
508 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 12, NO. 2, JUNE 2022

AERO: Design Space Exploration Framework for
Resource-Constrained CNN Mapping on

Tile-Based Accelerators
Simei Yang , Debjyoti Bhattacharjee, Vinay B. Y. Kumar , Saikat Chatterjee, Sayandip De, Peter Debacker ,

Diederik Verkest, Arindam Mallik, Member, IEEE, and Francky Catthoor, Fellow, IEEE

Abstract— Analog In-Memory Compute (AIMC) arrays can
store weights and perform matrix-vector multiplication opera-
tions for Deep Convolutional Neural Networks (CNNs). A number
of recent efforts have integrated AIMC arrays into hybrid digital-
analog accelerators in a multi-layer parallel manner to achieve
energy efficiency and high throughput. Multi-layer parallelism on
large-scale tile-based architectures need efficient mapping sup-
port at the processing element (PE)-level (e.g., digital or analog
processing elements) and tile-level. To find the most efficient
architectures, fast and accurate design space exploration (DSE)
support is required. In this paper, a novel DSE framework,
AERO, is presented to characterize a CNN inference workload
executing on hybrid tile-based architectures that supports multi-
layer parallelism. Three characteristics can be seen in our DSE
framework: (1) It presents a hierarchical Tile/PE-level mapping
exploration strategy including inter-layer interaction, and allow-
ing layer fusion/splitting configurations for PE-level mapping
optimization. (2) It unlocks different Performance, Power and
Area (PPA) exploration points under both sufficient and limited
resource constraints, while limited resource case is not consid-
ered in prior works of multi-layer parallel architectures. The
impact of weight loading and weight stationary mapping are
analyzed for better insights into hybrid tile-based architectures.
(3) It incorporates a detailed PPA model that supports a broad
range of hybrid digital and analog units in a tile. Experimental
case-studies are performed for realistic and relevant benchmarks
such as MLP, CNNs (Lenet-5, Resnet-18,-34,-50 and -101).

Index Terms— Design space exploration, hybrid digital-analog
accelerator, multi-layer parallelism, inference, AIMC, resource
constrained mapping, deep learning.

I. INTRODUCTION

DEEP learning applications, such as deep convolutional
neural networks (CNNs) have achieved remarkable

breakthroughs in various application domains (e.g., image clas-
sification and speech recognition). These workloads involve
compute intensive matrix-vector multiplication (MVM) oper-
ations and huge data communication (e.g., activation and
weights of CNNs). As CNNs grow deeper, the ever-increasing
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computing and communication requirements have led to the
need for custom accelerator designs. Dedicated accelera-
tors [1], [2] have been designed to speed up computation using
a high degree of parallelism, and optimzed data storage and
data movement, in order to improve energy efficiency.

In recent years, analog in memory compute (AIMC) arrays
have attracted much attention in the accelerator design [3]. The
AIMC array stores the CNN weights in SRAM (or NVM-
resistive) array to achieve high storage density. In addition,
an AIMC array can effectively execute multiple MVM opera-
tions simultaneously, thereby achieving low energy consump-
tion and high throughput [4]. Prior works [5]–[7] integrate
AIMC with digital components to create a hybrid digital-
analog accelerator to support the execution of full CNN
workloads. Digital components are introduced to deal with
some non-MVM operations (e.g., Normalization, Pooling, etc.)
that are not easily adopted in AIMC arrays.

The state-of-the-art accelerator architectures (can be digital
or hybrid digital-analog) can be broadly classified into two
categories— single-layer parallel and multi-layer parallel.
Single-layer parallel architectures (e.g., digital [1], [2]) execute
a single CNN layer on the architecture at any given point of
time, parallelising and speeding up execution of operations
within the layer. Execution of a layer is not started until the
whole output of the preceding layer(s) has been computed.
In such architectures, input and output activations are typically
stored in the same memory hierarchies (e.g., DRAM, buffer
in Eyeriss [2]). Many DSE frameworks (e.g., Timeloop [8],
Interstellar [9], Zigzag [10]) explore loop transformations at
memory hierarchies for high data reuse to optimize energy
efficiency.

Multi-layer parallel architectures (e.g., ISAAC [5] and
PUMA [7]) are capable of processing multiple CNN layers
simultaneously, allowing multi-layer pipelines to maximize the
throughput of a full CNN workload. Such an architecture is
often organized into multiple tiles, where each tile can be
composed of multiple processing elements (PE) containing
AIMC arrays and digital components. Typically, all the tile
resources are partitioned across different CNN layers. A given
CNN layer (with MVM operations) is processed by some
AIMC arrays, while the outputs of the layer are fetched
by other AIMC arrays to process the next CNN layer and
so on. This helps in reduction of intermediate result storage
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TABLE I

COMPARISON OF RELATED WORK ON CNN ACCELERATORS

space as well as speeding up execution [6]. Unlike DSE
frameworks for single-layer parallel architectures (i.e., con-
sidering loop mapping at memory hierarchies), the existing
DSE frameworks/methodologies for multi-layer parallel archi-
tectures (e.g., in [5]–[7], [11]) and they focus more on mapping
at AIMC-level and Tile/PE-level.

In this paper, a systematic design space exploration (DSE)
framework, AERO, is presented to allow early and fast eval-
uations of a CNN inference workload executing on a hybrid
multi-layer parallel tile-based architecture that integrates mul-
tiple AIMC arrays as well as digital components in each tile.
The AERO framework presents a complete mapping flow,
including virtual mapping and physical mapping (hierarchical
mapping exploration) at tile-level, PE-level and AIMC-level.
Two key novelties can be seen in our DSE framework.

• The proposed framework supports hierarchical mapping
in multi-layer parallel architecture under both sufficient
and limited resource constraints (available tiles/PEs).
Existing works consider sufficient tiles/PEs to execute all
layers of a full CNN simultaneously, assuming weights
(of all layers) are pre-loaded into sufficient AIMCs.
AERO unlocks different PPA exploration points under
limited resources, which is not possible in prior efforts.
Particularly, the impact of weight loading and weight
stationary are assessed to gain a better insight into hybrid
tile-based architectures.

• The proposed framework supports a broad range of hybrid
digital and analog units within a tile, as well as instruction
memory and weight loading overhead. Most existing DSE
frameworks do not take into account instruction memory,
weight loading overhead that have a big overhead or
they consider quite high-level estimations (e.g., for MAC

computation and memory access overhead as in
Timeloop [8], Interstellar [9], ZigZag [10]).

