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Abstract—This paper analyzes the feasibility of deep convo-
lutional neural networks (DCNN) for accurate ultra-wideband
(UWB) angle of arrival estimation that is robust against hard-
ware imperfections. To this end, a uniform linear array with
four antenna elements is leveraged and a DCNN approach is
proposed and compared with traditional approaches, such as
MUSIC and phase difference of arrival estimators, for different
environments, number of available channel impulse responses,
and polarization mismatches, in terms of absolute value of
error and computational complexity. The proposed approach
outperforms the traditional approaches up to 80◦ error reduction
at a computational complexity increase of only 10% compared
to MUSIC.

Index Terms—Angle of arrival (AoA), ultra-wideband (UWB),
channel impulse response (CIR), machine learning (ML), deep
convolutional neural network (DCNN), PDoA, MUSIC.

I. INTRODUCTION

ULTRA-wideband (UWB) has become a key technology
for localization systems in GPS-denied environments [1],

[2]. The UWB technology benefits from a high time-domain
resolution leading to a precise time of flight (ToF) and high-
resolution channel impulse response (CIR) measurements. The
high resolution CIR provides useful information that could
be used to tackle main localization challenges, e.g. multipath
propagation, making UWB a key technology for challenging
environments.

The UWB technology enables several localization ap-
proaches, among which angle of arrival (AoA) estimation is
highly demanded. AoA estimation is a crucial task in narrow
beam wireless data transmission and smart antenna systems to
facilitate beamforming [3], vehicle to vehicle communication
[4], and indoor positioning [5]. Unlike approaches that require
two-way communication between anchor node and tag node,
e.g. two-way ranging, in AoA estimation a feedback link is
not required (in self localization) which results in better system
scalability and complexity. In addition, current UWB position-
ing systems typically use timing information to determine the
distance between a mobile tag and several distributed anchor
nodes. By adding an additional antenna and radio module on
the anchor node (e.g. creating an antenna array), the phase
and arrival time can be determined at each antenna element,
enabling the extraction of angle-of-arrival information. Hence,
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using AoA, the total required infrastructure cost can be re-
duced significantly.

Traditional AoA estimation methods are divided into several
categories, namely spectral-based estimation, deterministic pa-
rameter estimation, and subspace-based AoA estimation [6].
These methods are vulnerable to array imperfections caused
by suboptimal antenna design, fabrication imperfections, inter-
antenna interference, and installation platform effects. In ad-
dition, challenging environmental effects, e.g. multipath and
non-line of sight (NLoS), will degrade the performance of
these traditional methods [7]. Modeling all of the afore-
mentioned destructive effects is not necessarily an efficient
approach, if not impractical.

As opposed to the rule-based algorithms, a deep convo-
lutional neural network (DCNN) is adopted in this work.
DCNNs select features from the input without manual feature
extraction and finds a mapping from the features in the ob-
served data to the desired output, i.e. true AoA. DCNNs have
demonstrated excellent performance in the image processing
domain [8]. The DCNN can overcome modeling complications
of the aforementioned antenna array imperfections and extract
features from the antenna array output to make the algorithm
robust against environmental changes. It should be noted that
relying on simulation results for evaluating machine learning
(ML) solutions could be misleading due to the fact that in the
simulations, the interfering effects are artificially added to the
system using known models [9]. However, such imperfections
could be unknown, difficult to measure, or too complicated to
be modeled. In this work, we use supervised ML to estimate
the AoA from a set of labeled input-output pairs.

Although almost all AoA estimation methods rely on the
reception of the signal by an array of antennas (or one antenna
that moves to different positions), [10] and [11] propose
a single-antenna AoA estimation approach. Single antenna
AoA estimation algorithms either require more complicated
hardware [10] or exploit the angle-dependent property of the
transmitter and receiver antenna pattern [11]. In the latter
approach, the AoA estimator maps the CIR to AoA for one
specific convolution of the impulse response of the transmit
antenna, channel, and receive antenna. Since in this approach
the estimator does not have access to differential information
(between antenna elements), the mapping is environment-
dependent for a fixed pair of transmit and receive antennas.

In addition to the error performance of the adopted algo-
rithm, its complexity plays an important role in an AoA esti-
mation, especially for real-time applications [12]. For instance,
iterative searches or singular value decomposition (SVD)
increase the complexity of an algorithm and, hence, require a
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careful examination of the time complexity. Furthermore, lack
of adequate snapshots can severely affect the AoA estimation
algorithm [13] hence, evaluation of the algorithm performance
in absence of adequate CIRs is of major importance to acquire
insight on a system level.

In this paper, a supervised ML approach is proposed to
achieve accurate AoA estimation robust against hardware
imperfections. It is validated for clean, multipath, and high-
noise conditions in various environments through experimental
results obtained by a four-antenna uniform linear array (ULA).
While prior work supported by empirical data is limited to
single and double antenna setups, our estimator is extendable
to any array configuration. The antenna array hardware is
equipped with four synchronized Decawave DW1000 chips
to extract the CIR at each antenna element. The main contri-
butions of this paper are as follows:

• A supervised DCNN solution is proposed to improve
AoA estimation error in multi-antenna-based UWB sys-
tems. The model is trained via high granularity labeled
data captured in an anechoic chamber. The model takes
the amplitude of the truncated CIR as input and outputs
the estimated AoA.

• Comparison of different AoA estimation algorithms in
terms of estimation error distribution and complexity. In
particular, the proposed method is compared to the phase
difference of arrival (PDoA) and MUSIC algorithms.

• Analysis of the robustness of the proposed solution
against small numbers of observed CIRs and antenna
polarization mismatch and comparison with PDoA- and
MUSIC-based AoA estimation.

II. SYSTEM DESCRIPTION

Consider a single-antenna transmitter and multi-antenna
receiver setup in an environment with Npath paths arriving
at the i-th receiver antenna element. The real-valued channel
impulse response is given by,

hi(τ) =

Npath∑
n=1

αnrn(τ)⊗ δ(τ − τn) (1)

where αn and τn are the gain and delay of the n-th path,
rn(τ) is the pulse distorted due to interaction on the way from
transmitter to receiver, ⊗ is the convolution operator, and δ(·)
is a Dirac function [14]. The shape of the distorted pulse rn(τ),
depends on the transmitted pulse, the transmit antenna’s im-
pulse response hTX , the channel (excluding antennas) impulse
response hH , and the receive antenna’s impulse response hRX .
hTX , hH , and hRX are cascaded blocks that could be com-
bined together depending on assumptions on the environment
and antennas [15, Sec. 4.2]. For the specific case of linear
time invariant (LTI) systems, the equivalent system reduces to
hTX⊗hH⊗hRX which is valid for static environments. Note
that dependence of hi(·), α, τ , and r on the angle of departure
from the transmit antenna and angle of arrival of the receive
antenna is omitted for simplicity of the notations.

A. Dataset Generation and Description

The hardware setup, shown in Fig. 1, consists of one UWB
Pozyx developer tag with an on-board chip antenna [16], and
one anchor board containing four DW1000 chips intercon-
nected to an ultra-wideband 1×4 air-filled substrate-integrated-
waveguide (AFSIW) cavity-backed slot antenna array [17].
The DW1000 chips are synchronized by a common clock and
the antenna array is interfaced to the PCB.

Anchor node

Tag node

Fig. 1. Single-antenna tag and anchor node with four synchro-
nized DW1000 chips and a 1×4 antenna array in an anechoic
chamber.

The experiments are conducted in clean, noisy, and mul-
tipath environments. The distance between the anchor and
tag node is 2.14 m in all the experiments. In the clean
environment experiment, no additional interfering effect is
added to the anechoic chamber. In the noisy environment
experiment, an extra -10 dB attenuator is added between each
antenna/DW1000 pair. Moreover, in the multipath experiment,
a reflector surface is used to introduce a second path (LoS
and NLoS) to the existing medium. The anechoic chamber
is equipped with an NSI-700S spherical near-field scanner
suitable for high granularity AoA measurements [18]. 500
CIRs are captured per AoA for [-90◦, 90◦] with a granularity
of 1◦. It is worth mentioning that since we use a hemispherical
antenna with a high front-to-back ratio to spatially filter away
waves impinging from the antenna backside, we choose [-90◦,
90◦] as the range of interest.

The multi-antenna anchor node communicates the complex-
valued samples of the accumulated CIR, FP index of CIR, and
synchronization frame delimiter (SFD) at the four DW1000
chips over an Ethernet interface. A CIR is constructed by
accumulating the cross-correlation of the arriving preamble
sequence and a known sequence with a resolution of 1 ns
at each DW1000 chip. The accumulated CIRs have a length
of LCIR = 1016 and one can extract the phase of arrival by
calculating the phase of the complex-valued CIR at the first
path (FP) index. Due to the limited resolution of the CIR, i.e.
1 ns, the FP index may not report the exact arrival moment
and as a result, it is recommended that the phase of arrival is
calculated by averaging the phase over the FP index and its
adjacent samples [10]. Note that the CIR reception rate is not
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constant and depends on the quality of the received signal. In
our experiment setup, 53 ms is required to capture one CIR.

B. AoA Estimation of UWB Array

In this section, we formulate the AoA estimation problem
taking into account the limited training and calibration data,
and estimation update rate. The mean absolute error (MAE)
of estimates can be defined as follows:

MAE(θ) =
1

N

N∑
i=1

|θ − θ̂i| (2)

and
θ̂i = f(gi

1, ..., g
i
NA

) (3)

where N is the number of available estimates per AoA, NA

is the number of antennas in the array, θ ∈ Θ = {-90, -
89,. . . , 90}, f(·) represents the estimation algorithm, and gi

nA

contains NCIR complex-valued CIRs, and the corresponding
SFDs and FP indices at antenna nA. The estimator uses NCIR

CIRs, SFDs, and FP indices to generate one update (new
estimate). The estimator can use Ntrain of the angles in Θ
for training or calibration purposes.

C. Rule-Based Methods

In this work, the proposed DCNN-based method is com-
pared with two rule-based AoA estimation methods, MU-
SIC, and PDoA. MUSIC is a spectral-based AoA estimation
method that uses the covariance matrix of the received signal
R̂ = 1

NCIR

∑1
NCIR

y[n]y[n]H = UnΛnUn + UsΛsUs, where
y is the array output, Us and Un are the signal and noise
subspaces, Λs and Λs are diagonal matrices, and (·)H is the
Hermitian transpose. The MUSIC AoA estimate is equivalent
to finding the direction that maximizes the MUSIC spectrum
given by

P (α) =
a(α)Ha(α)

a(α)HUnUH
n a(α)

(4)

where α is the direction of arrival and a(·) is the steering
vector [6]. PDoA AoA estimation works based on the differ-
ence between the phase at adjacent antennas with a separation
below half wavelength. The AoA estimate is given by

θ̂ =
1

β
arcsin

γ

π
(5)

where γ is a function of PDoA and SFD of the two receivers,
and β depends on the antenna array (in this work β = 1

0.87 )
[19]. Note that since PDoA is only applicable to two antennas,
we average three AoA estimates obtained from each subarray
of two adjacent antennas in the 1×4 antenna array.

D. ML-Based AoA Estimation

Table I gives an overview of the proposed algorithm. The
network estimates the AoA using the magnitude of windowed
CIRs received by each antenna element. The magnitude of
each CIR is windowed over the [FP-5, FP+30] index range.
The optimal range depends on the interests in the multipath
components of the CIR in the specific application. Our eval-
uations show that although the CIR phase conveys important

TABLE I. PROPOSED ESTIMATOR ARCHITECTURE

Layer Type Description Layer Type Description
0 Input 35×4 10 dropout 0.5
1 Conv1D 64×(size=3) + RELU 11 flatten -
2 Conv1D 64×(size=3) + RELU 12 Dense 256 + RELU
3 max pooling size=4 13 Dense 256 + RELU
4 norm - 14 Dense 256 + RELU
5 dropout 0.5 15 Dense 256 + RELU
6 Conv1D 32×(size=3) + RELU 16 Dense 256 + RELU
7 Conv1D 256×(size=3) + RELU 17 dropout 0.5
8 max pooling size=4 18 Linear Output
9 norm -

information about the AoA, our proposed method achieves
the same performance in terms of MAE using only the CIR’s
magnitude; thereby reducing the number of parameters in the
network.

The proposed CNN uses two 1D convolutional layers to
detect features in the input vectors, each followed by a rectified
linear unit (RELU), a max pooling, and a dropout layer. A
similar combination of layers is adopted in layers 6 and 7 as
reported in Table I, and the output is flattened to form the
input to the dense layers. In addition to the dropout layers
used after the convolutional layers, a dropout layer is used
after dense layer 16. These layers prevent a small number of
the extracted features to dominate the generation of the output
(AoA estimate) by randomly setting some features to zero at
each training step. We avoid providing mathematical formulas
for each layer due to the limited length of this letter.

A total number of 90500 CIRs are used for training, vali-
dation, and test of the network. Instead of randomly selecting
from a pool of CIR samples for test, train, and validation, we
divide Θ into three subsets, i.e. Θtest, Θtrain, and Θvalidation.
This ensures the proposed DCNN has not observed any CIR
from the directions selected for testing the proposed method.
Furthermore, test, train, and validation consist of 15%, 70%,
and 15% of the angles in Θ, respectively. The proposed DCNN
has 439,329 trainable parameters, and Adam optimizer is
adopted for training of the network [20].

III. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
estimator in terms of MAE and the absolute value of error. All
estimators are calibrated or trained for each test environment
separately to evaluate the generalization of each algorithm
to unseen AoAs. Fig. 2 depicts the average performance of
PDoA, MUSIC, and our ML-based solution in different test
environments for NCIR=5. As depicted in Fig. 2a, the average
performance of our proposed method outperforms PDoA and
MUSIC over the range [-90◦, 90◦]. Note that except reference
angle of arrivals mentioned in Table II, other test AoAs are
selected randomly. In addition to the non-linearity that both
PDoA and MUSIC algorithms suffer from around extreme
angles, MUSIC shows outliers and clipping to 90◦ and -90◦.
It is worth mentioning that although [19] proposes using a
lookup table to overcome the nonlinearity around extreme
angles for PDoA, Figs. 2b and 2c show that a one-to-one
relationship between the estimated AoA and true AoA does
not exist for a wide range of AoAs. To further investigate the
distribution of the absolute value of the estimation error, the
50th, 90th, and 99th percentiles of the absolute value of error
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Fig. 2. Rule-based and ML-based AoA estimation in clean (a),
noisy (b), and multipath (c) environments for NCIR = 5.

are reported in Table II for NCIR=5. The AoA estimation error
is a function of true AoA due to the planar array configuration.
Therefore, the error percentiles are reported for {-90, -60,
-30, 0, 30, 60, 90}, showcasing that our proposed solution
has a 99th percentile below or equal to 2.2◦, 2.8◦, and 2.2◦

for the clean, noisy, and multipath environments. These error
percentile values for different AoAs show that, in addition to
the general improvement, the performance of our proposed
method is not degraded for extreme AoAs, in contrast to the
more conventional rule-based methods.

The number of CIRs used to produce one AoA estimate,
NCIR, has an impact on the design of AoA estimation and
tracking systems. For instance, using NCIR = 5 takes 267 ms
on average in the clean environment experiment to generate
one AoA estimate update. As a result, NCIR determines the
maximum angular maneuver velocity that the algorithm can
capture, as well as the power consumption. Fig. 3 illustrates
how NCIR affects the 95th percentiles of the absolute value of
error in PDoA, MUSIC, and our proposed method. For smaller
values of NCIR, it is more likely that MUSIC gives highly
erroneous estimates, especially for extreme AoAs. PDoA on
the other hand is less sensitive to NCIR in terms of producing
extremely erroneous estimates.

A polarization mismatch between the antenna elements in
the array and the incident electromagnetic wave can distort
both the amplitude and the phase of the received signal. In
order to analyse the effectiveness of the proposed ML-based
method against polarization mismatch, we conducted measure-
ments for 0◦, 45◦, 75◦, 85◦ polarization mismatch in the clean
environment condition. Fig. 4 shows the average performance
of the AoA estimation techniques for the aforementioned
polarization mismatches. Both the MUSIC and PDoA fail to
compensate for the polarization mismatch despite the fact that

TABLE II. ABSOLUTE VALUE OF ERROR PERCENTILES
FOR NCIR = 5

(a) CLEAN ENVIRONMENT

AoA MUSIC PDoA ML
50th 90th 99th 50th 90th 99th 50th 90th 99th

-90◦ 20.8◦ 32.0◦ 180.0◦ 70.2◦ 78.8◦ 80.7◦ 0.8◦ 1.3◦ 1.7◦
-60◦ 5.8◦ 14.3◦ 24.6◦ 10.2◦ 18.2◦ 26.7◦ 0.4◦ 1.4◦ 2.2◦
-30◦ 3.6◦ 7.7◦ 12.5◦ 1.2◦ 9.5◦ 16.9◦ 0.5◦ 1.4◦ 1.9◦
0◦ 2.6◦ 6.9◦ 11.4◦ 1.4◦ 7.9◦ 10.36◦ 0.5◦ 0.9◦ 1.4◦

30◦ 4.1◦ 8.6◦ 48.3◦ 1.9◦ 8.5◦ 17.6◦ 0.5◦ 1.0◦ 2.0◦
60◦ 9.4◦ 17.6◦ 22.5◦ 9.4◦ 18.6◦ 31.9◦ 0.5◦ 1.1◦ 1.5◦
90◦ 24.9◦ 34.8◦ 180.0◦ 58.6◦ 72.7◦ 79.6◦ 0.7◦ 1.2◦ 1.5◦

(b) NOISY ENVIRONMENT

AoA MUSIC PDoA ML
50th 90th 99th 50th 90th 99th 50th 90th 99th

-90◦ 31.2◦ 36.4◦ 180.0◦ 36.9◦ 51.8◦ 65.3◦ 2.2◦ 2.5◦ 2.8◦
-60◦ 4.0◦ 10.1◦ 13.6◦ 6.6◦ 16.1◦ 25.2◦ 0.4◦ 1.4◦ 1.9◦
-30◦ 2.1◦ 4.4◦ 5.2◦ 0.9◦ 8.6◦ 12.7◦ 0.5◦ 1.4◦ 2.4◦
0◦ 2.0◦ 4.4◦ 6.4◦ 0.7◦ 5.6◦ 10.8◦ 0.4◦ 0.9◦ 1.5◦
30◦ 1.7◦ 4.5◦ 7.1◦ 2.5◦ 7.8◦ 16.9◦ 0.4◦ 0.9◦ 1.0◦
60◦ 4.2◦ 8.9◦ 20.6◦ 4.2◦ 13.0◦ 18.1◦ 0.3◦ 0.8◦ 1.0◦
90◦ 10.1◦ 21.7◦ 180.0◦ 63.5◦ 78.6◦ 87.2◦ 0.8◦ 1.1◦ 1.4◦

(c) MULTIPATH ENVIRONMENT

AoA MUSIC PDoA ML
50th 90th 99th 50th 90th 99th 50th 90th 99th

-90◦ 10.1◦ 24.5◦ 180.0◦ 65.3◦ 76.6◦ 81.8◦ 0.3◦ 0.8◦ 0.9◦
-60◦ 5.4◦ 10.8◦ 13.7◦ 11.3◦ 21.2◦ 25.6◦ 0.4◦ 0.7◦ 1.2◦
-30◦ 2.2◦ 6.1◦ 10.4◦ 3.0◦ 11.4◦ 16.2◦ 0.6◦ 1.7◦ 2.2◦
0◦ 2.4◦ 4.7◦ 6.4◦ 0.9◦ 5.9◦ 10.7◦ 0.2◦ 0.4◦ 0.5◦
30◦ 2.6◦ 6.2◦ 7.4◦ 4.5◦ 13.4◦ 22.6◦ 0.2◦ 0.3◦ 0.4◦
60◦ 7.2◦ 11.8◦ 14.4◦ 16.5◦ 31.2◦ 36.2◦ 0.2◦ 0.4◦ 0.6◦
90◦ 11.9◦ 22.2◦ 147.1◦ 52.5◦ 73.1◦ 84.5◦ 0.2◦ 0.4◦ 0.6◦

-90 -60 -30 0 30 60 90

NCIR = 2

NCIR = 3

MUSIC   NCIR = 4

NCIR = 5

NCIR = 6

168.4 117.7 67.4 60.0 82.7 127.9 160.0

180.0 54.2 22.8 35.8 60.0 77.6 155.1

165.0 17.4 12.1 9.5 18.9 22.0 70.3

124.2 15.8 8.8 8.4 10.8 19.6 39.1

32.5 14.3 7.5 7.6 8.5 20.2 36.5

86.2 31.7 22.5 14.3 21.7 31.7 80.6

82.5 24.9 15.8 10.5 14.4 25.0 80.1

80.2 25.1 11.9 11.6 11.0 26.6 80.2

79.6 22.3 14.3 9.1 11.7 26.0 77.4

79.0 22.8 14.0 8.1 10.2 23.1 77.6

1.0 2.3 2.4 1.4 2.5 1.5 1.3

2.0 2.9 2.4 1.3 2.2 1.0 1.2

1.0 1.6 1.9 1.3 1.9 1.0 1.0

1.5 1.5 1.7 1.0 1.3 1.3 1.4

0.7 2.3 1.6 0.7 1.5 0.8 1.1

CIR

CIR

CIR

CIR

CIR

CIR

CIR

CIR

CIR

CIR

N = 2

N = 3

PDoA   N = 4

N = 5

N = 6

N = 2

N = 3

ML   N = 4

N = 5

N = 6

True AoA

Fig. 3. The 95th percentile of the absolute value of the AoA
estimation error is shown for different values of NCIR in a
clean environment. For each AoA, 500 CIRs are used to form
the empirical CDF.
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they were re-calibrated for each polarization independently.
The proposed ML-based estimator, PDoA, and MUSIC are
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Fig. 4. Effect of polarization mismatch on AoA estimation
algorithms. The average AoA estimation performance is de-
picted for NCIR = 5 and polarization mismatch 0◦ (a), 45◦

(b), 75◦ (c), and 85◦ (d).

compared in Table III in terms of average execution time
in milliseconds for different values of NCIR. The proposed
method has almost the same execution time as MUSIC. PDoA,
however, has a shorter execution time (approximately 0.07 ms)
as expected for its simple structure shown in eq. 5. We average
the execution time over 1000 runs on a device equipped with
a 6 core Intel Core i7 CPU at 2.7 GHz, and 16 GB RAM
using the timeit Python module [21].

TABLE III. AVERAGE EXECUTION TIME (MS)

NCIR PDoA MUSIC ML
2 0.069 19.999 22.946
3 0.071 21.243 23.174
4 0.072 21.551 23.267
5 0.073 21.685 23.464
6 0.074 22.005 23.903

IV. CONCLUSION

This paper proposed a DCNN-based AoA estimator for
multi-antenna UWB systems. The proposed solution has a 99th
percentile error of 2.8◦, compared to 180◦ and 84.5◦ for MU-
SIC and PDoA, respectively. Furthermore, while decreasing
NCIR from 6 to 2 worsens the 95th percentile of the error
for the traditional approaches such as MUSIC (from 36.5◦

to 168.4◦) and PDoA (from 79.0◦ to 86.2◦). The proposed
solution is more robust and the errors do not exceed 2.5◦.
Moreover, the proposed solution is shown to effectively solve
the polarization mismatch. Finally, although the results show
significant error improvements, the proposed approach has
almost the same execution time as the traditional approaches.
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