance of this detector for
folding towels on a unimanual robot setup and find that the
grasp and fold success rates are 77% and 53%, respectively.
We conclude that learning keypoint detectors from synthetic
data for cloth folding and related tasks is a promising research
direction, discuss some failures and relate them to future work.
A video of the system, as well as the codebase, more details on
the CNN architecture and the training setup can be found at
https://github.com/tlpss/workshop-icra-2022-cloth-keypoints.git.

Index Terms—Synthetic Data, Procedural Data Generation,
Keypoint Detection, Robotic Cloth Folding

I. INTRODUCTION

Robotic manipulation of deformable objects is challenging,
both in terms of perception, control and modelling [1]. This
is a.o. caused by their high-dimensional state [2]. Nonethe-
less, any general-purpose robotic manipulation system would
encounter such objects. Cloth, for example, is omnipresent
in household settings. Although significant progress has been
made, cloth manipulation remains a challenging task in terms
of perception and control [1]–[4].

Supervised deep learning (DL) has the potential to tackle
these perception tasks and to generalise to a wide range of
settings. However, DL is far from data-efficient and requires
large numbers of labelled data to learn and generalise. Proce-
dural data generation is an appealing alternative to manually
collecting these datasets: Synthetic data is cheap to generate,
has perfect annotations and can be used to generate all

desired variations. The drawback is that the resulting network
often has a reduced performance when transferred to the real
world. This is due to the remaining differences between the
simulation and the real world, referred to as the reality gap.

In this paper, we tackle towel folding, a standard task
for cloth manipulation [5], [6]. We approach this task by
using a convolutional neural network (CNN) as keypoint
detector to estimate the 2D positions of the towel corners
from a single RGB image and executing a scripted, open-loop
grasp and quasi-static fold trajectory based on these semantic
keypoints. We train the keypoint detector entirely on synthetic
data and evaluate the zero-shot sim-to-real performance on a
unimanual robotic setup under various conditions. Using the
terminology of [3], [7], we assume the towels are unfolded
but not necessarily perfectly flattened. Recent progress in cloth
unfolding has made this a realistic assumption [8].

Our contributions are as follows:
• We show that synthetic data can be used to train con-

volutional neural networks to detect keypoints for cloth
folding.

• We extensively evaluate the performance of our keypoint
detector and unimanual folding system.

• We provide qualitative insights into the failure cases.

II. RELATED WORK

A. Robotic Cloth Folding

Cloth manipulation has been extensively studied [2], [3].
For cloth folding in particular, [4], [6], [9] have devised
complete pipelines. These works rely on segmentation and
a combination of polygonal approximations and template
matching or corner detectors to localise keypoints (landmarks)
of unfolded cloth items and subsequently fold them. Although
these systems perform very well in their test settings, the

ar
X

iv
:2

20
5.

06
71

4v
1

 [
cs

.R
O

]
 1

3
M

ay
 2

02
2

https://github.com/tlpss/workshop-icra-2022-cloth-keypoints.git

segmentation algorithms assume a known background color
distribution, which strongly limits the potential to generalise
to diverse environments. Furthermore the perception pipeline
can take up to 5 seconds [4] to detect the keypoints.

B. Learning Keypoint Representations for Robotic Control

Recently, CNNs were trained to detect [10]–[13] and even
discover [14], [15] semantic keypoints end-to-end for various
robotic tasks. As the number of detected keypoints can of-
ten vary, keypoint detectors usually output spatial heatmaps
instead of cartesian coordinates [16], [17].

C. Synthetic Data for Computer Vision

Procedural data generation for training perception models
has been used to learn state representations for various robotic
tasks [11], [12], [18]. The main limitation is the induced reality
gap, which limits the performance on the real-world target
domain. Tobin et al. [19] introduced domain randomization as
a way to overcome the reality gap by enlarging the distribution
from which the data is generated to ensure it entails the
real-world data. However, more recent work has stressed the
importance of more realistic image synthesis [18], [20] and
showed that over-randomizing can result in loss of context and
performance [21]. Most authors find that even with domain
randomization, the mismatch between both distributions is
still too large and resort to finetuning with real-world data to
increase performance [22]. The factors that cause this reality
gap are not well-known and one usually attempts to close it
with task-specific tuning [18], [22].

III. METHOD

A. Synthetic Dataset Generation

We use Blender [23] and BlenderProc [24] to generate
data samples. For each image, we build a new 3D scene and
randomize object geometries, materials, lighting, and camera
pose. Examples can be found in Fig. 2. The towel geometry is
modelled as a rectangular mesh. We created a procedural ma-
terial that combines a random HSV colour and a Perlin noise
texture to omit the need for realistic fabric textures, which are
difficult to obtain. Additionally, we sample up to 5 distractor
objects from a subset of the Thingi10k dataset [25] and add
them randomly to the scene, as this was observed to reduce
false positives on the manipulator and other objects present
in the scene. The ground plane material combines a random
HSV base colour with a texture from PolyHaven1 to introduce
spatial patterns. To generate complex and realistic lighting of
the scene, we use 360-degree images as environment textures,
which are also obtained from PolyHaven. The position of the
camera is sampled inside a spherical cap and its orientation
is set to point towards the centre of the scene. Finally, the
scene is rendered into a 256x256 image with Cycles, Blender’s
physically-based path tracer.

B. Keypoint Detector

To detect the desired keypoints on an RGB image, we
use a fully convolutional neural network to predict a single
spatial heatmap that contains all corners of the cloth. Inspired

1https://polyhaven.com/

by Vecerik et Al. [10], a U-net architecture [26] is used to
combine spatial resolution conserving paths with downsam-
pling paths to obtain a large receptive field. In the spatial
bottleneck, ResNet-inspired skip connections [27] are used.
Bilinear upsampling is used for the upsampling layers. All
hidden layers use the ReLU activation function. The final
layer uses a sigmoid, of which the outputs are interpreted
as the probability function of having a keypoint centred on
that location [16]. Heatmaps for the synthetic data samples
are generated using a pixel-wise maximum over 2D Gaussian
blobs that are centred on each keypoint [17]. Pixel-wise Binary
Cross Entropy is used as a training objective and keypoints
are extracted using a max-filter with a configurable receptive
field, as implemented in Scikit-Image [28]. We use Pytorch
Lightning [29] to train the CNN and Weights and Biases [30]
for experiment tracking.

C. Robotic Folding

To initiate a fold, a top-down RGB image is passed through
the keypoint detector network. If less than four keypoints are
detected, the folding is aborted; otherwise, the four keypoints
with the highest probability are extracted and reprojected onto
the table plane. Based on these keypoints, a local frame is
defined and the scripted pregrasp pose, grasp pose and fold
trajectory in this local frame are transformed to the robot
frame. The sequence is then executed by the robot. The robot
grasps the towel in the middle of the side that needs to be
folded. The folding trajectory is an arc from that grasp point
to the corresponding point on the other side of the towel.

IV. EXPERIMENTS

A. Evaluation

To evaluate the keypoint detector, two sets of towels are
used. All towels were collected by asking a number of lab
members to bring random towels to reduce bias. The first set
contains 11 towels with various colours and material properties
but with uniform textures, as modelled in the synthetic data.
These are referred to as the in-distribution towels. The second
set consists of 9 towels that are not in the distribution of the
synthetic data as they have highly non-uniform textures or very
different material properties. We refer to this additional set as
the out-of-distribution towels and include them to evaluate to
what degree the neural network is able to generalise from the
synthetic data.

We use three different environment settings, in which we
vary lighting and the presence of 6 random chosen distractor
objects. For each setting, the robot attempts to fold each towel
twice. The pose of the towel is manually randomised within
the workspace of the robot before each attempt. For some
larger towels, we already partially fold the towel to reduce
their dimensions. The partially-folded towels range from 0.2 m
to 0.5 m in size.

As the most informative metric of a robotic system is
the task performance, we evaluate the keypoint detector by
measuring the grasp success rate. Grasp success is defined
as the ability of the system to enclose the cloth at the grasp
pose. Note that this is different from [5], where grasps are
only considered successful if they are held during the entire

https://polyhaven.com/

(a) (b)

Fig. 3: a) Examples of trials for which the keypoint detection failed,
resulting in a failed grasp and fold. b) Examples of trials for which
the fold failed after a successful grasp. Each image pair shows the
initial state with the detected keypoints (yellow dots) and the final
state after attempting to grasp and fold.

manipulation. Fold success is defined, as suggested in [5],
as the approximate coincidence of the opposing corners after
manipulation.

B. Keypoint Detector

Using the procedure described in Section III-A, a dataset of
30,000 images is generated, of which samples can be found
in Fig. 2. The dataset is generated on a Dell XPS 9570 laptop
with a low-range Nvidia GTX 1050Ti mobile GPU. Generating
a single sample takes 1.8 s on average, of which 0.6 s is spent
on building the scene and 1.2 s on rendering.

We then train our keypoint detector to predict all visible
corner keypoints using sensible hyperparameters based on
previous experience. We train for 15 epochs, which takes 55
minutes on an Nvidia V100 GPU and results in an average
precision (with 2 pixel threshold) of 80% on a synthetic
validation set. We refer to the accompanying Github page
for details about the network architecture and other training
parameters.

C. Robotic Setup

We use a UR3e robot and Robotiq 2F-85 gripper. We 3D-
printed fingertips with a width of 0.08 m using flexfill TPU
98A filament to ensure compliance of the fingers while sliding
underneath the cloth for grasping. The camera is a ZED2i that
is mounted 1 m above the table and of which the extrinsics
have been determined upfront. The images are cropped to the
relevant area and then rescaled to the CNN’s input size of
256x256 pixels.

D. Results

The performance of the system is reported in Table I. The
total grasp success rate for the towels that are similar to those
modelled in the synthetic data is about 77%. From the success
rates, it is also clear that the presence of distractor items or
changes in lighting conditions, both of which are important
real-world domain shifts, do not influence the performance of
the keypoint detector. This shows that the randomizations in
the synthetic data generation were effective in this regard.

The fold success rate is about 53%. Examples of successful
folds (and hence grasps) for various settings can be seen
in Fig. 2. The fold success rate is lower than the grasp
success rate due to the limitations of scripted trajectories and
single-arm manipulation: About 80% of all fold failures are

Setting In-distribution Towels Out-of-distribution Towels
Grasp Fold Grasp Fold

Natural Light 17/22 14/22 9/18 8/18
LED Light 16/22 10/22 8/18 8/18
Distractors 18/22 11/22 9/18 4/18

Total 51/66 (77%) 35/66 (53%) 26/54 (48%) 20/54 (37%)

TABLE I: Performance of the system for real-world robotic folding
of towels using zero-shot transfer for the keypoint detector.

caused by corner misalignment as the corners bend during the
execution of the fold motion (see bottom row of Fig. 3b). This
could be resolved with bimanual manipulation or by enlarging
the fingertips to better perform a line fold [3]. For towels
that are already partially folded, the thickness and material
properties can change, which makes the open-loop trajectory
no longer suited to fold them (see top row example in Fig. 3b),
explaining the remaining fold failures.

Most grasp failures are due to inaccurate or incomplete
keypoint detection by the transferred neural network, examples
of which can be seen in Fig. 3a. These failures indicate there
is still a reality gap that was not covered by the variations
introduced in our synthetic dataset, requiring additional tuning
to better match the target distribution. For the towels that
contained non-uniform textures and were hence not explicitly
modelled, the grasp success rate deteriorates to 48% (see
Table I). The remaining grasp failures are due to some towels
being very light, causing the fingers to push the cloth away
instead of reaching underneath and grasping it due to a lack
of friction.

Finally, as recommended in [5], we report the execution time
of our robot system: A forward pass of the neural network is,
even on CPU, negligibly fast (� 1 s) compared to the time it
takes to execute the grasp and fold, which is about 20 s.

V. CONCLUSION AND FUTURE WORK

In this paper, we used synthetic data to train a neural
network to detect keypoints as a low-dimensional state repre-
sentation for cloth folding. We transferred the detector without
any finetuning (zero-shot) and measured its performance by
using the keypoints for folding towels on a robot setup.
The results indicate that using procedural data generation is
a viable approach to training keypoint detectors for cloth
manipulation. However, more extensive tuning is required to
completely overcome the reality gap. In future work, we plan
to further explore what factors matter to close this gap. This
will enable increased performance and provide more principled
guidelines for procedural data generation in general.

Additionally, the gap between the grasp and fold success
rates indicates that not only the perception but also the
manipulation of cloth remains a challenging task. In future
work, we therefore aim to close the control loop to take the
cloth properties into account and make the control more robust.

ACKNOWLEDGMENT

The authors wish to thank the members of the Keypoints
Gang, in particular Rembert Daems and Peter De Roovere,
for sharing many insights into Computer Vision and academic
research in general. This research is supported by the Research
Foundation Flanders (FWO) under Grant numbers 1S56022N
(TL) and 1SD4421N (VDG).

REFERENCES

[1] H. Yin, A. Varava, and D. Kragic, “Modeling, learning, perception, and
control methods for deformable object manipulation,” Science Robotics,
vol. 6, no. 54, p. eabd8803, 2021.

[2] J. Sanchez, J.-A. Corrales, B.-C. Bouzgarrou, and Y. Mezouar, “Robotic
manipulation and sensing of deformable objects in domestic and in-
dustrial applications: a survey,” The International Journal of Robotics
Research, vol. 37, no. 7, pp. 688–716, 2018.

[3] J. Borràs, G. Alenyà, and C. Torras, “A grasping-centered analysis for
cloth manipulation,” IEEE Transactions on Robotics, vol. 36, no. 3, pp.
924–936, 2020.

[4] A. Doumanoglou, J. Stria, G. Peleka, I. Mariolis, V. Petrı́k, A. Kargakos,
L. Wagner, V. Hlaváč, T.-K. Kim, and S. Malassiotis, “Folding clothes
autonomously: A complete pipeline,” IEEE Transactions on Robotics,
vol. 32, no. 6, pp. 1461–1478, 2016.

[5] I. Garcia-Camacho, M. Lippi, M. C. Welle, H. Yin, R. Antonova,
A. Varava, J. Borras, C. Torras, A. Marino, G. Alenyà, and D. Kragic,
“Benchmarking bimanual cloth manipulation,” IEEE Robotics and Au-
tomation Letters, vol. 5, no. 2, pp. 1111–1118, 2020.

[6] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel, “Cloth
grasp point detection based on multiple-view geometric cues with appli-
cation to robotic towel folding,” in 2010 IEEE International Conference
on Robotics and Automation, 2010, pp. 2308–2315.

[7] A. Verleysen, M. Biondina, and F. Wyffels, “Video dataset of human
demonstrations of folding clothing for robotic folding,” The Interna-
tional Journal of Robotics Research, vol. 39, no. 9, pp. 1031–1036,
2020.

[8] H. Ha and S. Song, “Flingbot: The unreasonable effectiveness of
dynamic manipulation for cloth unfolding,” in Conference on Robot
Learning. PMLR, 2022, pp. 24–33.

[9] S. Miller, J. van den Berg, M. Fritz, T. Darrell, K. Goldberg, and
P. Abbeel, “A geometric approach to robotic laundry folding,” The
International Journal of Robotics Research, vol. 31, no. 2, pp. 249–
267, 2012.

[10] M. Vecerik, J.-B. Regli, O. Sushkov, D. Barker, R. Pevceviciute,
T. Rothörl, R. Hadsell, L. Agapito, and J. Scholz, “S3k: Self-supervised
semantic keypoints for robotic manipulation via multi-view consistency,”
in Conference on Robot Learning. PMLR, 2021, pp. 449–460.

[11] Z. Qin, K. Fang, Y. Zhu, L. Fei-Fei, and S. Savarese, “Keto: Learning
keypoint representations for tool manipulation,” in 2020 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2020, pp. 7278–
7285.

[12] J. Wang, S. Lin, C. Hu, Y. Zhu, and L. Zhu, “Learning semantic keypoint
representations for door opening manipulation,” IEEE Robotics and
Automation Letters, vol. 5, no. 4, pp. 6980–6987, 2020.

[13] A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional
network for real-time 6-dof camera relocalization,” in Proceedings of
the IEEE international conference on computer vision, 2015, pp. 2938–
2946.

[14] T. D. Kulkarni, A. Gupta, C. Ionescu, S. Borgeaud, M. Reynolds,
A. Zisserman, and V. Mnih, “Unsupervised learning of object keypoints
for perception and control,” Advances in neural information processing
systems, vol. 32, 2019.

[15] B. Chen, P. Abbeel, and D. Pathak, “Unsupervised learning of visual
3d keypoints for control,” in International Conference on Machine
Learning. PMLR, 2021, pp. 1539–1549.

[16] T. Jakab, A. Gupta, H. Bilen, and A. Vedaldi, “Unsupervised learning
of object landmarks through conditional image generation,” in Advances
in Neural Information Processing Systems, vol. 31, 2018.

[17] X. Zhou, D. Wang, and P. Krähenbühl, “Objects as points,” arXiv
preprint arXiv:1904.07850, 2019.

[18] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birch-
field, “Deep object pose estimation for semantic robotic grasping of
household objects,” in Conference on Robot Learning. PMLR, 2018,
pp. 306–316.

[19] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ international conference
on intelligent robots and systems (IROS). IEEE, 2017, pp. 23–30.

[20] A. Tsirikoglou, J. Kronander, M. Wrenninge, and J. Unger, “Procedural
modeling and physically based rendering for synthetic data generation
in automotive applications,” arXiv preprint arXiv:1710.06270, 2017.

[21] A. Prakash, S. Boochoon, M. Brophy, D. Acuna, E. Cameracci, G. State,
O. Shapira, and S. Birchfield, “Structured domain randomization: Bridg-
ing the reality gap by context-aware synthetic data,” in 2019 Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2019,
pp. 7249–7255.

[22] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil,
T. To, E. Cameracci, S. Boochoon, and S. Birchfield, “Training deep
networks with synthetic data: Bridging the reality gap by domain
randomization,” in Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, 2018, pp. 969–977.

[23] B. O. Community, Blender - a 3D modelling and rendering package,
Blender Foundation, Stichting Blender Foundation, Amsterdam, 2018.
[Online]. Available: http://www.blender.org

[24] M. Denninger, M. Sundermeyer, D. Winkelbauer, Y. Zidan, D. Olefir,
M. Elbadrawy, A. Lodhi, and H. Katam, “Blenderproc,” arXiv preprint
arXiv:1911.01911, 2019.

[25] Q. Zhou and A. Jacobson, “Thingi10k: A dataset of 10,000 3d-printing
models,” arXiv preprint arXiv:1605.04797, 2016.

[26] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[28] S. Van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne,
J. D. Warner, N. Yager, E. Gouillart, and T. Yu, “scikit-image: image
processing in python,” PeerJ, vol. 2, p. e453, 2014.

[29] W. Falcon and The PyTorch Lightning team, “PyTorch Lightning,”
3 2019. [Online]. Available: https://github.com/PyTorchLightning/
pytorch-lightning

[30] L. Biewald, “Experiment tracking with weights and biases,” 2020,
software available from wandb.com. [Online]. Available: https:
//www.wandb.com/

http://www.blender.org
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning
https://www.wandb.com/
https://www.wandb.com/

	I Introduction
	II Related Work
	II-A Robotic Cloth Folding
	II-B Learning Keypoint Representations for Robotic Control
	II-C Synthetic Data for Computer Vision

	III Method
	III-A Synthetic Dataset Generation
	III-B Keypoint Detector
	III-C Robotic Folding

	IV Experiments
	IV-A Evaluation
	IV-B Keypoint Detector
	IV-C Robotic Setup
	IV-D Results

	V Conclusion and Future Work
	References