Moreover, experimental case-studies for MLP, (deep) CNNs
(Lenet-5, Resnet-18,-34,-50 and -101) offer insights into the
impact of design parameters, e.g., (1) weight loading vs
weight stationary, (2) external memory access bandwidth of
weights, (3) resource constraints, (4) AIMC dimensions and
(5) AIMC memory cell technology choices, on hybrid tile-
based architectures.

The rest of the paper is organized as follows. Section II
compares the existing DSE frameworks for accelerators and
highlights the novelties of our work. Section III introduces
a hybrid digital-analog tile-based accelerator template as an
experimental benchmark in our DSE framework. Section IV
describes the mapping methodology and PPA estimation
approach of the proposed DSE framework (first contribution).
Section V discusses the insights derived from the experimental
case-studies (second contribution). Section VI discusses the
advantages and limitations of the current AERO framework.
Section VII concludes our work.

II. RELATED WORK

Table I compares the state-of-the-art DSE frameworks
(or methodologies) related to single-layer parallel and multi-
layer parallel CNN architectures, in terms of mapping
approaches (i.e., at AIMC level, Tile/PE-level, at memory
hierarchies) and model support (e.g., on PPA models, resource
constraints).

On one hand, multiple systematic DSE frameworks,
such as Timeloop [8]+Accelergy [12], Interstellar [9],
Zigzag [10], focus on convolution (Conv) or Fully-connected
(FC) layers executing on single-layer parallel architectures.
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These frameworks are primarily designed towards exploration
of digital architectural templates (e.g., Eyeriss [2]) and corre-
sponding mapping opportunities. The digital architectural tem-
plate consists of a digital processing element (PE) array, along
with the required memory hierarchies. A variant of Zigzag [4]
considers an AIMC array alongside the required memory
hierarchies. These DSE frameworks adopt loop transformation
approaches into the mapping flow to represent and analyze
the design space of Conv/FC layers mapped at PE/AIMC
arrays (see 1© column in Table I) and memory hierarchies (see
3© column).

Particularly for the mapping of data at different levels of
memory hierarchies (see 3© column), single-layer parallel
architectures typically consider input activations coming from
DRAM to buffers (e.g., L1 and/or L2 buffer) and PE/AIMC
array, while the output activations are stored in the same
memory hierarchies. The mapping flow is targeted to find
energy-efficient solutions that increase the data reuse within
the PE/AIMC array and also at different levels of the memory
hierarchy. It is worth mentioning that these DSE frameworks
consider high-level PPA models (see 4© column), focusing on
MAC computation and memory access overhead.

On the other hand, there has been some works [5]–[7]
[11], [13] consider multi-layer parallel architecture to support
the execution of a full CNN. Typically, the multi-layer parallel
architectures are organized in a tiled manner – one or more
compute arrays (either digital or analog) are grouped together
in the form of a tile and tiles communicate using network-
on-chip (NoC). These architectures take considerably larger
area compared to the single-layer parallel architectures and
are suitable for high performance scenarios.

For AIMC-level mapping (i.e., mapping weights onto AIMC
arrays, see 1© column), no exploration is performed in the
works of [5]–[7], [11], [13]. These existing works are based
on the conventional weight mapping method, aiming to fur-
ther increase the utilization and data reuse of AIMC arrays
to improve computational parallelism and energy efficiency.
In the conventional approach, a 3D Conv kernel (e.g., kx,
ky, cin as in Fig. 3) is transformed across AIMC rows, and
multiple 3D kernels (e.g., cout as in Fig. 3) can be mapped
across AIMC columns. Our work also adopts the conventional
weight mapping in AIMCs for high utilization. More details
about the mapping strategy can be seen in Section IV-A.

For tile/PE-level mapping (see 2© column), the objective is
to map nodes (e.g., layers or operations) to tiles and PEs. The
works of [5], [6], [11] perform the tile-level mapping manually
without exploration. PUMA [7] explores the optimized tile/
PE-level by a hierarchical partitioning strategy in bottom-up
manner (i.e., from PEs to tiles to accelerator). In contrast,
a top-down hierarchical partitioning strategy (i.e.,from accel-
erator to clusters, to tiles/PEs) in used in our work, to reduce
inter-tile communication traffic within reasonable exploration
time. Moreover, our proposed DSE framework supports node
fusion and splitting configurations (at PE-level level) as in
TVM compiler1 [15]. Similar to TVM, splitting factors are

1TVM compiler does not directly/currently support multi-layer parallel
architectures in the published version [14].

configured manually in the current AERO framework. How-
ever, fusion and splitting configurations are not supported in
PUMA [7], though splitting is discussed in [5] and [6].

For mapping at memory hierarchies (i.e., loop transforma-
tion, see 3© column), the existing works of [5]–[7], [11] do
not perform exploration as in Timeloop [8] and Zigzag frame-
works [10] (for single-layer parallel architectures). As previ-
ously discussed, single-layer parallel architectures store input
and output activations of a layer in the same memory hierar-
chies. Differently, multi-layer parallel architectures typically
store the output activations of one layer in the buffer of a
neighboring PE as input activations for the next layer. The
next layer can start computation without having to obtain all
the outputs of previous layer.2 This can be further understood
as implicit assumptions in existing works ([5]–[7], [11]), that
is, all loops related to output activations are ideally mapped to
the buffer of a neighboring PE and the next layer can consume
data before the buffer is full. This assumption still holds in
our work. Besides, the AERO framework currently assume
ideal data placement in input activation buffer (e.g., SRAM),
where the required data for generating an output is available
as needed. More investigations on mapping loops at memory
hierarchies and orchestrating data in input activation buffer
(such as in [11]), will be considered in future work.

Our work is further compared against existing works in
two more aspects (see 4© column). (1) While PUMA is a
compiler which generates custom ISA (instruction set), our
AERO framework can be regarded as a preliminary step
before a real compiler. AERO uses custom ISA to generate
approximate instructions, assuming ideal data placement as
previously discussed. The approximate instructions are further
used to derive information (e.g., action counts of different
hardware components, ISA execution cycles) for detailed PPA
(e.g., latency, energy) models. Most of the existing works
exclude instruction memory and weight loading overheads
(e.g., [5], [6]), or they consider quite high-level estimations
(e.g., [8]–[11]). (2) The works of [5]–[7], [11] consider that
the number of tiles is always sufficient to execute all neural
network layers simultaneously, and weights of all layers are
pre-loaded into sufficient AIMCs. This explains why weight
loading overhead is excluded in their PPA models. In contrast,
AERO considers the cases of sufficient and limited number
of available tiles/PEs, thereby unlocking different PPA explo-
ration points that were previously not possible. AERO also
assesses the impact of weight loading to achieve better insight
into hybrid tile-based architectures.

III. ARCHITECTURE TEMPLATE

This section introduces a multi-layer Tiled Analog In-Memory
Accelerator (TANIA) architecture template, which is used for
design space exploration. For reference, Table II lists the
parameters in the architecture template and other variables
used in rest of this paper. Fig. 1(a) illustrates the top level
TANIA architecture template. It comprises of multiple clusters,

2The buffer between two layers can be in small size, which is about
inx × ky × cin, where inx is the number of columns in input feature, ky is
the number of rows in kernel, cin is the number of channels in input feature.
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TABLE II

NOTATIONS USED IN THIS PAPER

Fig. 1. TANIA architecture template: (a) description of the accelerator-level
with multiple clusters; (b) description of the tile-level.

with two external interfaces – host interface and a weight bank
interface. Each cluster consists of multiple tiles, which share a
local (e.g., L2) buffer for storing intermediate results if needed.
The tiles communicate over NoC for transferring activations.

Each tile consists of multiple PEs, consisting of Na analog
Aicores [16] and Nd digital Vector Functional Units (VFUs),
as shown in Fig. 1(b). As introduced in [16], each Aicore
has an AIMC array to performs MVM operations and it has
additional digital circuits for batch-normalization (BN) and
non-linearity (NL) operations. This offers the possibility to
immediately process the MVM results through BN or NL
operations to reduce the amount of intermediate data. For
simplicity, the number of BN and NL is considered to be equal
to number of AIMC columns. Note that Aicore and AIMC are
not the focus of this paper. More details about them can be
found in [16] and [17]. Similar to [7], each VFU is a SIMD
unit, which concurrently performs digital operation on multi-
channel (e.g., 64) activations for high throughput. Analog
Aicores and digital VFUs support different operations, which
are summarized in Table III. Each PE has a local activation
buffer. A low fan-out network is used for communication
between the PEs, which offers a much lower energy cost for

TABLE III

SUPPORTED OPERATIONS FOR AICORE AND VFU

Fig. 2. Overview of AERO DSE framework.

data transfer within the tile, compared to inter-tile data transfer
(via NoC). The output of a PE is written to the activation buffer
of the destination PE, or to L2 buffer within a cluster.

Each PE has a local instruction memory and program
counter. This allow PEs to operate independently, with the
flexibility of mapping layers to arbitrary PEs. Since the cost
of inter-tile communication is higher than intra-tile commu-
nication, a mapping strategy is required to map layers in
a way that reduces inter-tile communication. The mapping
framework will be presented in the following section.

IV. AERO DESIGN-SPACE-EXPLORATION FRAMEWORK

The overview of the proposed DSE framework, AERO,
is shown in Fig. 2. The framework takes a hardware archi-
tecture template and a neural network (e.g., CNN) infer-
ence workload as input. TANIA architecture template (See
Section III) is used as the base hardware architecture in
the framework. The inference workload is imported in Open
Neural Network Exchange (ONNX) format [18]. ONNX
format is used to enable interoperabililty among a variety
of frameworks [18]. Microsoft NNI [19] is leveraged for
performing multiple DSE experiments in parallel locally or
on a cluster.

AERO framework encompasses a generic mapping method-
ology, which consists of virtual mapping (❶ in Fig.2) and
physical mapping (❷). This generic mapping strategy can be
applied to inference workloads executed on different acceler-
ator templates (e.g., ISAAC [5], PUMA [7]). Based on the
mapping solution, preliminary instructions (assuming ideal
data placement as discussed in Section II) are generated for
each PE (❸). Additionally, a latency characterization approach
(❹) is presented to model the start time and finish time of
each pixel computation, considering inter-layer data depen-
dencies. To estimate the area of an architecture template,
and the energy cost for a given workload mapped to it, the
Accelergy [12] framework is integrated into the AERO DSE
flow (❺). A number of component-level estimation plugins
specific to the architecture (e.g., for AIMC array, NoC, and
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Fig. 3. Overview of virtual mapping. (a) Part of application graph of Resnet-18. (b) Virtual initial layer-PE mapping: Case I-II maps a MVM layer to one
AIMC array (i.e., one Aicore); Case III-IV map a MVM layer to multiple AIMC arrays by diving a Conv kernel across cin and cout dimension, respectively.
(b.1) Example of a Conv layer with kernel, input and output features. (b.2) In Case I, AIMC mapping without output unrolling. (b.3) In Case II, AIMC
mapping with output unrolling. (c) Virtual node fusion. (d) Virtual node splitting.

other building blocks) are added for energy computation. The
generated results are displayed in a dashboard.

The following sections will present the details of mapping
and PPA modeling. The custom ISA for instruction generation
(❸) is out of the scope of this paper.

A. Virtual Mapping

Virtual mapping (❶ in Fig. 2) aims to map each neural
network layer to Aicores or VFUs, depending on the
types of layer, and considering AIMC dimension as con-
straints. Virtual mapping implies that the resource availability
(i.e., Aicores and VFUs) of the physical platform is not
considered in this stage. Virtual mapping is fulfilled in three
steps: initial virtual mapping, virtual-node fusion and virtual-
node splitting, as illustrated by the example in Fig. 3.

1) Initial Layer-PE Virtual Mapping: For a neural network
graph, initially, each MVM layer (e.g., Conv and Gemm) is
mapped to Aicores, and each digital operation layer is mapped
to a VFU (see Fig. 3(a-b)). For Aicores, weights should be
appropriately mapped to AIMC arrays (i.e., at AIMC-level).
The AIMC-level mapping can be summarized into four cases,
depending on the kernel dimension and AIMC dimension [16].
Case I-II map a MVM layer to one AIMC (i.e., in one Aicore).
Case II maps multiple copies of weights to a (large) AIMC
array, allowing computing multiple outputs simultaneously
(i.e., output unrolling in Fig. 3(b.3)). Case III-IV map a MVM
layer to multiple AIMC arrays by dividing a Conv kernel
across input (cin) and/or output channels (cout). More details
about AIMC mapping can be found in [16].

2) Virtual-Node Fusion: The mapping of a layer to a
Aicore/VFU is denoted (Fig. 3(b)) as a virtual node. The node
fusion step fuses the adjacent operations of the same pixel into
one PE (see Fig. 3(c)), aiming to reduce intermediate data
transfer at memory hierarchies [20]. Based on the hardware

supports shown in Table III, AERO performs node fusion
according to the following three operation orders.

• Conv-Bias-BN-NL (fuse into Aicore)
• Psum-Bias-BN-NL (fuse into VFU)
• Add (residual)-Relu (fuse into VFU)

These orders are usually observed in most of the existing
CNN workloads (e.g., MLP, Resnet-18). Fusion can be per-
formed even when some operations are skipped in each order.
For instance, AERO fuses Conv-BN operations for Resnet-18
(see the arrow in Fig. 3(c)), while Bias and NL operations
are skipped (in the first order). AERO currently incorporates
a first fusion heuristic which will be explored more, as part of
future work.

3) Virtual-Node Splitting: AERO performs node splitting to
allow different PEs to generate different parts of the output
activations (e.g., ox and oy of a Conv layer). This can
speed up the the computation of shallow layers (e.g., first
couple of layers due to the large output dimensions [6]) and
consequently reduce the inference latency. In the example of
Fig 3(c), Split_2_2 refers to using two Aicores and two VFUs
for first two layers respectively. The current AERO framework
allows setting splitting factor for every layer manually. A good
set of splitting factors can be obtained by adding an explicit
search space exploration method, which can be elaborated in
future.

4) Virtual Mapping Result: A virtual mapping can be
characterized by a set of I virtual nodes (nodei ), and a
set of K communication edges (edgei,i ′ ) representing data
dependencies between two nodes (nodei and node′

i ). The
virtual nodes targeting an analog Aicore, a digital VFU and
a Reshape operation (e.g., for data organization in activation
buffer), as shown in Fig. 3(b-d), are denoted by nodea , noded

and noder , respectively.
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B. Physical Mapping

Physical mapping (❷ in Fig. 2) aims to map virtual nodes
to the physical architecture entities: clusters, tiles, Aicores and
VFUs. The objective is to optimize inter-tile communication
over the NoCs, subject to resource constraints.

1) Problem Formulation of Physical Mapping: Given: a vir-
tual mapping result, with I heterogeneous virtual nodes and K
communication edges (see Section IV-A.4), and an architecture
template (e.g., TANIA in see Section III).

Find: An optimized physical mapping, which maps virtual
nodes to clusters, tiles, PEs (i.e., Aicores and VFUs). Let
the matrix of binary variables [pi, j ]I×J represent a physical
mapping on tiles (including clusters), where pi, j is defined as:

pi, j =
{

1, if nodei is assigned to tile j .

0, otherwise.
(1)

where J refers to the number of all tiles in the architecture
(J = Ncluster × Ntile). Here, the cluster index is hidden into
the tile index (tile j ) for clarity of the formula.

Objective: To optimize NoC communication traffic, the
inter-tile (including inter-cluster) communication is formulated
as in Eq.(2), where edgei,i ′ refers to the edge between nodes
nodei and node′

i . Then the physical mapping objective can be
formulated into Eq.(3).

Commnoc(pi, j , pi ′, j ′) =
{

0, if j = j ′.
edgei,i ′ , otherwise.

(2)

min
I−1∑
i=0

J−1∑
j=0

Commnoc(pi, j , pi ′, j ′) (3)

Subject to: Resource constraints can be understood by:
(1) Each virtual node (except noder ) is mapped into one tile
(Eq.(4)); (2) The number of nodea and noded in each tile
should respect the tile-level resource availability of Aicores
(Eq.(5)) and VFUs (Eq.(6)), respectively.

J−1∑
j=0

pi, j = 1, ∀i, pi, j ∈ {0, 1}, nodei /∈ noder (4)

I−1∑
i=0

pi, j ≤ Na, ∀ j, nodei ∈ nodea (5)

I−1∑
i=0

pi, j ≤ Nd , ∀ j, nodei ∈ noded (6)

Here, the physical mapping at PE-level is not shown for sake
of simplicity. It is considered that the nodes in each tile can
be allocated to any available Aicore or VFU. This is based
on the assumption that intra-tile communication (e.g., using
fan-out networks in TANIA template) is more energy efficient
compared to inter-tile communication via NoC.

2) Hierarchical Physical Mapping Strategy: A hierarchical
strategy is proposed to achieve optimized physical mapping
solution. Mapping on multi-cores systems has been proved as
a NP-hard problem [21]. The large number of CNN layers
(i.e., virtual mapping nodes) and the large scale of hardware
resources (i.e., Aicores and VFUs in TANIA) lead to a huge

Fig. 4. (a) Overview of hierarchical optimization of physical mapping,
under resource constraints (RC) and graph sequence constraints (GSC);
(b) An example of accelerator-level physical mapping.

design space. Hierarchical mapping approaches [22], [23] are
usually used to resolve the scalability issue. The overview
of our hierarchical physical mapping strategy is shown in
Fig 4(a), which consists of three levels.

The proposed hierarchical physical mapping strategy is in
top-down manner. The accelerator-level mapping divides vir-
tual nodes into multiple partitions. It is particularly proposed
for the case where the number of virtual nodes is larger than
the number of physical resources (i.e., Aicores and VFUs).
The accelerator-level mapping can be further understood as
partitioning a neural network to meet resource constraint and
graph sequence constraint. It is considered that the nodes of
different partitions execute sequentially at available resources,
and the execution of each input node should not be later than
its output node (i.e., graph sequence constraint). One example
is shown in Fig 4 (b), where virtual nodes are divided into
two partitions (i.e., P_0 and P_1). The nodes of P_0 execute
on available PEs first (e.g., 4 Aicores and 2 VFUs). After P_0
finishes the execution, the intermediate data between the two
partitions are stored into L2 buffer. Then, nodes of P_1 load
the intermediate data from L2 buffer to corresponding PEs
and start their execution. Afterwards, according to resource
constraints, the cluster-level mapping divides each set of
partitioned nodes to available clusters, while the tile/PE-level
mapping divides each set of clustered nodes to available tiles,
as well as PEs.

3) Hierarchical Physical Mapping Strategy Implementation:
METIS [24] graph partitioning program is used at the three
hierarchical levels to support efficient explorations. METIS
is claimed to be one to two orders of magnitude faster than
other widely used partitioning algorithms. To further improve
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Fig. 5. The chromosome with two segments for Aicores and VFUs in each
cluster. In this example, a cluster has 4 tiles (with tile index from 0 to 3). Each
tile has 4 Aicores (4 same tile indexes) and 2 VFUs (2 same tile indexes).

solution quality (i.e., reducing inter-tile communication via
NoCs, and exploiting the intra-tile communication), on top
of METIS, a custom genetic algorithm is implemented at tile/
PE-level to have local optimization. The combined strategy is
denoted by METIS-Genetic.

The developed genetic algorithm is based a standard micro-
bial genetic algorithm (MGA) [25]. MGA takes cluster-level
physical mapping (i.e., a set of virtual nodes mapped to a
cluster) as input to explore tile/PE-level mapping optimization.
Firstly, MGA initializes the population, which consist of a
set of random chromosomes. The METIS solution (at tile/
PE-level) is inserted as a basic chromosome. The chromosome
of a tile/PE-level mapping solution is encoded as in Fig. 5.
The chromosome is a vector of PE’s length in a cluster
(i.e., Na × Ntile + Nd × Ntile in TANIA), consisting of two
segments for Aicores and VFUs respectively. The chromosome
is a permutation of tile index of each PE. In each target
cluster, the virtual nodes for Aicores (or VFUs) are sequen-
tially allocated to a tile (with a tile index) according to the
Aicore (or VFU) chromosomes. Secondly, the fitness function
of a chromosome is defined by exp (1/(

∑
Commnoc + 1)),3

where
∑

Commnoc refers to the inter-tile NoC communication
within a cluster (based on Eq.(3)). The smaller the NoC
communication, the better the chromosome’s fitness is.

The proposed hierarchical physical mapping strategy imple-
mented by METIS-Genetic is able to exploit up to 82.01%
communication data (Bytes) within tiles (i.e., intra-tile), which
enables more energy-efficient data transfer than inter-tile data
transfer via NoCs (recall Section III). For Resnets (-34,-50, and
-101), the METIS algorithm takes 0.01 ∼ 0.06 seconds and
the genetic algorithm takes 3 ∼ 10 seconds for the exploration
per cluster. This indicates that the proposed METIS-Genetic is
suitable for the architecture template in terms of exploration
efficiency and exploration time. The relevant experimental
details are not shown due to the limited space in the paper.

C. Latency Characterization Approach

The proposed latency characterization approach (❹ in
Fig. 2) describes start time and finish time of pixel
computation, on-chip communication (i.e., intra-tile and inter-
cluster/tile communication) and off-chip data transfer behav-
iors, while taking into account inter-layer data dependencies.

Fig. 6 illustrates the latency characterization for two exam-
ple neural network layers, Layer0 (e.g., Conv layer) and
Layer1 (e.g., Pooling layer). At the beginning of system
execution, weight loading and off-chip activation transfers are
performed in parallel through separate NoCs (see A in Fig. 6).
Similar to [5], data transfer via NoCs is assumed to be stati-
cally routed without any conflicts. In AERO framework, once

31 is added to avoid the case where divisor is 0.

Fig. 6. Latency estimation for Layer0 and Layer1 examples. * For simplicity,
the figure characterizes the weight loading (WL) latency in terms of data
communication. WL latency caused by AIMC write speed (related to AIMC
technology) is discussed in Section V-G.

all off-chip activation (of the first image frame) are loaded
from off-chip memory, Layer0 starts to execute according to
computation order sequentially (see B in Fig. 6). The pixel
computation time is characterized by the average cycles of
executing the instructions for one pixel generation, ignoring
corner cases (e.g., padding). Computation and inter-tile NoC
communication can overlap. NoC communication latency is
determined by data size and NoC bandwidth, i.e.,

NoC communication latency = data size/NoC bandwidth

The generated output pixels are written into the activation
buffer (of Aicore/VFU) of the next layer. From the next layer
(e.g., Layer1), the computation for an output pixel depends
on the maximum latency of the required input activations
(e.g., 1, 2, 5, 6 of Layer0, see C in Fig. 6).

Fig. 7 characterizes latency for all layers of a full CNN for
sufficient and limited resource constraints. Multi-layer parallel
execution on hybrid tile-based architectures under limited
resource constraints is the key novelty in this paper.

1) Sufficient Resources (SR): In this case, the number of
physical PEs (Aicores and VFUs) is always sufficient for a full
neural network (with all virtual nodes). There is no need to use
accelerator-level physical mapping strategy (in Section IV-B.2)
to deal with accelerator resource constraints, but using cluster-
level and tile/PE-level strategies. For a set of virtual nodes
in Fig. 7 (a), part (b.1) illustrates the data transfer behav-
iors under SR constraints, while part (b.2) characterizes the
corresponding latency behaviors. Initially, the off-chip data
transfer, including weight loading (WL) for all nodea and
image loading (IL) for the input node (see IL_0 for node0

a),
are performed in parallel. When WL is finished for the first
Aicore, it continues for the next Aicore (see TA, TA′ in
Fig. 7 (b.2)), and so on. Then, all Aicores and VFUs can
start execution with on-chip communication (intra-tile and
inter-tile/cluster) depending on data availability. The finish
time of the last layer refers to network inference latency
(see TB ). From the second image, the off-chip IL latency
(see IL_1 and IL_2) can be hidden in our assumption, and
computation and communication can be performed without
WL. This mode is typically called weight stationary (WS,
see TC and TC ′). As a consequence, latency (see TB ′) can
be reduced compared to that of the first image.

2) Limited Resources (LR): In this case, the number
of virtual nodes is larger than the number of physical
PEs. It requires accelerator-level physical mapping strategy
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Fig. 7. (a) Example of virtual mapping nodes for a full network. (b.1) Data transfer behaviors of off-chip (WL and IL) and on-chip (intra-tile (via fan-out
network), inter-tile/cluster (via NoC), inter-partition (via L2 buffer)) and (b.2) latency characterization, under SR constraint. (c.1) Data transfer behaviors of
off-chip and on-chip and (c.2) latency characterization, under LR constraint. Note: The Aicore (or VFU) comm & comm characterizes the start time of the
first pixel and the finish time of the last pixel for an image frame. *Particularly for part (c.2), different nodes mapped to the same Aicore/VFU are displayed
in the same row.

(see Section IV-B.2) to divide the virtual mapping nodes
into multiple partitions, followed by cluster-level and tile/
PE-level strategies. For the virtual noes in Fig. 7 (a) under
LR constraints, part (c.1) describes the data transfer behavior
and (c.2) shows the corresponding latency characterization.
Due to LR constraints, the virtual nodes are divided into
3 partitions. The off-chip WL is firstly performed for node0−3

a
in P_0 (partition index), and IL is performed for node0

a.
Then all nodea and nodev in P_0 start computation and on-
chip communication (intra-tile, inter-tile/cluster) considering
data availability. When any physical Aicores are released by
nodea in P_0, WL can be performed for node3−5

a in P_1.
This can lead to a time gap (see TD) between the WLs
for different partitions. Additionally, the AERO framework
stores the on-chip intermediate data between partitions into L2
buffer. The intermediate data (from node1

v , see TF ) is then used
for the computation (of node3

a and node2
v ) in P_1. Similar off-

chip WL and on-chip intermediate data (via L2 buffer) should
be performed for different partitions until the end of the full
network. As a result, the inference latency can be increased to
get area benefits. The L2 intermediate data transfer depends
on the applied accelerator-level physical mapping strategy.

The AERO framework considers both WL-mode and
WS-mode for SR constraints. However, for LR constraints, the
framework focuses on WL-mode (as previously discussed) and
currently does not support WS-mode. WS-mode is possible for
a set of partitioned nodes in multiple image frames, but a large
L2 buffer space is required to store the intermediate data of
the multiple frames. This is out of the context of this paper.

D. Energy and Area Estimation Approach

For area estimation of a given architectural instance and
energy estimation corresponding to a specified workload,
AERO integrates Accelergy [26], a component-level area and
energy estimation methodology (❺ in Fig. 2). In this approach,

a system architecture is hierarchically described in terms of
components of various classes. For each component class,
there needs to be a component-level estimator plugin (CEP)
that can be queried—given the specified attributes on a com-
ponent instance—for area, and energy corresponding to all
actions defined on that component class. A CEP may support
as fine a level of granularity for the feasible actions on a
component (e.g,. read action on SRAM with the same address,
or compute action on the AIMC array with specified array
utilization). Accelergy also supports constructing compound
components from the primitive ones, the actions on which
are defined in terms of actions on the constituent primitive
components.

Accordingly, the TANIA architecture template (Fig. 1) is
described as a set of yaml files, in terms of various components
such as: the external storage for weights-banks and host-side,
input-activations, inter-tile NoCs (mesh), the analog AIMC
arrays of various compute-cell types, a compound component
containing the SIMD lanes in a VFU (composed in turn from
primitive components like integer adders, multiplers, dividers,
comparators, barrel-shifter, etc.,), the intra-tile fan-out net-
work, and the on-chip activation (L1) and L2 level SRAM
buffers. While Accelergy does include a few CEPs covering
primitive components (e.g., arithmetic/combinational opera-
tions, registers, etc.,) with analytical models. Favoring more
specificity, the estimation methods of some components where
updated as necessary and new estimation plugins (CEPs) were
added, for the components specific to Fig. 1. In particular,
(highlighted in blue text in Fig. 8): an in-house model for
SRAM buffers (corresponding to 22nm) is used; a model for
AIMC array (modeling this as a compound component as
in [27] was an option, but modeling it as a primitive with
a dedicated CEP is a better choice in this case); the NoC is
also modeled as a primitive component, and DSENT [28] was
introduced as a new plugin; for the arithmetic and other dig-
ital components, the existing table-based plugin is leveraged
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Fig. 8. Area and Energy estimation in AERO through Accelergy [26].

TABLE IV

CONSIDERED WORKLOADS

together with post-synthesis data (targeting the 22nm process
and with Cadence Genus) based on RTL descriptions of
respective components.

V. CASE-STUDIES

In this section, the AERO framework uses TANIA architecture
template to study the impact of: (1) WL and WS, (2) external
memory access bandwidth of weights, (3) SR and LR con-
straints, (4) AIMC dimensions and (5) AIMC memory cell
technology choices. Notice that the experimental section does
not include estimating the impact of host DRAM bandwidth
and NoC bandwidth,4 as they have less impact on inference
latency than weight DRAM bandwidth.

A. Experimental Setup

The AERO framework was developed in Python and
Microsoft NNI [19] was used for exploration of the
design space. The experiments were executed on a machine
running Red Hat Enterprise Linux with Intel CPU E5-2690
at 2.60GHz configuration. ONNX format is used [18] for
input workloads. Table IV lists the workloads that are
considered in experiments, including a MLP (denoted by
MLP-3 with 3 Fully-connected layers), Lenet-5 (a small
CNN) and multiple deep Resnets (-18,-34,-50 and -101). The
MLP-3 [29] and Lenet-5 [30] workloads are exported to
ONNX format based on their open-source code, while the
Resnets are obtained from ONNX Zoo [31]. All the operations
including digital operations, skip connection are modelled in
the current framework. The table summarizes the number of
different layers and the total weight size of each workload,
considering ternary weights. In the experimental case-studies,
2 PEs are allocated to each of the first two layers (Split_2_2,

4The multi-layer parallel architecture offers the possibility to hide the
latency of loading input images from host DRAM and intermediate data
(e.g., input, output and accumulation) via NoC.

TABLE V

BASELINE ARCHITECTURE PARAMETERS

Fig. 9. Area breakdown of TANIA baseline architecture (4-cluster,
103.60 mm2). Note: CFU: Compound function units (SIMD lanes).

recall Fig. 3 (d)) of the neural networks by default to optimize
the inference latency. Split_2_2 can reduce inference latency
by up to 70% with less than 13.5% increase in energy
consumption (for Lenet-5 and Resnets). The relevant exper-
imental details are not shown due to the limited space in the
paper. Splitting is not performed for MLP-3, since the output
dimension (ox, oy) of FC layer is 1. Note that the hardware
technology nodes used for energy and area estimation haven
been described in Section IV-D.

B. Baseline Architecture and Area Analysis

Table V presents the baseline architecture used for the
experiments. Given an area budget of 200 mm2, 4 clusters
can fit when using different dimensions (Row ∈ {512, 576,
1024, 1152} and Col ∈ {256, 512, 1024}) in each AIMC
array. 1152 rows × 512 columns dimension is selected for
the baseline architecture (as explained in Section V-F).

The area breakdown of the baseline architecture is presented
in Fig. 9. The AIMC arrays contribute significantly (46.6%).
to the overall area. The digital blocks inside the Aicores
(pie in red) account for 20.9%. Activation buffers are another
major contributor to area (17.5%). In modern day CNNs, the
number of MAC operations dominate the total percentage of
computations. For example, Resnet-18 has 3628.15 million
analog MAC operations and 9.65 million digital operations.
The area is dominated by AIMC arrays, which are responsible
for performing the MAC operations that constitute the bulk of
operations in the CNNs.

C. Impact of Weight Loading and Weight Stationary
This case-study assesses the impact of WL and WS under

SR constraints. As previously discussed in Section IV-C.1,
sufficient clusters allow loading weights of all layers at once.
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TABLE VI

COMPARISON OF WL AND WS WITH SUFFICIENT CLUSTERS

Fig. 10. (a) Normalized energy efficiency (TOPs/W) and (b) Normalized
pipeline throughput (#inference/s) at different #reuse, under SR constraints.
Note Res-18→4C (Resnet-18 mapped to 4 cluster). Note: since the values of
MLP-3 are large, the plotted values are 100× smaller than the original values.

Table VI shows the resource requirements, indicating that
as the application layer gets deeper (e.g., from Resnet-18 to
Resnet-101), the number of required clusters and correspond-
ing area increase.

To reduce energy/latency overheads due to WL, weights can
be loaded once for the first input (e.g., image) and reused for
the next multiple inputs (i.e., denoted by weight reuse). When
#reuse>1, multiple input images can be processed simultane-
ously and the pipeline throughput is dependent on the critical
path (i.e., layer with the longest computation time). When
#reuse=infinite, the mapping can be approximated as WS.

Fig. 10 compares the energy efficiency (TOPs/W) and
pipeline throughput (#inference/s) with increasing number of
weight reuses. It can be observed that WL mode (#reuse=1)
has the lowest energy efficiency. MLP-3 workload (with 3 FC
layers) is sensitive to #reuse in terms of energy efficiency and
performance, as FC layers are typically dominated by WL.
Compared to WL mode (#reuse=1), WS mode (#reuse=inf )
is ∼100× better in energy efficiency and performance.

On the other hand, for Resnet-18 and Resnet-50 (in Fig. 10),
their energy efficiency and pipeline throughput approaches up
to 90% of WS mode (#reuse=inf ) when #reuse=16. This
indicates that weight reuse can enable energy efficiency and
performance for CNNs close to WS mapping, even for low val-
ues. Hence, the theoretical optimum can be approached with
our architecture template and our mapping strategy. A broader
comparison for all the considered workloads can be seen in
Table VI. The table shows that WS mode has 1.570× ∼
3.207× better energy efficiency and 1.186× ∼ 3.362× better
performance than WL mode (for CNNs, excluding MLP-3).

D. Impact of External Memory Access of Weights

This case-study assesses the impact of external memory
access bandwidth (BW) on latency in WL mode. An intuition

overview can be seen Fig. 11(a), which describes the latency
behavior of Res-34→7C when BW=40 Bytes/cycle. Indexes
A and B refer to the behaviors of initial layers, where
WL latency is significantly smaller than computation latency.
Nevertheless, possible WL stalls (index C in Fig. 11(a)) can
defer the execution of later layers. For better performance,
multiple HBMs could be interfaced to achieve higher band-
width, similar to TPUs [32].

Fig. 12 shows the impact of increasing weight DRAM
bandwidth on latency. It can be observed that the latency of
MLP-3 is sensitive to the increase in bandwidth due to its
weight-rich FC layers. Besides, the latency of Lenet-5→1C
and Res-18→4C do not change with increasing bandwidth,
which implies that small CNNs are dominated by computation
activities (w.r.t WL). Lastly, for deep neural networks with a
huge amount of weights (e.g., Resnet-34,-50,-101), an increase
in weight DRAM bandwidth can reduce latency. Thus, the
tiled architecture can take benefits of higher available weight
bandwidth to reduce the inference latency of deep CNNs. But
in the end, latency saturates to a critical path, which happens
around bandwidth of 60 Bytes/cycle for Resnets.

E. Impact of Resource Constraint

This case-study assesses the impact of SR and LR con-
straints. In the baseline architecture with 4 clusters, the deep
Resnets (Resnet-34,-50,-101) are resource constrained. For an
intuitive overview, Fig. 11 compares the latency behavior of
Res-34→7C and Res-34→4C (i.e., SR and LR). Under SR
constraints, WL is performed for all Aicores (mapped MVM
layers) in layer depth order (see index A). Under LR con-
straints, the virtual nodes of Resnet-34 are divided into 2 par-
titions (see P_0 and P_1 in part (b-c)). WL is first performed
for nodes in P_0 (see index D). Once Aicore resources are
released by one or more node(s) in P_0, WL can be started for
P_1 (see index E, with a gap between D and E). As previously
illustrated in Section IV-B, the intermediate data between two
partitions are transferred via the shared L2 buffer (see F and
G, corresponding to Add-Relu_3, Conv_35_0 and Conv_35_1
in part (c)). Nodes in different partitions execute sequentially
until the end of the last layer.

Fig. 13 shows the comparison of three cases: LR-WL
(i.e., limited resources in weight loading mode), SR-WL and
SR-WS for the deep Resnets (-34,-50,-101). Part (a) indicates
that LR-WL has the highest latency (about 18% higher than
SR-WL, 35% ∼ 47% higher than SR-WS), with area saving
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Fig. 11. Latency behavior Resnet-34 with of weight access bandwidth of 40 Bytes/cycle: (a) Res-34→7C (SR) and (b) Res-34→4C (LR). (c) Partition of
Res-34→4C (e.g., for Conv_x_y, x is the layer index and y is the mapping index on multiple Aicores (recall Section IV-A)). Note: A: weight loading (WL).
B: computation. C: WL stalls. E: write to L2 buffer. F: read from L2 buffer. G: WL for P_0 (e.g., partition index). H: WL and WL stalls for P_1. *Particularly
for part (b), different nodes mapped to the same Aicore/VFU are displayed in different rows.

Fig. 12. Impact of external memory access of weights at increasing
bandwidth (BW, Bytes/cycle) in WL mode, under SR constraints. Note: since
the values of M1 and M2 are small, the plotted values are 100× the original
values.

Fig. 13. (a) Latency (cycles) and (b) energy efficiency (TOPs/W) and
area efficiency (TOPs/mm2) in three cases: LR-WL (i.e., limited resources
in weight loading mode), SR-WL and SR-WS.

43% ∼ 73% (4 clusters w.r.t. 7, 8 and 15 clusters). This is
because in LR case, a full network is divided into multiple par-
titions. WL and intermediate data transfer (via the shared L2)
are performed for each set of partitioned nodes, which leads
to extract overheads (e.g., latency, energy). Fig. 13 (b) shows
that SR-WS has the highest energy efficiency, followed by
LR-WL (15% higher than SR-WL). Additionally, LR-WL has
the highest area efficiency for Resnet-50,-101 (up to 54%
higher than SR-WS). Since Resnet-34 is less resource con-
strained in 4 clusters than Resnet-50,-101, the area efficiency
of Resnet-34 in LR-WL is close to (i.e., 7% lower than) SR-WS.
This proves that the AERO framework unlocks different PPA
exploration points under LR constraints.

F. Impact of AIMC Dimensions

This case-study assesses the impact of AIMC dimensions.
Fig.14 (a-b) shows the latency evolution of Res-18→4C (SR)

and Res-50→4C (LR) across different AIMC dimensions
(represented by Rows×Columns), considering WL overheads.
Larger AIMC dimensions typically have lower latency, since
higher output-unrolling factors (i.e., more copies of weights
in AIMC, recall Fig. 3 (b.3)) allow computing multiple
output activations simultaneously. However, higher output-
unrolling factors in a AIMC can take more time for WL.
This explains why the latency of 1152 × 1024 is higher
than 1152 × 512.

Fig. 14 (c-d) shows energy efficiency (T O Ps/W ) and
area efficiency (T O Ps/mm2) for the two considered net-
works. Good energy efficiency can be achieved in large array
dimension (i.e., 1152 × 256, 1152 × 512, 1152 × 1024),
out of which, 1152 × 512 AIMC dimension has the highest
energy efficiency. However, the AIMC array dimensions with
largest number of rows (1024) have low area efficiency, due
to severe under-utilization of array. High area efficiency is
achieved in the AIMC arrays with small number of rows
(e.g., with 256 rows). Similar trade-offs between latency,
energy efficiency and area efficiency can be seen in other
Resnets (i.e., kernel dimension, kx , ky = 3). On the other
hand, the small networks, MLP-3 and Lenet-5, have small
variations in latency, energy efficiency, and area efficiency for
different AIMC dimensions. For MLP-3→1C, 1024×512 has
the best PPA, while 1152 × 512 is the second best.5 For
Lenet-5→1C (kernel dimension, kx , ky = 5), 1024×1024 has
the lowest latency, while 1152 × 512 has higher energy and
area efficiency.6

Overall, 1152 × 512 is selected in the baseline architecture,
due to its good trade-off in latency, energy efficiency and area
efficiency for the considered networks in this paper. To the best
of our knowledge, AERO is the only framework that explicitly
reports such trade-offs, under both SR and LR constraints,
on hybrid tile-based architectures.

51152×512: 4234 cycles, 0.443 T O Ps/W and 0.013 T O Ps/mm2; 1152×
512: 4234 cycles, 0.442 T O Ps/W and 0.012 T O Ps/mm2

61024 × 1024: 3451 cycles, 0.878 T O Ps/W and 0.002 T O Ps/mm2;
1152 × 512: 4179 cycles, 1.004 T O Ps/W and 0.005 T O Ps/mm2
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Fig. 14. (a-b) Latency evolution, (c-d) energy efficiency and area efficiency of
Resnet-18 and Resnet-50 mapping in 4 clusters, considering different AIMC
dimensions (Rows × Columns) and WL overheads.

TABLE VII

AIMC TECHNOLOGY CHOICES

G. Impact of AIMC Memory Cell Technology Choices
This case-study evaluates the impact of AIMC compute cell

technology choices, i.e., SRAM, IGZO and SOT-MRAM [17].
For the three technology choices, Table VII compares their
area, energy and latency parameters.

In the baseline architecture, the digital frequency ( fD) and
analog AIMC frequency ( fA) are set to 1 GHz and 0.1 GHz,
respectively (see Table V). In our assumptions, when the
AIMC write latency (LW , affecting the speed of WL) is
the same as the digital cycle (1 ns), there is no WL stall
due to AIMC write (e.g., for SRAM). The higher LW of
IGZO and SOT-MRAM results in additional WL stalls at fD ,
and their WL speeds are 10× and 3× slower than SRAM,
respectively. On the other hand, AIMC compute latency (LC )
limits the maximum analog frequency (max( f A) = fD

LC
) and

has a large impact on the overall latency for a given inference
workload. In WS mode, ideally, the inference latency of the
three technologies is approximately proportional to their LC .
Considering DAC/ADC requirement between analog and dig-
ital components, this case-study fixes fA = 0.1G H z (with
10 ns analog cycle). Since the LC of the three technologies
are within the analog cycles, the compute latency of SOT-
MRAM (45nm node [34]) caused by different technologies
(w.r.t. 22nm node, see Table VII) does not affect the AIMC
computation nor the experimental results.

Fig. 15 compares normalized energy and latency, energy
efficiency and area efficiency (w.r.t. SRAM) for different
AIMC technologies. Two observations can be made.

Fig. 15. (a) Normalized energy and latency, along with (b) normalized
energy efficiency (TOPs/W) and area efficiency (TOPs/mm2) for SRAM (S),
IGZO (I) and SOT-MRAM (O) AIMC technology choices.

• In WL mode (SR-WL and LR-WL, under SR and LR
constraints), SRAM leads to the lowest energy and lowest
latency. This is because SRAM has the minimum AIMC
write energy and write latency. Consequentially, SRAM
has the highest energy efficiency and area efficiency.

• In WS mode, IGZO results in the lowest energy, due
to its lowest compute energy. The latency is comparable
across the three AIMC technologies. Besides, IGZO has
the highest energy efficiency and area efficiency.

VI. DISCUSSION

This section discusses the advantages and limitations of
the proposed AERO DSE framework. As presented in the
previous sections, AERO is able to assess the impact of several
design parameters and derive insights into tile-based hybrid
accelerators, such as:

• Low values of weight reuse (e.g., 16) can still enable
energy efficiency and performance for CNNs close to
weight stationary mapping.

• Higher weight access bandwidth can reduce the inference
latency of deep CNNs. But in the end, latency saturates
to a critical path, which happens around 60 Bytes/cycle.

• LR-WL is a PPA trade-off solution. It has 18% higher
latency than SR-WL, with 15% higher energy efficiency
and 73% lower area. