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a b s t r a c t 

Background and objective: In oncology, 18-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography 

(PET) / computed tomography (CT) is widely used to identify and analyse metabolically-active tumours. 

The combination of the high sensitivity and specificity from 

18 F-FDG PET and the high resolution from 

CT makes accurate assessment of disease status and treatment response possible. Since cancer is a sys- 

temic disease, whole-body imaging is of high interest. Moreover, whole-body metabolic tumour burden is 

emerging as a promising new biomarker predicting outcome for innovative immunotherapy in different 

tumour types. However, this comes with certain challenges such as the large amount of data for manual 

reading, different appearance of lesions across the body and cumbersome reporting, hampering its use in 

clinical routine. Automation of the reading can facilitate the process, maximise the information retrieved 

from the images and support clinicians in making treatment decisions. Methods: This work proposes a 

fully automated system for lesion detection and segmentation on whole-body 18 F-FDG PET/CT. The nov- 

elty of the method stems from the fact that the same two-step approach used when manually reading 

the images was adopted, consisting of an intensity-based thresholding on PET followed by a classification 

that specifies which regions represent normal physiological uptake and which are malignant tissue. The 

dataset contained 69 patients treated for malignant melanoma. Baseline and follow-up scans together of- 

fered 267 images for training and testing. Results: On an unseen dataset of 53 PET/CT images, a median 

F1-score of 0.7500 was achieved with, on average, 1.566 false positive lesions per scan. Metabolically- 

active tumours were segmented with a median dice score of 0.8493 and absolute volume difference 

of 0.2986 ml. Conclusions: The proposed fully automated method for the segmentation and detection 

of metabolically-active lesions on whole-body 18 F-FDG PET/CT achieved competitive results. Moreover, it 

was compared to a direct segmentation approach which it outperformed for all metrics. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

In oncology, disease assessment and treatment monitoring is 

ommonly performed using positron emission tomography (PET) / 

omputed tomography (CT) [1–3] . For PET, 18-fluorodeoxyglucose 

 

18 F-FDG) is a widely used radiotracer. This glucose analogue indi- 

ates all areas with tracer buildup, including brain, bladder, certain 

egions of the abdomen and metabolically-active tumours. This 
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unctional information is joined with the anatomical knowledge 

rovided by CT to specify the exact location of the areas that light 

p on the PET image. The high sensitivity and specificity of 18 F- 

DG PET combined with the high resolution of CT allows for an 

ccurate interpretation of disease status. 

Malignant melanoma is the most lethal form of skin cancer. 

n 2020, it was responsible for over 300 000 new cases and over 

3 0 0 0 deaths [4] . However, developments in new therapies with 

mmune checkpoint inhibitors and targeted therapies have shown 

romising results [5–7] . Analysis of baseline and follow-up scans 

re imperative for proper evaluation of the response to treatment. 

oreover, recent studies [8–11] have demonstrated that the images 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

https://doi.org/10.1016/j.cmpb.2022.106902
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2022.106902&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:idirks@etrovub.be
https://doi.org/10.1016/j.cmpb.2022.106902
http://creativecommons.org/licenses/by-nc-nd/4.0/


I. Dirks, M. Keyaerts, B. Neyns et al. Computer Methods and Programs in Biomedicine 221 (2022) 106902 

c

r

s

Y

t

s

j

i

a

1

t

[

s

b

3

l

v

a

c

g

r

l

m

g

i  

8

c

f

d

t

f

b

o

w

t

i

t

C

d

1

i

t

m

T

t

[  

a

a

fi

f

c

T

e

w

a

f

b

c

t

T

a

9

o

o

v

t

s

b

o

w

e

t

t

R

d

h

A

a

w

o

o

t

f

p

a

t  

l

0

m

w

m

t

p

t

j

t

t

f

c

f

m

n

7

t

d

i

C

t

o

a

l

P

p

t

h

e

a

s

ontain information that can contribute to treatment selection. Pa- 

ameters like total metabolic tumour volume (TMTV) and total le- 

ion glycolysis (TLG) hold predictive power for treatment response. 

et, these cannot be used in clinical practice because the current 

umour segmentation procedure is labour intensive and time con- 

uming. Also, the required user input makes the procedure sub- 

ective and leads to intra- and inter-observer variations. Automat- 

ng the process can tackle these issues and assist in exploiting all 

vailable information, which is the subject of current work. 

.1. Related work 

Several authors have proposed tools that partially or fully au- 

omate tumour segmentation from PET/CT imaging. Hirata et al. 

12] proposed a semi-automated method to derive a reference 

tandardised uptake value (SUV) from the liver. This was done 

y automatically placing a spherical volume of interest (VOI) of 

0 mm diameter in a manually-drawn sphere enclosing the right 

iver lobe. The position was selected based on the coefficient of 

ariation associated with a voxel ( CV v ) on the PET image, defined 

s the standard deviation divided by the mean of the intensities in- 

luded in a sphere surrounding the voxel. Although they achieved 

ood agreement with the manual method, user interaction was still 

equired and more difficult cases, like patients with more than two 

iver metastases, were excluded. 

Gsaxner et al. [13] created a system for urinary bladder seg- 

entation on CT using the FDG PET to automatically extract 

round truth masks for the CNN. The method reached a true pos- 

tive rate of 83.1 %, a true negative rate of 99.9 %, a dice score of

1.9 % and a Hausdorff distance of 11.9 pixels. 

