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Abstract. We improve truncated differential attacks on t-branch contracting Feistel
ciphers with a domain size of N t. Based on new truncated differentials, a generic
distinguisher for t2 + t − 2 rounds using O(N t−1) data and time is obtained. In
addition, we obtain a key-recovery attack on t2 + 1 rounds with Õ(N t−2) data
and Õ(N t−1) time. Compared to previous results by Guo et al. (ToSC 2016), our
attacks cover more rounds with a lower data-complexity. Applications of the generic
truncated differential to concrete ciphers include full-round attacks on some instances
of GMiMC-crf, and the best-known key-recovery attack on 17 rounds of the Chinese
block cipher standard SM4. In addition, we propose an automated search method for
truncated differentials using SMT, which is effective even for trails with probability
below the probability of the truncated differential for a random permutation.
Keywords: Truncated differentials · Contracting Feistel ciphers · SMT · GMiMC ·
SM-4

1 Introduction
Following its inception by Horst Feistel in the 1970s, the Feistel structure has become
one of the most prominent architectures in modern block cipher design. One of its most
eminent applications is undoubtedly the former American block cipher standard DES.
Hence, it is not unexpected that the design and analysis of variants of the Feistel structure
has become a significant research topic with valuable applications.

Following the widespread use of Feistel ciphers, many variations on the original structure
were proposed. One of the main directions of this research has been the exploration of
Feistel-like structures with more than two branches. Examples include the family of
generalized Feistel ciphers [Nyb96,ZMI90] and the unbalanced Feistel ciphers discussed by
Schneier and Kelsey [SK96]. The family of unbalanced Feistel structures can be further
subdivided into expanding and contracting constructions. This paper is concerned with
the security of the latter structure. Figure 1 shows a single Feistel round of a contracting
Feistel cipher with t = 4 branches.

Examples of contracting Feistel ciphers include the algebraic cipher GMiMC-crf [AGP+19]
and the general-purpose block cipher SM4 [Dt08]. The latter example is particularly im-
portant, as SM4 is the Chinese commercial block cipher standard (GB/T 32907-2016). In
addition, it has been standardized by ISO/IEC under the reference number 18033-3:2010.

Given their widespread application, it is not surprising that the security analysis of
Feistel ciphers and their variants has been an industrious area of research. Luby and

Tim Beyne is supported by a PhD Fellowship from the Research Foundation – Flanders (FWO).

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-11-23 Revised: 2022-03-01 Accepted: 2022-05-01 Published: 2022-06-10

https://doi.org/10.46586/tosc.v2022.i2.141-160
mailto:tim.beyne@esat.kuleuven.be
mailto:univerlyw@hotmail.com
http://creativecommons.org/licenses/by/4.0/


142 Truncated Differential Attacks on Contracting Feistel Ciphers

Fi

Figure 1: One round of a contracting Feistel cipher with t = 4 branches. The function Fi
is a permutation and possibly key-dependent.

Rackoff [LR86] were first to prove the indistinguishability of three-round Feistel ciphers
with uniform random round functions. Yun, Park and Lee [YPL11] proved the birthday-
bound security of t-branch1 contracting Feistel ciphers with 2t− 1 rounds. However, from
a practical point of view, optimal security is expected and desired if the number of rounds
is large enough. Hence, several works have proposed generic attacks on contracting Feistel
ciphers – thereby lower bounding the number of rounds necessary for security. In particular,
Guo et al. [GJNS16] describe meet-in-the-middle attacks on contracting Feistel ciphers.
Patarin, Nachef and Berbain [PNB06] analyze a more general contracting structure.

Differential cryptanalysis [BS91] has proven to be one of the most successful tools in
the security analysis of both concrete and generic Feistel structures. For example, the
generic attacks of Patarin [Pat04] on ordinary Feistel ciphers are based on differential
cryptanalysis. The differential attack itself has also been extended and generalized in
several ways. At FSE 1994, Knudsen [Knu95] introduced a powerful extension known as
truncated differential cryptanalysis.

In this paper, we analyze the security of generic contracting Feistel ciphers using
truncated differentials. Our motivation for doing so is twofold. On the one hand, from
the viewpoint of block cipher design, it is important to know the baseline number of
rounds required for security. In other words: how many rounds does a t-branch contracting
Feistel cipher need? On the other hand, new generic attacks may have an impact on the
security of concrete ciphers such as GMiMC-crf and SM4. SM4 in particular has received a
significant amount of dedicated cryptanalysis and given its status as both a domestic and
international standard, further advances in its analysis would be of interest to observers.

Contributions. Improved generic attacks on contracting Feistel ciphers are obtained using
truncated differential cryptanalysis. In particular, when the security-level is equal to the
block size, we obtain distinguishers and key-recovery attacks on more rounds than previous
works for any number of branches. As an immediate consequence, full-round attacks on
some instances of GMiMC-crf are obtained. In addition, our attacks lead to the best-known
key-recovery attack on 17-round SM4.

With respect to generic attacks, the main result of this paper is a distinguisher on
t2 + t− 2 rounds of a contracting Feistel cipher with t branches and a domain of size N t

using O(N t−1) data and time. In addition, we obtain a key-recovery attack on t2 + 1
rounds requiring Õ(N t−2) data and Õ(N t−1) time. This is a significant improvement over
the results of Guo et al. [GJNS16]. In particular, the key-recovery attacks of Guo et al.
cover at most 5t− 4 rounds (assuming the key length is equal to the block length).

The starting point for our attacks is an iterated truncated differential for generic
contracting Feistel ciphers. It is similar to a truncated differential for the expanding
Feistel cipher GMiMC-erf [AGP+19] that was presented at CRYPTO 2020 [BCD+20].
The basic iterated differential covers at most t2 − t − 2 rounds. Our final (t2 + t − 2)-

1The number of branches t must be even in order to avoid a trivial differential distinguisher.
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round distinguisher is based on a different truncated differential that relies on several
improvements not considered in previous work on contracting or expanding Feistel ciphers.
In particular, we consider truncated differential trails whose probability ptrail is lower
than their ideal probability pideal, take advantage of relations between input and output
differences, and optimize the trade-off between the size of input structures and other
parameters such as ptrail and pideal.

When applied to the algebraic cipher GMiMC-crf, the aforementioned attacks result
in full-round distinguishers and key-recovery attacks for some instances. However, the
practical relevance of these attacks may be relatively limited because most applications
of GMiMC-crf use a relatively small number of branches t but a large N . In such cases,
algebraic attacks become the dominant threat vector.

The data- and time-complexity of our 18-round distinguisher on SM4 are approximately
296. For 17-round SM4, we obtain a key-recovery attack using 270 chosen plaintexts and
299 encryption operations. Although dedicated attacks on SM4 reach up to 23 rounds,
their data- and time-complexity is extremely large. As will be argued in Section 6, our
key-recovery attack is the best-known attack for 17 rounds. This is remarkable given the
fact that our attacks do not use any details about the round function of SM4.

Finally, we show how the propagation of truncated differentials in a contracting Feistel
cipher can be modelled as a Satisfiability Modulo Theories (SMT) problem. This allows
us to show that the distinguishers we obtain for t = 4 have optimal data-complexity.
Importantly, our SMT model is able to analyze truncated differentials with ptrail � pideal.
This is in contrast to previous methods, such as the MILP-based method from [BCD+20].
In addition, our model allows for dependencies between the input and output differences.

Outline. The main preliminaries are introduced in Section 2. The generic distinguishers
are gradually built-up throughout the paper. We begin by exhibiting a new iterated
truncated differential and deriving a basic distinguisher for t2 − t− 1 rounds in Section 3.
In Section 4, improved truncated differential distinguishers are constructed. We optimize
the selection of the input structure using dependencies between the input and output
differences, and obtain distinguishers for t2 + t − 2 and t2 rounds. We show that our
16-round trail for t = 4 is optimal using SMT in Section 4.2, and verify the distinguishers
experimentally in Section 4.3. Key recovery attacks are discussed in Section 5. Section 6
concludes by discussing the application of our attacks to GMiMC-crf and SM4.

2 Preliminaries
Throughout this paper, we let U be a finite-dimensional vector space over a finite field.
Furthermore, let N = |U | denote the cardinality of the set U . That is, N = pn with p a
prime and n a positive integer.

Contracting Feistel ciphers. Contracting Feistel ciphers are a type of generalized unbal-
anced Feistel structure. As illustrated in Figure 1 for t = 4, a Feistel round of a contracting
Feistel cipher R : U t → U t with t branches is defined as R : (x1, x2, . . . , xt) 7→ (y1, y2, . . . , yt)
where

yi = xi+1 for i = 1, 2, . . . , t− 1 ,
yt = x1 + F(x2 + x3 + . . .+ xt) .

Here, F is called the round function of the contracting Feistel cipher and is often key-
dependent. The round function F can take various forms. For instance, the round function
of SM4 has a Shark-like structure consisting of an S-box layer followed by a multiplication
with an MDS matrix [Dt08]. For GMiMC-crf [AGP+19], F(x) = x3, assuming U is a finite
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field. Since the attacks in this paper are generic and do not exploit the inner structure of
the round function and key schedule, we omit further details.

Differentials. For a function E : U t → U t and input and output differences a, b ∈ U t, the
probability of a differential propagation from a to b through F is defined as (recall that
|U | = N)

Pr[a E−→ b] = |{x ∈ U t | E(x+ a)− E(x) = b}|
/
N t .

The propagation a→ b is called a differential over F, and it gives a distinguishing property
if the probability Pr[a→ b] is significantly larger than 1/N t. Roughly speaking, one needs
1/Pr[a→ b] queries to F to distinguish it from a random permutation.

Truncated differentials. An important extension of differential cryptanalysis is the so-
called truncated differential attack, first proposed by Knudsen [Knu95]. In the following,
we describe the most general form of truncated differentials. Let A and B be subsets of
U t. The probability of the truncated differential for E with input set A and output set B
is defined by

Pr[A E−→ B] = Pr[F(x)− F(y) ∈ B | x− y ∈ A] ,

where x and y are independent uniform random variables on U t. Equivalently,

Pr[A E−→ B] = 1
|A|

∑
a∈A

Pr[E(x + a)− E(x) ∈ B] .

A truncated differential with A = B will be called iterative or iterated.

Markov ciphers. Directly evaluating the probability of a (truncated) differential over
a block cipher is usually not feasible. However, using the iterated structure of most
block ciphers and the Markov cipher assumption, one can approximate the probability of
differentials by the probability of differential characteristics. Let Ek denote an r round
block cipher with key k = (k1, . . . , kr) and round functions R1

k1
,R2

k2
, . . . ,Rrkr

. That is,

Ek = Rrkr
◦ · · · ◦ R2

k2
◦ R1

k1
.

The block cipher Ek with a random key k is called a Markov cipher [LMM91] if for any i
and a, b, x, y ∈ U t,

Pr[Riki
(x+ a)− Riki

(x) = b] = Pr[Riki
(y + a)− Riki

(y) = b] ,

where the probabilities are only with respect to the random key ki. This implies that the
sequence of intermediate differences for a fixed input pair under Ek form a homogeneous
Markov chain. Contracting Feistel ciphers such as SM4 and GMiMC-crf satisfy this property
when instantiated with independent round keys.

A differential characteristic for Ek is a sequence of intermediate differences a1 → a2 →
· · · → ar+1 such that ai → ai+1 is a differential for Rki

for i = 1, . . . , r. If Ek is a Markov
cipher, then the probability of the differential characteristic a1 → ar+1 satisfies

Pr[a1 → a2 → · · · → ar+1] =
r∏
i=1

Pr[ai → ai+1].

Note that the above probability is with respect to the random key k. Equivalently, it is
equal to the key-averaged probability of the differential characteristic. For the sake of
completeness, we mention that the key-averaged probability of a differential a1 → ar+1
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for a Markov cipher Ek is the sum of the probabilities of all characteristics with input
difference a1 and output difference ar+1:

Pr[a1
Ek−→ ar+1] =

∑
a2,...,ar∈Ut

r∏
i=1

Pr[ai → ai+1] .

Input-output dependencies. When dealing with truncated differentials, it is sometimes
convenient to use dependencies between input and output differences. A simple example is
the property that any input difference from a set A results in the same output difference,
rather than just any difference in the set A.

A convenient way to describe such properties without leaving the usual framework for
truncated differentials from above, is to consider the input-extended cipher E : U t × U t →
U t × U t defined by (x, y) 7→ (x,E(y)). Indeed, if A = {(a, a) | a ∈ A} and B ⊆ U t × U t,
then we have

Pr [A E−→ B] = Pr[(x− y,E(x)− E(y)) ∈ B | x− y ∈ A] ,

with x and y uniform random on U t. The right-hand side above is indeed the desired
probability. Ordinary truncated differentials correspond to the case B = A× C for some
output difference set C.

3 Basic Truncated Differential Distinguisher
In Section 3.1, we exhibit a first t-round iterated truncated differential for generic con-
tracting Feistel ciphers and show that it leads to interesting distinguishers. This truncated
differential bears similarity to the truncated differential from [BCD+20, §5.2] for the
expanding Feistel cipher GMiMC-erf. A comparison with the latter attack and a previous
truncated differential attack on GMiMC-crf is given in Section 3.2.

When iterated too many times, the probability of the aforementioned truncated differ-
ential trail drops below the probability of the truncated differential for uniform random
permutations. However, it can be argued that it should still be possible to obtain a
distinguisher as long as enough pairs are available. This observation is used in Section 3.3
to show that the distinguisher from Section 3.1 can cover more rounds.

3.1 An Iterated Truncated Differential Trail
Figure 2 shows an iterated truncated differential A→ A with A = {(a,−a, 0, 0) | a ∈ U}
for four rounds of a contracting Feistel cipher with t = 4 branches. The input difference
is represented symbolically on each branch. For instance, the label a corresponds to an
arbitrary nonzero input difference.

In the first round, the probability is one since the output difference b of Fi is arbitrary.
The probability for the second round is 1/(N −1) ∼ 1/N on average, assuming that Fi+1 is
a uniform random permutation. Finally, the truncated differences in the third and fourth
rounds propagate with probability one since a+ b− a− b = 0.

A similar trail exists for any number of branches t ≥ 4. In particular, one can simply
set the rightmost t− 2 branches to zero. Since the trail in Figure 2 has the same input
and output set, it can be iterated. For r divisible by t, we obtain an r round trail with
probability ptrail = 1/(N − 1)r/t ∼ 1/Nr/t.

For a random permutation, however, the probability of A→ A is pideal = (N−1)/(N t−
1) ∼ 1/N t−1. Hence, if pideal = o(ptrail), one obtains an r-round distinguisher using
approximately 1/ptrail = Nr/t data. It follows that a t-branch contracting Feistel cipher
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Fi

a −a 0 0

Fi+1

−a 0 0 a+ b

Fi+2

0 0 a+ b −a− b

Fi+3

0 a+ b −a− b 0

a+ b −a− b 0 0

Figure 2: Truncated differential for a contracting generalized Feistel cipher with t = 4
branches. The probability of this trail is 1/N . In characteristic two, the minus signs may
be dropped.

must have r > t2 − 2t rounds to be secure. Furthermore, the attack on t2 − 2t rounds
requires N t−2 data.

In fact, the above can be improved by prepending t− 2 rounds to the trail as shown
in Figure 3 for t = 4. Since this modification does not affect preal or pideal, one obtains a
distinguisher on t2 − t− 2 rounds with N t−2 data.

A further extension by appending at most t− 2 rounds to the trail is possible. However,
appending s rounds increases pideal to (N − 1)/(N t−s − 1) ∼ 1/N t−s−1. Hence, appending
rounds does not lead to an attack on more rounds. Nevertheless, for a smaller number of
rounds, appending t− 2 rounds may lead to a lower data-complexity. Optimizing for the
number of rounds, we obtain the following result.

Result 1. A generic contracting Feistel cipher with t branches and t2− t−2 rounds can be
distinguished from a uniform random permutation with advantage Θ(1) using N t−2 data.

Application to generic contracting Feistel ciphers. Result 1 implies that the number
of rounds of a contracting Feistel cipher must scale quadratically with the number of
branches. For a large enough number of branches, this is a significant improvement over
the attacks by Patarin et al. [PNB06] and Guo et al. [GJNS16], who showed that the
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Fi

0 0 a −a

Fi+1

0 a −a 0

a −a 0 0...
...

...
...

Figure 3: Prepending t − 2 rounds to the trail from Figure 2 with probability one. In
characteristic two, the minus signs may be dropped.

number of rounds must scale linearly with the number of branches. However, note that for
the most interesting applications small values of t are of particular importance. Hence, a
more detailed comparison is necessary.

The distinguishers of Patarin et al. [PNB06] consider a more general form of contracting
Feistel ciphers, but cover at most 2t− 1 rounds. Hence, Result 1 improves over this for
all t ≥ 4. Guo et al. [GJNS16] describe key-recovery attacks up to 5t − 4 rounds when
the key length is t log2 N bits. By guessing the last round key, The distinguisher above is
easily adapted to a key-recovery attack on t2− t−1 rounds with time-complexity Õ(N t−1).
Hence, Result 1 improves over the attacks of Guo et al. [GJNS16] for t ≥ 6.

Application to GMiMC-crf. Result 1 yields a full-round attack on some instances of
GMiMC-crf [AGP+19] with t log2 N -bit keys. Indeed, GMiMC-crf has roughly t(t+ 3)/2 + 1
rounds when t is large compared to log2 N . To the best of our knowledge, this is the first
result violating the security claims of GMiMC-crf – albeit not for the most practically
relevant instances. In fact, in this setting, the number of rounds of GMiMC-crf is roughly
determined by a truncated differential attack from [AGP+19]. An in-depth analysis of
and comparison with the truncated attack from [AGP+19] is given in Section 3.2. The
instances of GMiMC-crf with log2 N -bit keys are less interesting, since they are vulnerable
to a simple birthday-bound attack [Bon19]. However, our attacks are also applicable to
these instances and would be the best-known attacks if the key-schedule of GMiMC-crf is
modified to thwart the attack from [Bon19].

Result 1 leaves significant room for improvements. Importantly, even extensions by a
number of rounds linear in t are relevant, since important examples such as SM4 have a
small number of branches. A first improvement is the use of input structures. An affine
space of dimension d over U contains Nd(Nd−1)/2 pairs. This allows reducing the amount
of data. For example, for the truncated differential used in Result 1, one could reduce the
data-complexity to 2N t−3 in this manner. However, the number of rounds that can be
distinguished does not increase as this is determined by the condition pideal = o(ptrail). A
more careful selection of the truncated differential that takes into account the effect of
input structures will lead to further improvements in Section 4.1. A further improvement
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is introduced in Section 3.3 below, where a distinguisher with ptrail ≤ pideal is proposed.

3.2 Comparison with Previous Distinguishers on GMiMC-crf/erf
As mentioned above, the designers of GMiMC-crf also proposed a truncated differential
attack on a smaller number of rounds [AGP+19, §4.2.1]. Below, we re-evaluate the number
of rounds covered by the latter attack and discuss how the distinguisher from Section 3.1
improves over it. In addition, as discussed in the introduction, the iterated truncated
differential from Section 3.1 is similar to the truncated differential distinguisher on GMiMC-
erf from [BCD+20, §5.2]. The second paragraph below discusses the relation between this
distinguisher and the one from Section 3.1.

GMiMC-crf. The truncated differential trail proposed by the designers of GMiMC-
crf [AGP+19, §4.2.1] attempts to minimize the number of active S-boxes. Based on their
analysis, the designers conclude that the trail extends to at most (t+ 1)dt/2×n/(n−1)e ≈
t(t+ 1)/2 rounds with n = log2 N . An additional t− 2 rounds can be appended without
decreasing ptrail or pideal. However, as shown below, this estimate is optimistic.

The truncated differential from [AGP+19] is obtained by iterating the (t+ 1)-round
truncated differential B → B with B = {(0, 0, . . . , 0, b,−b) | b ∈ U \ {0}}. The authors
analyzed the case U = Fn2 and obtained a (t+ 1)-round probability of 2/N2. Their analysis
is not quite generic because it assumes that the round function is differentially 2-uniform.
For a generic contracting Feistel cipher, the probability is ∼ 1/N2 instead. Making suitable
adjustments, the analysis in [AGP+19] suggests that the truncated differential can be
iterated t/2 times since (N2)t/2 ≤ N t. However, this is optimistic because pideal = 1/N t−1

rather than 1/N t. In other words, only t/2− 1 iterations are possible if we require that
pideal = o(ptrail). Appending t− 2 rounds without decreasing ptrail or increasing pideal results
in a distinguisher on (t/2−1)×(t+1)+t−2 = (t+3)(t−2)/2 rounds. Using a distinguisher
with ptrail ≤ pideal as in Section 3.3 below and by taking advantage of input structures, an
extension to t/2× (t+ 1) + t− 2 = (t+ 4)(t− 1)/2 rounds might be feasible. However, such
a distinguisher requires N t data and time and is not likely to achieve a high advantage.

For a large number of branches t, the generic distinguisher from Section 3.1 covers
twice as many rounds. This is despite the fact that it activates more S-boxes for the same
number of rounds. However, the trail in Section 3.1 benefits from the fact that it takes
advantage of probabilistic conditions on the output differences of two consecutive round
functions instead of just one.

GMiMC-erf. The truncated differential trail from Section 3.1 for GMiMC-crf is similar
to that for GMiMC-erf from [BCD+20, §5.5]. GMiMC-erf is an expanding Feistel cipher,
where the round function is applied to the first branch and the result is added to all other
branches. The analysis in [BCD+20] was specific to GMiMC-erf, but it can be generalized
to generic expanding Feistel ciphers. Both truncated differentials are iterative and rely on
the condition that the output differences of two consecutive round functions are opposite.
The t-round probability is 1/N in both cases. However, there are important differences in
terms of the input structure size and pideal.

It is worth noting that expanding and contracting Feistel ciphers are dual constructions.
Due to this, a truncated differential on one construction directly yields a multidimensional
linear approximation for the other. The average-case duality between multidimensional
linear and truncated differential cryptanalysis in turn results in a corresponding truncated
differential for the same construction. However, it can be checked that the truncated
differentials from Section 3.1 and [BCD+20] are not dual to each other.

In the remainder of this paper, several improvements to the basic truncated differential
from Section 3.1 will be introduced. This includes the extension of the distinguisher to
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the setting with ptrail < pideal in Section 3.3. In Section 4 further improvements will be
made, including taking more advantage of input structures and using dependencies between
input and output differences. We believe that similar improvements might be useful for
expanding Feistel ciphers. However, due to the lack of applications beyond GMiMC-erf,
only contracting Feistel ciphers are considered in this paper.

3.3 Extended Distinguisher with ptrail ≤ pideal

Even when the probability of a truncated differential trail is much lower than the ideal
probability of the corresponding truncated differential, it is sometimes possible to obtain
a distinguisher. Heuristically, the idea is that wrong pairs for a truncated differential
trail behave as if they were encrypted under a uniform random permutation. Hence, one
can argue that the true probability preal of the truncated differential satisfies the folklore
approximation

preal ≈ ptrail + pideal(1− ptrail) = pideal + ptrail(1− pideal) ≈ pideal + ptrail . (1)

That is, one expects slightly more right pairs for the cipher than for a random permutation.
We now consider the data-complexity of a distinguisher with ptrail � pideal, and derive a

distinguisher for more than t2 − t− 2 rounds based on exactly the same iterated truncated
differential as in Section 3.1. This is possible because, as was just argued, this truncated
differential has

preal − pideal ≈ ptrail ∼ 1/Nr/t . (2)

Suppose one encrypts D plaintext pairs with differences in the input set of the truncated
differential. After encrypting these pairs under the cipher, we expect to obtain an average
number of Dpreal pairs with a difference in the output set of the truncated differential.
For a random permutation, the expected number of pairs is instead Dpideal. Moreover,
the distribution of the number of right pairs under a random permutation is binomial
with variance pideal(1− pideal)D ∼ pidealD since pideal � 1. To obtain a distinguisher with
advantage Θ(1), we require that the difference between the means of the real an ideal
distribution of the number of valid pairs exceeds the standard deviation of the ideal
distribution:

D (preal − pideal)�
√
Dpideal .

Rewriting the above, we obtain the estimate

D � pideal/(preal − pideal)2 . (3)

For a more detailed derivation of this result including a proof that this is optimal, we refer
the reader to Blondeau and Gérard [BG09].

By Equation 2 and Equation 3, we get D � pideal N
2r/t with pideal ∼ 1/N t−1. Hence, if

the trail is iterated t−1 times (once more than in Section 3.1), we must haveD = N t−1 pairs.
After prepending t−2 rounds with probability one, a distinguisher on t(t−1)+t−2 = t2−2
rounds is obtained. In fact, it is possible to improve upon this by appending one round
at the end. This increases the ideal probability to approximately 1/N t−2, so that t2 − 1
rounds can be distinguished using N t pairs. Using an input structure of size N , these
pairs can be obtained from roughly 2N t−1 plaintexts. Note that iterating the truncated
differential t times or appending one more round at the end of the trail is not worthwhile,
since that would lead to a data-complexity of N t.

Result 2. A generic contracting Feistel cipher with t branches and t2 − 1 rounds can be
distinguished from a uniform random permutation with advantage Θ(1) using N t−1 data.
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Compared to Result 1, the distinguisher with ptrail � pideal covers t+ 1 more rounds.
Unlike in Section 3.1, the limiting factor in further improvements is now the amount
of pairs which can be obtained from the input space. Indeed, provided that one has a
sufficiently large input structure, it would be possible to use more than N t. However, the
trail we considered here had an input structure of size only N . In Section 4.1, truncated
differentials that allow for bigger input structures will be introduced.

Finally, note that for t = 4 (as for SM4), we now obtain a 15 round distinguisher with
a data-complexity of N3. This may be compared with the 16 round key-recovery attack of
Guo et al. [GJNS16] with a similar data-complexity. The distinguisher from Result 1 can
also be extended to a 16 round key-recovery attack, but it requires N4 partial decryption
operations and hence offers only marginal advantage over exhaustive search.

4 Improved Truncated Differential Distinguishers
This section develops our final truncated differential attacks on generic Feistel ciphers.
In Section 4.1, improvements to the distinguisher from Section 3 are obtained by taking
into account input structures and by allowing for dependencies between the input and
output differences. As a result, we obtain distinguishers for t− 1 additional rounds with
the same-data complexity (Result 3). In Section 4.2, we develop an SMT model to show
that (for t = 4), these distinguishers are indeed optimal. We report on the experimental
verification of our results in Section 4.3.

4.1 Input Structures and Input-Output Dependencies
As discussed at the end of Section 3.3, the number of rounds that can be distinguished using
the truncated differential from Section 3 is primarily limited by the dimension of the input
space. Indeed, if the dimension d of the input structure is large enough, then the number of
pairs used in the attack can exceed N t while keeping the data- and time-complexity below
N t. In particular, one can obtain up to Nd(Nd − 1)/2 ∼ N2d/2 pairs for each structure of
size Nd. A larger dimension d leads to a distinguisher for more rounds, ceteris paribus. In
principle d can be up to t− 1, but the trade-off with the probability ptrail of the trail as
well as the ideal probability pideal should be kept in mind. Note that when using structures,
the time-complexity of the distinguisher is still equal to the data-complexity. Indeed, one
can count the number of occurrences of the relevant parts of the output and store them in
a table. After sorting, the number of valid pairs can be determined by iterating through
the table once.

Iterative truncated differential with larger d. In Figure 4, an iterative truncated differ-
ential for t = 4 is shown. Whereas the truncated differential from Section 3 had input
structures of dimension one, the truncated differential in Figure 4 has d = 2. Importantly,
this is achieved by allowing dependencies between the input and output differences. Recall
from Section 2, section 2, that this can be described formally by considering the input-
extended cipher. The probability of the four-round trail in Figure 4 is ∼ 1/N , and the
ideal probability is pideal ∼ 1/N3.

The trail from Figure 4 can be generalized to t branches by considering the following
input difference structure:

(a1, a2, . . . , at−2, b, b) such that
t−2∑
i=1

ai = −b ,

with a1, . . . , at−2, b ∈ U not all zero. Like the trail from Section 3, this iterated trail covers
r rounds with ptrail ∼ 1/Nr/t for r a multiple of t. Furthermore, the input structure has
dimension d = t− 2 and pideal ∼ 1/N3.
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Fi

a −a− b b b

Fi+1

−a− b b b c

Fi+2

b b c −b− c

Fi+3

b c −b− c b

c −b− c b b

Figure 4: Truncated differential for a contracting generalized Feistel cipher with t = 4
branches. The probability of this trail is 1/N . In characteristic two, the minus signs may
be dropped.
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There are several ways to extend the iterative trail from above by additional rounds,
such as prepending two rounds or appending t− 2 rounds. However, extending the number
of rounds is not necessarily optimal as it may lead to a smaller d or a higher ideal probability
pideal. The next paragraph analyzes the available trade-offs in detail.

Trade-off analysis. Suppose we iterate the trail from Figure 4 m times, covering mt
rounds. Further assume that when the trail is deterministically extended by s rounds, the
input structure dimension is d and let i be an integer such that pideal ∼ 1/N i. As discussed
in Section 3.3 on eq. (3), the number of pairs D required for the attack is then

D ∼ pideal/(preal − pideal)2 = N2m−i ,

since preal − pideal ∼ 1/Nm. Since the maximum number of pairs that can be obtained
is N t−dNd(Nd − 1)/2 ∼ N t+d/2, we must have D � N t+d. Hence, 2m − i ≤ t + d or
equivalently m ≤ b(t + d + i)/2c. It follows that the number of rounds r that can be
distinguished satisfies

r ≤ t
⌊
t+ d+ i

2

⌋
+ s . (4)

This bound is tight. If 2m ≥ 2d+i, then the corresponding data-complexity isNdN2m−i−2d =
N2m−d−i. Otherwise, the data-complexity is approximately Nm−i/2.

We now consider the possible trade-offs for the iterative trail introduced above. Note
that it is always possible to prepend two rounds to the trail, without affecting the trail
probability or pideal. If no further rounds are appended, then i = 3 as discussed above. It
then follows from Equation 4 with s = 2 and d = t− 2 that r = tbt+ 1/2c+ 2 = t2 + 2
rounds can be distinguished using N t−1 data. If instead an additional t− 2 rounds are
appended, then i = 2 and s = t. Hence, Equation 4 yields a distinguisher on r = t2 + t
rounds with N t data. This data-complexity is only marginally acceptable. If we choose
m = t− 1 instead of m = t, then a distinguisher for t2 rounds with N t−2 data is obtained.
It is also possible to append t− 1 rounds, but this yields i = 1 and is not worthwhile.

Alternatively, it is possible to use a slightly larger input structure. Indeed, consider
input differences of the following form:

(a1, a2, . . . , at−2, b, b) ,

with a1, . . . , at−2, b ∈ U not all zero. This is an input structure of dimension d = t − 1.
Importantly, this can be connected to the iterative trail from above with probability ∼ 1/N .
With the input structure above, it is not possible to prepend rounds without decreasing
d. If no rounds are appended, then i = 3 and s = 0. Hence, Equation 4 yields that there
is a distinguisher on tbt+ 1c = t2 + t rounds with N t data. Again, the data-complexity
of this distinguisher is only marginally acceptable. Choosing m = t instead, a t2-round
distinguisher with lower data-complexity is obtained. However, since 2t < 2(t− 1) + 3, the
data-complexity is N t−1.5 – higher than for the t2-round distinguisher from above. Finally,
suppose we append t− 2 rounds such that i = 2 and s = t− 2. By Equation 4, one can
then distinguish up to tbt+ 1/2c+ t− 2 = t2 + t− 2 rounds with N t−1 data.

Overview of the best distinguishers. Summarizing the results from the trade-off analysis,
we obtain Result 3. Note that these distinguishers cover more rounds than those mentioned
in Results 1 and 2. More importantly, they improve over previous generic attacks on
contracting Feistel ciphers for any number of branches.

Result 3. For a generic contracting Feistel cipher with t branches, we have the following
distinguishers from a uniform random permutation:
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• t2 + t− 2 rounds using N t−1 data,

• t2 rounds using N t−2 data.

Each of these distinguishers achieves an advantage of Θ(1).

The case t = 4 is of particular relevance, since the corresponding results yields a
distinguisher on 16 rounds of SM4 with 264 data and time and on 18 rounds with 296

data and time. In Section 5, it will be discussed how the distinguishers in Result 3 can
be turned into key-recovery attacks on slightly more rounds. It will be demonstrated in
Section 6 that this leads to the best-known key-recovery attack on 17-round SM4.

4.2 Modelling Truncated Differentials using SMT
In this section, we show how to model the propagation of truncated differentials through a
generic contracting Feistel cipher as a Satisfiability Modulo Theories (SMT) problem. For
simplicity, we restrict ourselves to the case with base field F2. An important feature of the
model is that it can be used to find distinguishers with ptrail � pideal. In addition, relations
between the input and output variables are accounted for. This is important to verify the
distinguishers from Section 4.1. To automate the process of finding truncated differentials
by SMT solving, we need to model the truncated differences and the corresponding
transition rules by properly defined variables and constraints. Our implementation is
based on PyBoolector [NPB14] and is available at https://homes.esat.kuleuven.
be/~tbeyne/contracting-feistels.zip.

Variables. For each nonzero truncated difference in our model, it is either a new vari-
able or a linear combination of previous variables. In order to simplify checking linear
(in)dependence, we use a bitvector variable to represent the truncated difference on each
branch. The zero bitvector represents the zero difference. However, nonzero bitvectors do
not correspond to a specific difference and should be thought of as symbolic variables.

Specifically, a bitvector with Hamming weight one represents a free variable, i.e. one
that is not a linear combination of other variables. Linearly independent truncated
differences are represented by distinct bitvectors. Truncated differences that are linear
combinations of other differences (with coefficients zero or one, as we work over F2) can
then be represented by a bitvector with Hamming weight two or higher.

The length of the bitvectors is determined by the maximum number of free variables.
Specifically, the truncated differences for an r-round t-branch contracting Feistel structure
contain at most r+ t independent variables, including the input differences and the output
differences of the round functions Fi with i = 1, . . . , r. Hence, bitvectors of length r + t
are sufficient.

Finally, the model keeps track of the probabilities ptrail and pideal and represents
them by their integer weights wt(ptrail) and wt(pideal) such that ptrail ∼ 1/Nwt(ptrail) and
pideal ∼ 1/Nwt(pideal). In addition, the probability pi of the truncated differential in round i
of the trail has weight wt(pi). If a probability is zero, we formally denote its weight by ∞.
Within the SMT model, infinite weights are excluded by appropriate constraints.

Constraints. Under the Markov cipher assumption, the average trail probability satisfies
ptrail =

∏r
i=1 pi. Equivalently, the weights must satisfy the constraint

wt(ptrail) =
r∑
i=1

wt(pi) .

Based on the above, additional constraints for wt(ptrail) 6=∞ are relatively easy to deduce.
To ensure that ptrail 6= 0, the first t− 1 branches of each output difference must equal the

https://homes.esat.kuleuven.be/~tbeyne/contracting-feistels.zip
https://homes.esat.kuleuven.be/~tbeyne/contracting-feistels.zip
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last t− 1 branches of the output difference. Furthermore, since the round function is a
permutation, the output difference of the round function is zero if and only if the input
difference, i.e. the exclusive or of the bitvectors representing the rightmost t − 1 input
branches, is zero. The weight wt(ptrail) is then equal to the number of round function
output differences that are zero or have Hamming weight at least two (a linear combination
of other variables).

If ptrail < pideal, additional constraints are necessary to avoid trivially invalid trails.
In particular, we require that at least one branch of the differences in each round is a
linear combinations of the differences in preceding branch differences in that round or the
input-branch differences. Linear dependence is modelled recursively.

Finally, we add suitable constraints for wt(pideal) by recursively determining the number
of output variables that are independent of the input variables and previous output
variables.

Proving optimality using SMT. Using the SMT model introduced above, we are able
to verify the correctness of the differential distinguishers from Section 4.1. To this end,
we place a constraint on the trail weight for fixed values of the input structure dimension
and the ideal weight and iteratively increase its value until the problem is found to be
satisfiable. Alternatively, it is possible to optimize the overall weight directly, by modelling
the data-complexity formula from Section 4.1 within the SMT problem.

For t = 4 and r = 16, we obtain the best possible truncated differential distinguishers
(in terms of data-complexity) for all possible values of the input structure size d ∈ {1, 2, 3}
and ideal weight i ∈ {1, 2, 3} within 100 minutes on a standard personal computer. The
distinguisher from Result 3 was one of several solutions with data-complexity N2. No
distinguishers with a lower data-complexity were found.

4.3 Experimental Verification
In this section we experimentally verify the generic distinguishers from Result 3 for t = 4
and N = 28. Let λ = pidealD when the distinguisher (implicitly) generates D pairs. Let
X be a random variable counting the number of right pairs when the distinguisher is
evaluated on a random permutation. If the distinguisher uses a threshold value τ

√
λ, then

the false-positive rate is

PF = Pr [X ≥ λ+ τ
√
λ] = Pr [X ≥ (1 + τ/

√
λ)λ] .

Since PF is the sum of D independent Bernoulli random variables with probability of
success pideal, it follows from the multiplicative Chernoff bound that for τ ≤

√
λ,

PF ≤ e−τ
2/3 . (5)

Choosing τ = 2, we find that the false-positive rate satisfies PF ≤ 0.26. For τ = 3/2, we
get PF ≤ 0.47.

Figure 5 shows the results of the experiments for t = 4 and N = 28. The estimated
success probabilities are shown for τ = 2 (for r = 16) or τ = 3/2 (for r = 18), i.e. a
false-positive rate which is at most 26% or 47%. For r = 16, each datapoint is based on
1000 evaluations of the attack on a contracting Feistel cipher with uniform random round
functions. For r = 18, each estimate is based on 100 experiments.

As expected, the success probability gradually increases when more structures are
used. The experiments show that achieving a high success probability requires slightly
more than N2 (for r = 16) or N3 (for r = 18) data. Note that the success probabilities
shown in Figure 5 do not represent the maximal advantage that can be achieved using
these distinguishers, since the trade-off between PF and the success probability was not
optimized for these experiments.
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Figure 5: Estimates of the success probability of the distinguishers from Result 3 with
t = 4 and τ = 2 (r = 16) or τ = 3/2 (r = 18) as a function of the data-complexity
(number of structures). The error bars correspond to 95% confidence intervals computed
using the Clopper-Pearson method. Source code to reproduce this figure is available at
https://homes.esat.kuleuven.be/~tbeyne/contracting-feistels.zip.

5 Key-Recovery Attacks
If the rounds functions F1, . . . ,Fr of a contracting Feistel cipher are keyed permutations
rather than random permutations, then it is of interest to consider key-recovery attacks
in addition to distinguishers. For simplicity, assume that the last round key can take N
possible values and the total key length is equal to the block size. This is the case for
both SM4 and the instances of GMiMC-crf that are not vulnerable to the trivial attack
from [Bon19]. The time-complexity of any key-recovery attack can then be at most around
N t encryption operations.

The distinguisher on t2 + t− 2 rounds from Result 3 could in theory be extended to a
key-recovery attack on t2 + t− 1 rounds with data-complexity slightly larger (to ensure PF
is low enough) than N t−1 by guessing the last round key. However, the time-complexity
of this attack would be slightly above N t partial encryptions, which is only a marginal
improvement over brute-force in the most optimistic case.

More realistically, the t2-round distinguisher from Result 3 can be extended to a key-
recovery attack on t2 + 1 rounds with data-complexity close to N t−2 and time-complexity
close to N t−1. Again, the attack is based on guessing the last round key and partially
decrypting the set of N t−2 ciphertexts. Suppose that we wish to reduce the number of
candidates for the last round key by a fraction 1/N1−δ. By Equation 5 in Section 4.3, this
can be achieved by choosing the distinguisher’s threshold τ such that exp(−τ2/3) ≤ 1/N1−δ.
Equivalently,

τ ≥
√

3(1− δ) logN ,

where log denotes the natural logarithm.
By a similar reasoning as in the derivation of Equation (3), the number of required pairs

D must satisfy D(preal − pideal) ≥ τ
√
Dpideal. Since pideal ∼ 1/N2 and preal − pideal ∼ N t−2,

it follows that
D ≥ τ2pideal/(preal − pideal)2 ≈ τ2N2t−4 .

Since the input structures have dimension t− 2, the data-complexity becomes τ2N t−2 =
3(1− δ) (logN)N t−2. The overall time-complexity T of the attack is then

T ≈ N t−1+δ + 3ε(1− δ)(logN)N t−1 ,

https://homes.esat.kuleuven.be/~tbeyne/contracting-feistels.zip
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assuming partial decryption takes ε times the time of encryption. The first term is the
remaining guessing cost and the second term is due to the partial decryption of the data.
To minimize the time-complexity, the parameter δ ∈ [0, 1) should be chosen to balance the
terms. For instance, if N = 232 and t = 4 (the case of SM4), then with δ = 0.06140 we get

T ≈ 297.96 + 297.96 = 298.96 .

This estimate assumes ε = 1/16. The corresponding data-complexity is 269.96.
Alternatively, one could guess more than one round key and rely on a distinguisher

for a smaller number of rounds with a lower data-complexity. However, when optimizing
for the number of rounds covered by the attack, this is typically not worthwhile because
guessing one round key increases the time-complexity by an equal amount as increasing the
length of the truncated differential by t rounds. Nevertheless, this approach is interesting
in the low-data setting. Optimal trails for a smaller number of rounds can be obtained
using the SMT model from Section 4.2, but we leave a detailed analysis of such attacks as
future work.

6 Application to GMiMC-crf and SM4
We now briefly consider the impact of the generic distinguishers and key-recovery attacks
from Section 4 on GMiMC-crf and SM4. In both cases, we obtain improvements over the
state of the art.

GMiMC-crf. As mentioned in Section 3, Result 1 already implies a full-round distinguisher
for some instances of GMiMC-crf. Using Result 3, we obtain a distinguisher for t2 + t− 2
rounds. We conclude that for large values of t (relative to log2 N), the number of rounds
of GMiMC-crf must be at least doubled. However, GMiMC-crf is typically instantiated with
t� log2 N so that algebraic attacks are dominant. For these instances of the GMiMC-crf
cipher, we do not obtain full-round attacks.

SM4. From Result 3, truncated differential distinguishers on 16- and 18-round SM4 can
be obtained using 264 and 296 data respectively. As discussed in Section 5, the generic
16-round distinguisher can be converted into a 17-round key recovery attack with 269.96

data and 298.96 time by guessing the last round key. We summarize the attacks on SM4
from our paper and compare them to the main attacks from the literature in Table 1.

In terms of the number of rounds covered, the best attacks are differential and linear
type covering up to 24-round SM4. However, those attacks require a large amount of data
and time. For instance, the 24-round linear attack requires 2127 data and 2127 time (as
measured in arithmetic operations), which is close to the full codebook and the cost of a
brute-force key search. Previous attacks on SM4 aiming at lower data- and time-complexity
were presented by Guo et al. [GJNS16], who give a 16-round key-recovery attack with data
and time complexity of 299 using a generic meet-in-the-middle approach. Our 16-round
truncated differential distinguisher only requires 264 data, which significantly improves
over their attack. Our 17-round key-recovery attack has a similar time-complexity, but a
much lower data-complexity.

As far as we know, there is no direct analysis of differential or linear attacks on 16- or
17-round SM4. To make a reasonable comparison, we consider previous differential and
linear attacks with a reduced number of rounds. We claim that our 17-round key-recovery
attack improves over reduced-round variants of previous work, for the same or similar
data-complexity. This claim is motivated by the analysis below. For brevity, we assume
the reader is familiar with previous attacks on SM4.

The differential attack from Zhao et al. [ZLW18] is very similar to that of Su et
al. [SWZ11], so the latter will be used for reference below. Both attacks are based on
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Table 1: An overview of attacks on the SM4 block cipher. Attacks marked by † are
distinguishers, the others are key-recovery attacks.

Attack Type Rounds Data Time Reference

Differential

12 267 267 [SWZ11]†
21 2118 2127 [ZZW08a]
22 2117 2112 [ZWFS09]
23 2118 2127 [SWZ11]

Multiple differential 21 2104 2114 [SG16]
23 2114 2127 [ZLW18]

Linear 22 2117 2112 [ER09]
23 2120 2122 [LLWW17]
24 2127 2127 [LLWW17]

Multiple linear 22 2112 2124 [LGZ10]
23 2127 2127 [CN11]

Multidimensional linear 23 2123 2123 [LC14]
Boomerang 18 2120 2117 [KKHS08]

Rectangle
16 2125 2116 [ZZW08b]
18 2124 2113 [KKHS08]
18 2127 2104 [KWX13]

Impossible differential

16 2105 2107 [Lu08]
16 2117 2132 [TD08]
17 2117 2132 [Wan10]
18 2117 2132 [SWX12]

Meet-in-the-middle 16 299 299 [GJNS16]

Truncated differential
16 264 264 Ours†
17 270 299 Ours
18 296 296 Ours†

multiple 19-round differentials with the same output difference. The key-recovery appends
four rounds. If the 19 round differentials are restricted to 12 rounds, they have probabilities
between 2−84 and 2−82. As each structure of 233 plaintexts contains 246 pairs, the resulting
data-complexity would be around 270. However, following [SWZ11, §5.1], appending
five rounds for the key-recovery attack would have a time-complexity larger than 299, in
particular because there are very little conditions that can be used to filter pairs in the
last round.

More generally, we cannot use any known 13-round differentials because their probability
is too low. There exist other 12-round characteristics with higher probability (optimally
2−67, according to [SWZ11]), but the key-recovery heavily depends on the structure of the
output differences so the analysis from [SWZ11,ZLW18] is then not directly applicable.
In any case, a five-round extension by key-recovery with a time-complexity below 299 is
questionable.

The other attacks in Table 1 covering more than 18 rounds are linear attacks. Liu
et al. [LLWW17] propose to use a three-round iterative approximation with absolute
correlation 2−3r for r rounds. For 19 rounds this gives an absolute correlation of 2−57,
and key-recovery extends this by four rounds. To set up a round-reduced variant of this
attack with ≤ 270 data, the approximation can be extended to at most 11 rounds (absolute
correlation 2−33). However, the key-recovery should then cover 6 rounds, which is not
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realistic since 80 bits already have to be guessed for just four rounds.
The work by Liu et al. [LC14] is a multidimensional linear attack, but it only uses

25 linear approximations (extended to 64 in order to apply a multidimensional analysis)
and their absolute correlations are lower than those from [LLWW17]. The key-recovery
appends four rounds and extending this would drive up the time-complexity even more.

Cho and Nyberg [CN11] rely on the 5-round iterative approximations from [ER09].
These have absolute correlation 2−18.4 in the last two rounds. Hence, for 13 rounds,
the absolute correlation would be 2−36.8. This gives a data-complexity of around 273.6.
Using multiple approximations as in [CN11], a rough estimate suggests a data-complexity
similar to that of our 17-round key-recovery attack. However, this improvement will
only be achieved if some internal roundkey bits are guessed (signs of the correlations
must be guessed). Due to this, the key-recovery strategy of [CN11] only covers three
rounds. In particular, they guess 88 key bits from the initial and final rounds as well as 34
internal roundkey bits. Hence, only a 16 round key-recovery attack is obtained and with a
time-complexity above 299.
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