Zhao et al. [14] developed a lung tumour segmentation system 

onsisting of separate V-nets for PET and CT, a summation step and 

our cascaded convolutional blocks. The method achieved a mean 

ice score of 0.85, a ratio of absolute volume difference to ground 

ruth volume of 0.33 and a classification error of 0.15. 

Zhong et al. [15] trained separate 3D U-Nets on PET and on CT 

rom which the probability maps were combined into a final mask 

y a graph cut co-segmentation. Dice scores of 0.76 and 0.87 were 

btained for PET and CT respectively. 

Moe et al. [16] applied a U-Net to PET and CT separately as 

ell as to the combined images of head-and-neck cancer pa- 

ients. The ground truth segmentations were obtained by merg- 

ng delineations of gross tumour volume by oncologists and ex- 

racted pathological lymph nodes. The model with both PET and 

T achieved the best results with a dice score of 0.75, positive pre- 

ictive value of 0.78, sensitivity of 0.74 and a specificity of 0.99. 

Sibille et al. [17] examined the use of CNNs on whole-body 
8 F-FDG PET/CT images to localise and classify uptake patterns 

nto suspicious and non-suspicious regions. These classifications, 

ogether with the anatomical locations and a reconstructed maxi- 

um intensity projection (MIP) image served as inputs to the CNN. 

o obtain candidate regions, the volumes of interest extracted from 

he PET image were segmented using a fixed thresholding method 

18] . The system reached an AUC of 0.98 with a sensitivity of 87.1%

nd specificity of 99.0% for lung cancer and a sensitivity of 75.4% 

nd a specificity of 95.8% for lymphoma. 

In a next step, reported by Capobianco et al. [19] , this classi- 

cation network was used to develop a fully automated method 

or TMTV estimation. The volumes of all regions classified suspi- 

ious by the aforementioned CNN were summed to a TMTV PARS . 

he ground truth volumes were derived semi-automatically by 2 

xperienced nuclear medicine physicians. The remaining volumes 

ere added to obtain TMTV REF . For both the ground truth volumes 

nd predicted volumes, an analysis was performed for progression- 

ree survival and overall survival over four years. A log-rank test 

etween the Kaplan-Meier curves decided if there were statisti- 
2 
ally significant differences between the ground truth and predic- 

ion. The ranked TMTV estimated showed significant correlation. 

he suspicious segmentations reached a median dice score across 

ll patient of 73%, a median recall of 62% and median precision of 

6%. 

Li et al. [20] created DenseX-Net for lymphoma segmentation 

n 2D slices of whole-body 18 F-FDG PET/CT. The network consisted 

f two main pathways, one for supervised and one for unsuper- 

ised learning. The former handled feature extraction and seman- 

ic segmentation while the latter aimed to learn semantic repre- 

entations in an unsupervised way by minimising the divergence 

etween the input and output. During the joint training, per batch, 

ne pathway was trained while keeping the other one fixed after 

hich these trained convolution kernels were used to initialise the 

ncoder layers of the other pathway. This was repeated while al- 

ernating between the pathways. In an ablation study comparing 

he proposed DenseX-Net to ConvU-Net [21] , ConvX-Net, ResUnet, 

esX-net and DenseU-Net [22] , the DenseX-Net obtained the best 

ice score (0.7263) and recall (0.8079). ConvU-Net achieved the 

ighest precision, 0.7599 compared to 0.7003 for the DenseX-Net. 

lso, with respect to other segmentation networks [23–25] , dice 

nd recall were highest with the DenseX-Net. 

Jemaa et al. [26] developed a tumour segmentation system for 

hole-body 18 F-FDG PET/CT. It consisted of a modified U-Net to 

btain 2D segmentations that were subsequently refined by one 

f three 3D V-Nets, depending on their anatomical location. For 

he latter, different networks were trained on patches extracted 

rom the head and neck region, the chest and abdomen or the 

elvis. These locations were determined with respect to the liver 

nd lungs, which were localised through the method described in 

he work of Bauer et al. [27] . For a set of follicular Non-Hodgkin’s

ymphoma patients, the system reached an average dice score of 

.886, a voxel level sensitivity of 92.6 % and the derived total 

etabolic tumour volume had a Spearman’s correlation of 0.97 

ith the ground truth, while for the SUV max this was 0.96. 

Kumar et al. [28] proposed a CNN for lesion detection and seg- 

entation on FDG PET/CT from non-small cell lung cancer pa- 

ients. Tumours were located based on the diagnostic imaging re- 

ort written by an experienced imaging specialist and delineated 

hrough 40% peak SUV connected thresholding and manual ad- 

ustments. Ground truth for lungs and mediastinum were derived 

hrough adaptive thresholding and connected thresholding respec- 

ively. The CNN comprised two encoders, one for PET and one 

or CT, a co-learning part for feature fusion and a reconstruction 

omponent to derive the final segmentation. Evaluation was per- 

ormed on foreground areas, including lungs, mediastinum and tu- 

ours, and other regions denoting for example high intensity PET 

oise. For tumour detection, the method reached 64.56% precision, 

9.97% sensitivity, 99.89% specificity, 99.85% accuracy derived from 

he overlap of ground truth and prediction. For segmentation, a 

ice score of 63.85% was obtained. 

Li et al. [29] proposed a system to segment tumours on PET/CT 

n non-small cell lung cancer. CT probability maps derived by a 

NN were combined with the PET image through a fuzzy varia- 

ional model. The method obtained a mean dice of 0.86, sensitivity 

f 0.86, positive predictive value of 0.87, a volume error of 0.16 and 

 classification error of 0.30. 

Blanc-Durand et al. [30] applied the nnU-Net [31] to segment 

esions for diffuse large B-cell lymphoma on whole-body FDG- 

ET/CT. For the ground truth, a 50 cm 

3 sphere was manually 

laced in the liver. A PET threshold was applied, set at 1.5 times 

he mean liver uptake plus 2 times the standard deviation. The 

igh-intensity regions were delineated at 41% of SUV max . Two 

xperienced physicians removed regions of physiological uptake, 

dded low-intensity lesions, classified the lymphoma lesions and 

aved the locations. In a cross-validation, the network achieved a 
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Fig. 1. Proposed two-step method. First, all regions of increased PET tracer uptake 

are segmented based on a threshold derived from an automatically identified VOI in 

the liver (1). Next, these areas are classified by a CNN as either physiological uptake 

(blue) or tumourous tissue (red) (2). (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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ean dice of 73%, a mean Jaccard coefficient of 68% and, at voxel 

evel, a sensitivity of 75%, specificity of 79%, positive predictive 

alue of 83%, a negative predictive value of 99% and a difference in 

MTV of 12 ml. For the independent test set, only the difference in 

MTV was reported, which increased to 116 ml. 

.2. Goal and contributions of this study 

The goal of this work is the development of an automated de- 

ection and segmentation procedure of metabolically-active lesions 

n whole-body 18 F-FDG PET/CT, with the aim to support medical 

xperts in the disease assessment and treatment selection, specif- 

cally for malignant melanoma. Automation of the procedure ren- 

ers it less time consuming and labour intensive and diminishes 

he inter- and intra-observer variability. This may render the de- 

ection of lesions more reliable, and could enable the use of addi- 

ional measures such as TMTV and TLG for routine selection of the 

ptimal therapy. 

The main novelty of the approach lies in the design of a two- 

tep procedure which closely resembles the manual reading ap- 

roach performed by nuclear medicine specialists (but not feasi- 

le in clinical routine for whole-body images), and described in 

nternational guidelines, in order to facilitate the interaction be- 

ween the system and the medical doctor. The proposed method 

xploits the highly sensitive nature of 18 F-FDG PET through an ini- 

ial intensity-based candidate detection step. Next, a refinement is 

mplemented in form of a false positive reduction step, incorporat- 

ng also the CT as well as contextual information. The intermediate 

utputs allow to clarify how the system came to the final results, 

ncreasing the interpretability of the approach. Moreover, they en- 

ble the user to identify and correct errors when needed. The pro- 

osed procedure is compared to a direct segmentation method, 

urrently state-of-the-art in the field, to evaluate the advantages 

nd disadvantages of both. 

. Materials and methods 

The proposed system, illustrated in Fig. 1 , follows the general 

rocedure used by nuclear medicine physicians. First, a spherical 

olume of interest is drawn in a uniform region of the liver. The 

ntensities contained in the VOI are used to determine a threshold. 

ll PET areas with an intensity exceeding this threshold are consid- 

red a potential lesion. This includes metabolically-active tumours, 

ut also healthy tissue that consumes glucose, like the brain, blad- 

er and parts of the abdomen. In the second step, these PET- 

ositive areas are subjected to a classifier, in order to distinguish 

hysiological tracer uptake from the final lesion segmentations. 

.1. Experimental data 

The study included a retrospective analysis of 69 patients 

reated at Universitair Ziekenhuis Brussel (UZ Brussel, Brussels, 
3 
elgium) for malignant melanoma. Each patient received a base- 

ine exam and between 0 and 9 follow-ups, resulting in a total of 

67 PET/CT images. Most scans were acquired on a Philips Gemini 

F (Koninklijke Philips N.V., Amsterdam, Netherlands) (108) or a 

iemens Biograph mCT (Siemens Healthineers, Erlangen, Germany) 

157). Two scans were taken on a GE Discovery 690 (GE Heath- 

are, Chicago, USA). The PET scans were converted to body-weight- 

orrected standardised uptake values ( SUV bw 

) according to 

UV bw 

= 

C(t) ∗ bw 

D 

, (1) 

ith C(t) the activity concentration measured from the image ac- 

uired at time t [Bq/ml], bw the body weight of the patient [kg] 

nd D the injected dose, corrected for the decay between tracer in- 

ection and scan acquisition [Bq]. On average, the injected dose was 

76.4 ± 34.71 MBq [177.0 MBq - 634.0 MBq] and the body weight 

as 71.19 ± 15.72 kg [113 kg - 40 kg]. The PET images varied in

ize between 144 - 256 voxels left-right and anterior-posterior and 

55 - 680 voxels inferior-superior with spacings between 2.73 mm 

nd 4 mm. The CT images had a size of 512 voxels left-right and 

nterior-posterior and 204 - 2038 inferior-superior with spacings 

etween 0.90 mm and 5 mm. 

.2. Ground truth annotations 

The results of the proposed system were compared to the 

ethods corresponding clinical practice in our institute. Though 

his is based on the PET Response Criteria in Solid Tumours (PER- 

IST), there are some differences. The ground truth tumour seg- 

entations were derived semi-automatically by a physician us- 

ng MIM Encore (MIM Software Inc., Cleveland, USA). A volume 

f interest of approximately 30 mm diameter was drawn in a 

omogeneous-looking part of the liver. On 48 scans this was more 

hallenging due to the presence of liver metastases. In a few ex- 

reme cases, the VOI size was manually adapted to exclude any 

esion tissue in the threshold calculation. The PET threshold was 

etermined according to common clinical practice in the institute 

s 

p = μVOI + 3 ∗ σVOI , (2) 

ith p the threshold in SUV bw 

, and μVOI and σVOI respectively the 

ean and standard deviation of the intensities in the liver VOI. Ar- 

as with an intensity above this threshold were manually classi- 

ed as lesion or healthy tissue. Any volumes smaller than 1 ml 

ere excluded. The VOI position, false positive removal and result- 

ng lesion segmentations were checked by an experienced nuclear 

edicine expert. A lesion could be enlarged or reduced a few vox- 

ls to improve the delineation and, in a few cases, a low-intensity 

esion was added. A continuous high-intensity region could contain 

oth the lesion and healthy class. 

.3. Dataset division 

The disease status of the patients was very diverse. The num- 

er of lesions per scan ranged from none to hundreds with total 

esion volumes varying from 0 ml to more than 6500 ml. For train- 

ng and validation of the classification step, stratified sampling en- 

ured an equal distribution of these patients over the different data 

plits. The images were divided into five strata depending on the 

atio of the number of lesions to the number of high-intensity ar- 

as. So, this ratio indicates which percentage of the total amount 

f patches contains a lesion. Moreover, the follow-ups of the same 

atient were included in the same set so that images of the same 

atient could not appear in different sets and lead to results are 

oo optimistic. Also, a proportional distribution of the number of 

esion candidates over the different sets was ensured. The training 
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Table 1 

Division of the dataset. 

Train Validation Test Independent test 

Strata # lesions / # patches 60% 10% 10% 20% Total 

1 no lesions 90 10 14 29 143 

2 1% - 10% 31 3 0 10 51 

3 11% - 20% 16 6 7 6 29 

4 21% - 30% 13 4 1 3 20 

5 > 30% 15 2 2 5 24 

Total # images 165 25 24 53 267 

Total # patients 42 6 5 16 69 

Total # lesion patches 594 111 90 198 993 

Total # healthy patches 3761 599 645 1250 6255 
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et was used to train the weights of the CNN model. The validation 

et was used for assessing regularisation during training, evaluat- 

ng the loss at the end of each epoch and determining the opti- 

al epoch. Other hyperparameters, such as the optimal network 

opology, were tuned by looking at the results on the test set. The 

ndependent test set was only used three times: twice during the 

esign of the CNN and once for generating the final results. Table 1 

hows the division of the images over the different sets per strata 

nd in total. 

.4. Threshold selection 

In order to draw a VOI in the liver, this organ first has to 

e segmented. We previously proposed a method for automated 

iver and VOI localisation [32] . Here, a slightly modified approach 

s presented, optimised for robustness. In brief, the dense V-net 

eveloped by Gibson et al. [33] was altered to segment only the 

iver instead of eight different abdominal organs and the settings 

ere tuned to work well with whole-body images. The network 

as retrained on the Liver Tumor Segmentation Challenge dataset 

34] using an Adam optimiser with a learning rate of 0.001 in 30 0 0

terations. This previously proposed method [32] was extended by 

dding a morphological closing to remove any holes due to noise 

n the CT as well as a restriction to the right side of the body to

anage leakage to the heart. Each possible position for the liver 

OI inside this mask was judged based on its surrounding inten- 

ity variations. For both PET and CT, the standard deviation of the 

ntensities enclosed in a 30 mm-diameter sphere was calculated 

nd assigned to σ PET 
x and σCT 

x respectively. Each voxel x was given 

 score 

total 
x = σ PET 

x ∗ σCT 
x (3) 

epresenting the homogeneity of the region. 

To handle cases with liver lesions, voxels with a high intensity 

ere excluded. Though there is no clear SUV threshold that can 

e determined, several studies [35–38] show that typically, healthy 

iver parenchyma will not exceed 5 SUV. To avoid the VOI being 

aken in a large, uniform lesion, voxels over 5 SUV bw 

were ex- 

luded from the liver mask. Only positions where the VOI could be 

ully enclosed in the liver mask were considered. The voxel with 

he lowest σ total 
x was selected as centre of the VOI for the PET 

hreshold calculation using (2) . 

.5. False positive reduction 

The PET and CT images were resampled to an isotropic voxel 

ize of 4 mm and 2 mm respectively. To classify each area with a 

ET intensity higher than the threshold, a multimodal, multiscale 

NN was trained. Centred on each ground truth lesion, patches 

f different sizes were extracted from both PET and CT and were 

abelled positive. After subtracting these lesions from the ground 

ruth lesion candidate segmentation, similarly sized patches were 
4 
xtracted and labelled as negative. For each of the modalities, 

sotropic patches of 160 mm and of 80 mm were extracted to in- 

lude contextual information. For PET, an additional set of zoomed 

n patches were extracted with a size of 40 mm in three di- 

ensions. These extra patches were not included for CT as these 

maller lesions are unlikely to cause anatomical changes perceiv- 

ble on CT. Thus, in total, two sets of CT patches (160 mm and 

0 mm) were collected and three sets of PET patches (160 mm, 

0 mm and 40 mm). All patches were resampled to 20 x 20 x 20

oxels for PET and 40 x 40 x 40 voxels for CT. In the training set,

here were about five times more patches with physiological up- 

ake than with lesion tissue. This was balanced by five different 

ranslations on each lesion patch. Translations, rotations and flips 

ere applied to increase the dataset to fifteen times its original 

ize. This resulted in a balanced, augmented dataset of 168 300 

atches of which 60 % were used for training. 

The proposed network, shown in Fig. 2 , consists of two main 

ranches, one for PET and one for CT, so that the hyperparame- 

ers could be tuned to PET and CT separately as they contain very 

ifferent information. Similarly, each branch handles the multiscale 

nformation through separate pathways allowing the parameters to 

e trained to the level of contextual information available in the 

atch. The pathways as well as the two main branches are fused 

hrough late averaging of the probability maps, thereby combining 

he information of the five different pathways, each associate to 

ne patch type. 

Each pathway consists of twice a convolutional step followed 

y a max pooling layer. After flattening the tensor, two dense lay- 

rs, separated by a dropout layer, lead to a probability for the 

atch representing a lesion or healthy tissue. The optimised pa- 

ameters included the amount of regularisation, the convolutional 

ernel size and stride, the number of filters per convolution, the 
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umber of dense nodes in the final layer, the learning rate and the 

umber of epochs. 

.6. Direct segmentation 

The two-step procedure was compared to a direct segmentation 

pproach. The open-source nnU-Net [31] was used as it won sev- 

ral recent medical image segmentations challenges and requires 

inimal model optimisation in terms of hyperparameters. The 3D 

etwork was trained and tested on the same dataset. Both PET and 

T were resampled to an isotropic spacing of 4 mm and provided 

o the network in two channels. Patches of 128 x 128 x 128 voxels 

ere extracted in a batch size of 2. An Adam optimiser was used 

nstead of Stochastic Gradient Descend because this gave slightly 

etter results. All other parameters were set as recommended in 

31] . Similarly to the ground truth, any lesions with a volume 

maller than 1 ml were excluded. 

.7. Evaluation 

Since no ground truth liver segmentations were available and 

he method does not require a perfect segmentation, a visual check 

as performed to ensure a proper mask was created for every pa- 

ient. The liver localisation network was trained on the publicly 

vailable Liver Tumor Segmentation Challenge dataset [34] . There- 

ore, the derivation of a suitable PET threshold was tested on the 

ntire dataset of 267 cases. Evaluation of the automatically derived 

hresholds is not straightforward. The manually obtained thresh- 

lds can not strictly be considered ground truths as they are sub- 

ect to intra- and interobserver variations. The automatically ob- 

ained values should be similar to those that were manually ob- 

ained, but are still expected to deviate within a normal range of 

bserver variability. Both sets of thresholds were compared us- 

ng Bland-Altman analysis to assess their relation and potential 

ias. To measure the agreement between the manual and pro- 

osed method, the intraclass correlation coefficient (ICC) was com- 

uted. For testing the full pipeline, the PET was thresholded with 

he automatically derived value to obtain the lesion candidates. 

olumes smaller than 1 ml were excluded. Centred on each PET- 

ositive connected component, the patches were extracted which 

ere then given to the CNN to classify. 

To assess the performance of the classification step, indepen- 

ently from the impact of the slightly different PET thresholds on 

he final tumour segmentations, we also evaluated the classifica- 

ion step by itself. For the latter, the patches for testing were ex- 

racted the same way as the training patches, using the manually 

erived thresholds. 

In clinical routine, both the detection and segmentation of tu- 

ours are important. For detection, a lesion was counted as a true 

ositive (TP) when the centroid distance between the ground truth 

nd prediction was less than 10 mm. When the distance was larger 

r there was no prediction nearby, a false negative (FN) was added. 

nversely, a prediction was considered a false positive (FP) if its 

entroid was more than 10 mm from the centroid of any ground 

ruth lesion. In case there were multiple predictions within the re- 

uired distance from a ground truth lesion, the closest one was 

ounted as true positive. If there was no other lesion with which 

he predictions could correspond, the remaining predictions were 

alse positives. Model performance was assessed with the F1-score, 

ombining recall (R) and precision (P) in one metric according to 

 = 

T P 

T P + F N 

, (4) 

 = 

T P 

T P + F P 
, (5) 
5

 1 = 2 ∗ P ∗ R 

P + R 

= 

T P 

T P + 0 . 5 ∗ (F P + F N) 
. (6) 

For segmentation, the dice similarity coefficient (DSC) and ab- 

olute volume difference (AVD), defined as 

SC = 

2 ∗ T P 

2 ∗ T P + F P + F N 

, (7) 

V D = | V groundtruth − V prediction | (8) 

ere evaluated. The true positives, false positives and false nega- 

ives were determined at voxel level. Cases without ground truth 

esions were excluded from F1 and dice calculations. 

. Results 

.1. Threshold selection 

The automatically and manually obtained thresholds are com- 

ared in a Bland-Altman analysis in Fig. 3 . Except for one case, 

ll thresholds were within 1 SUV bw 

of the manually defined val- 

es. Including this outlier, the mean deviation of the thresholds 

as 0.0986 ± 0.279 SUV bw 

. The mean absolute difference was 

.207 ± 0.212 SUV bw 

. The average dice score between the seg- 

entations obtained when thresholding the PET with the manually 

erived value and with the automatically derived threshold was 

.965. An ICC of 0.903 (95% CI: 0.880, 0.920, p < 0.001) indicated 

n excellent agreement [39] between both sets of thresholds. 

The mean SUV bw 

value in the liver VOI has an average devia- 

ion from the ground truth of 0.0127 ± 0.265 which is within the 

xpected range of inter-observer variability [12,40] . 

For the outlier, thresholds of 2.87 SUV bw 

and 5.14 SUV bw 

were 

erived by the manual and proposed method respectively. The high 

alue for the latter indicates that lesion tissue was included in 

he VOI. Indeed, as shown in Fig. 4 , it was not possible to find a

0 mm-diameter liver VOI consisting of only healthy tissue. Verifi- 

ation revealed that the manually drawn VOI was given a smaller 

iameter to fit in between the lesion tissue. 

.2. Tumour detection and segmentation 

The median detection and segmentation results are summarised 

n Table 2 . A comparison is made with the results for the individual 

teps of the proposed method as well as the full pipeline and the 

irect segmentation approach. 

The row corresponding to the full pipeline presents the results 

or the fully automated, two-step procedure. 
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Table 2 

Median detection and segmentation results. 

Evaluated on Method F1 # FP DSC AVD 

Test set Classification step 0.733 ± 0.204 2.00 ± 1.42 0.892 ± 0.352 4.00 ± 11.6 

Full pipeline 0.774 ± 0.191 1.50 ± 1.56 0.868 ± 0.334 5.41 ± 25.8 

nnU-Net 0.667 ± 0.199 2.00 ± 1.33 0.637 ± 0.293 6.92 ± 45.0 

Independent test set Classification step 0.857 ± 0.196 0 ± 3.58 0.900 ± 0.402 0 ± 187 

Full pipeline 0.750 ± 0.275 0 ± 4.73 0.849 ± 0.390 0.299 ± 187 

nnU-Net 0.634 ± 0.222 2.00 ± 2.91 0.500 ± 0.288 12.5 ± 86.1 

Fig. 4. Axial slices from the PET image considered an outlier in the threshold cal- 

culation with lesion overlay in red. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Recall plotted against the mean number of false positives per scan for the 

proposed method and the nnU-Net evaluated on the test set and independent test 

set. The dots correspond to a lesion probability threshold of 50 %. 
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Fig. 6. Boxplots representing the absolute volume differences achieved by the clas- 

sification step alone, the full pipeline and the nnU-Net for both the intermediate 

and independent test set. Outliers were omitted for visibility purposes. 
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The row corresponding to the classification step only allows to 

sses the impact of the difference in threshold, as it considers the 

esults when applying the manually obtained thresholds and re- 

oving false positives with the trained CNN. In this case, the best 

esults are obtained for most metrics, indicating excellent perfor- 

ance of the false positive reduction step. 

The proposed full pipeline outperforms the direct segmentation 

pproach in terms of detection and segmentation metrics. The dif- 

erence between the methods for the independent test set was sig- 

ificant for AVD (Wilcoxon signed-rank test, p = 0.00236), but not 

or dice (Wilcoxon signed-rank test, p = 0.0615), partially due to 

 lower number of comparisons as cases with no ground truth le- 

ions were excluded. The curves plotting recall against the average 

umber of false positives per scan for both approaches are drawn 

n Fig. 5 . 

Overall, detection and segmentation metrics were slightly worse 

or the independent test set compared to the test set, and as- 

ociated with larger variation. This may indicate some overfitting 

nd/or differences in test and independent test set data distribu- 

ion. The degradation in performance was largest for the direct 

egmentation approach. The distributions of the AVD results are 

ummarised in Fig. 6 . Considerably better results are obtained on 
6

he independent test set. Dice values were associated with large 

ariations. This is expected to be due to the fact that this is a less

ppropriate metric for small structures [41] . 

Table 3 summarises the detection and segmentation results of 

n ablation study. A comparison is made between networks lim- 

ted to PET images or to CT images, as well as using only 80 mm

atches, only 160 mm patches, a combination of both and the pro- 

osed network. The proposed method leads to the best results for 

ost metrics in case of the test set and was found to give a good

verall compromise on the independent test set. 

. Discussion 

A fully automated procedure for tumour detection and seg- 

entation on whole-body 18 F-FDG PET/CT was proposed. In line 

ith how manual reading is performed, a PET threshold is de- 

ived to delineate all regions with glucose retention. Next, the ar- 

as of physiological uptake are suppressed to obtain the final le- 

ion segmentations. In addition to evaluating the performance of 

he system, it is of value to consider the output given to the user, 

llustrated in Fig. 7 . Along with the final segmentations, our ap- 

roach visualises the VOI selected in the liver, and the correspond- 

ng PET-positive regions classified as physiological uptake. These 

llow a better understanding of how the final tumour masks are 

btained, giving the system a higher interpretability compared to 

 direct method. Moreover, supported by these additional visuali- 

ations, the system’s performance can be reviewed and modified if 

ecessary. 

In terms of computational time, the proposed method is suited 

o be used in clinical practice. Once the entire model is trained, it 

akes on average 3 to 4 min to go from the DICOM PET/CT scans 

o the final lesion segmentations, which can be performed in the 

ackground. Adaptation to the liver VOI or excluded physiological 

ptake regions, leads to a new result in a matter of seconds. 
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Table 3 

Median detection and segmentation results of the ablation study . 

Evaluated on Network F1 # FP DSC AVD 

Test set PET only 0.690 ± 0.199 2.00 ± 1.71 0.663 ± 0.302 7.02 ± 43.1 

CT only 0.667 ± 0.230 3.00 ± 2.46 0.657 ± 0.295 10.5 ± 355 

PET/CT 80 mm patches 0.571 ± 0.198 3.00 ± 2.14 0.626 ± 0.308 19.9 ± 32.8 

PET/CT 160 mm patches 0.667 ± 0.176 2.00 ± 1.78 0.747 ± 0.267 3.76 ± 41.6 

PET/CT 80 mm & 160 mm patches 0.727 ± 0.190 1.50 ± 1.67 0.867 ± 0.333 6.04 ± 18.7 

Proposed 0.774 ± 0.191 1.50 ± 1.56 0.868 ± 0.334 5.41 ± 25.8 

Independent test set PET only 0.800 ± 0.283 1.00 ± 3.89 0.776 ± 0.382 2.44 ± 222 

CT only 0.667 ± 0.267 0 ± 5.90 0.668 ± 0.400 1.54 ± 268 

PET/CT 80 mm patches 0.720 ± 0.288 1.00 ± 5.66 0.862 ± 0.331 5.38 ± 209 

PET/CT 160 mm patches 0.776 ± 0.278 0 ± 4.06 0.862 ± 0.408 0 ± 207 

PET/CT 80 mm & 160 mm patches 0.760 ± 0.277 0 ± 5.09 0.865 ± 0.361 0.448 ± 189 

Proposed 0.750 ± 0.275 0 ± 4.73 0.849 ± 0.390 0.299 ± 187 

Fig. 7. Example showing the outputs of the proposed system on MIPs. The position 

of the liver VOI with the derived threshold (left), segmentations after thresholding 

(centre) and the classification into physiological uptake or lesion tissue (right). (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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In line with how the ground truths were created in our in- 

titute, the automated VOI selection process does not favour cer- 

ain regions of the liver as would be the case when following 

ERCIST guidelines. From the conducted experiments, we observed 

hat avoiding liver metastases and vessels when selecting a uni- 

orm region were more important than favouring a certain area of 

he liver. This is also supported by the work of Viner et al. [40] . 

The set of 267 automatically derived thresholds shows an ex- 

ellent agreement with the manually acquired ones. A small bias 

owards lower values was observed due the fact that the auto- 

ated system searches for the area in the liver with the lowest 

ntensity variation, which is difficult to perform manually. The re- 

ults include one outlier, due to the presence of extensive liver le- 

ions. In such cases, a physician would reduce the VOI or look to 

he mediastinum to derive a blood pool value. Implementing such 

pproaches could further improve the robustness of the method. 

lternatively, the system could give an alert if the PET threshold 

r variation exceeds a predetermined value to draw the physician’s 

ttention to the fact that possibly lesion tissue was included in the 

OI. A manual intervention can then be performed to adjust the 

OI if necessary. 

To remove the areas of natural glucose consumption from the 

esion segmentations, a CNN was developed to classify each region 

f high PET intensity as healthy or malignant. The network consists 

f different pathways corresponding to different modalities and 

cales. The probability outputs were combined through late aver- 
7

ging to obtain a final decision. Earlier feature fusion was tested 

n various architectures, but these more complex models did not 

rovide better performance, likely due to the lack of training data. 

o illustrate the need for false positive reduction, we can compare 

he result with those of simple thresholding. There are about ten 

imes more false positives per scan (20.0 ± 6.61 for the test set, 

6.0 ± 9.63 for the independent test set) with a median F1-score 

hat is five to six times lower (0.133 ± 0.226 for the test set, 0.186

0.219 for the independent test set) for the masks generated be- 

ore the classification step. 

A two-step approach was chosen over a direct lesion segmen- 

ation to maximise the supporting role the system can play for 

he clinical staff. This leads to some limitations over direct seg- 

entation approaches. Firstly, no distinction can be made between 

ealthy and malignant tissue depicted as one connected compo- 

ent after thresholding. Secondly, lesions with PET intensity below 

he threshold can not be detected. On the other hand, with a di- 

ect approach, a higher chance was observed for severe over- or 

ndersegmentation per lesion and wrongful segmentation of low- 

ntensity regions leading to additional false positives. Besides the 

etwork trained on images with isotropic 4 mm spacing, a higher 

esolution with 2 mm spacing was investigated as well. However, 

his gave considerably worse results which may be due to the fol- 

owing reason. The maximum patch size that could fit in the GPU 

emory was 128 x 128 x 128. While the higher level of detail due 

o the lower voxel spacing is expected to improve results, increas- 

ng the resolution led to a significant decrease in contextual in- 

ormation given to the network, which may have negatively im- 

acted the performance. The results summarised in Table 2 and 

igs. 5 and 6 show that the proposed full pipeline outperforms the 

irect segmentation performed by nnU-Net for all metrics. From 

his, the advantages of the proposed method seem to outweigh the 

rawbacks. Additionally, the proposed method offers segmentation 

f PET-positive regions that are physiological uptake as shown in 

ig. 7 . This further facilitates interaction with the user. On visual 

nspection of the segmentations, it takes less time to select one of 

hese areas to include in the total tumour load than to manually 

elineate an extra lesion. 

Fig. 8 provides a qualitative comparison of segmentation out- 

uts for three different cases taken from the independent test set 

omparing the ground truth, the final outputs of the proposed 

ethod and the direct approach in maximum intensity projection 

MIP) images. The top row contains the segmentations for a pa- 

ient with a dice score close to the median value for both meth- 

ds. For this case, the two-step approach achieves a dice score of 

.807 with an AVD of 6.66 ml while for the nnU-Net this is re- 

pectively 0.514 and 26.4 ml. There is one lesion present which 

s identified by both methods without any false positives. How- 

ver, oversegmentation by the nnU-Net reduces the evaluation 

etrics. 
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Fig. 8. Coronal MIP images showing the ground truth (left), final output of the 

proposed system (centre) and the outputs of the nnU-Net (right) for a case with 

a close-to-median dice score (top row), an example of an undersegmentation by 

the direct method (centre row) and a case with a tumour missed by the proposed 

method (bottom row). Areas of physiological uptake are indicated in blue, lesions in 

red. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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The centre row contains the segmentations for a patient that il- 

ustrate the higher chance of severe undersegmentation within the 

ame lesion for direct method. The proposed method reaches an 

VD of 0.448 ml and a dice of 0.998 where the slight deviation 

s due to the use of a different PET threshold. The nnU-Net recog- 

ises the lesion, but severely undersegments it, resulting in an AVD 

f 131 ml and a dice score of only 0.0276. 
8 
The last row in Fig. 8 illustrates a disadvantage of the two-step 

pproach. For this patient one lesion is missed, corresponding to 

nly one wrongly classified patch. However, the patch belongs to 

 relatively large tumour, leading to an AVD of 134 ml and a dice 

core of 0.461. The direct segmentation method does pick up on 

his lesion. Though not the entire tumour is segmented, it achieves 

 better AVD of 109 ml and dice score of 0.606. 

Table 2 shows a difference in performance between the smaller 

est set used for hyperparameter tuning and the unseen dataset. 

hough dice scores are more distributed, the median value is simi- 

ar for the proposed method. The direct method shows a shift in 

ice score of 0.138 when going to the independent set. For the 

roposed method, the median AVD is better for the unseen data. 

his is partly due to the patients with no lesions. Out of 53 cases, 

here are 29 without any lesions. The proposed method correctly 

ecognises 26 of them, while the direct method only identifies 4 

mages as lesion free. When excluding the cases without lesions, 

he median AVD for the independent set by the proposed method 

s 5.75 ml while this is 27.9 ml for the nnU-Net. 

The results of the ablation experiment included in Table 3 indi- 

ate a clear benefit of each component of the proposed network. 

n the intermediate test set, the proposed network scored best 

or F1, number of false positives and dice. The difference with the 

est AVD value is only 1.65 ml. When evaluating on the indepen- 

ent test set, there is not one network that scores best on all met- 

ics. However, the proposed method proofs to work well. Looking 

t the smaller test set, there is a clear increase in dice score when 

ombining both modalities. The larger patches of 160 mm reach a 

igher dice score than the patches of 80 mm, though the value is 

ighest when combining both scales. Including more context in the 

atch improves performance, but combining the information from 

ifferent scales is even better. Adding the 40 mm PET patches only 

ncreases dice and F1 and decreases the AVD slightly. As expected, 

hese patches are helpful for the cases with small lesions. 

Though it is not possible to directly compare our results to 

hose of methods reported in literature due to differences in 

athologies and data, we can observe that the obtained perfor- 

ance is competitive, but does not outperform all previously re- 

orted works in terms of segmentation metrics. We consider cur- 

ent proposed method is advantageous for integration in clinical 

oftware as the approach and output are more suited for aiding 

he physician in the detection and segmentation. 

Malignant melanoma is an aggressive disease that can metas- 

asise anywhere in the body. Lesions can have any shape or vol- 

me and will have different appearances throughout the whole- 

ody PET/CT scan. The study included patients at varying disease 

tatus, from lesion free to severely metastasised. That being said, 

he dataset of only 69 patients is considered the main limitation 

f this work. It is expected that increasing the dataset will further 

mprove the results. 

Properly identifying the PET threshold is important and can 

ave a large impact on the final performance of the algorithm. 

ow-dose and low-contrast CT may negatively impact σCT 
x of Eq. 3 . 

uture research is needed to test the performance in such imaging 

ettings. 

. Conclusion 

A fully automated method was developed for the segmentation 

nd detection of metabolically-active lesions on whole-body 18 F- 

DG PET/CT. The proposed system consists of two steps, in line 

ith clinical practice, in order to facilitate interpretation and in- 

eraction with clinicians and promote potential future integration 

n a clinical image analysis system. The system achieved compet- 

tive results in terms of detection and segmentation metrics, and 

utperformed a direct segmentation approach trained on the same 
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ataset. Future work should include the expansion of the dataset 

o improve the representation of possible disease states. 
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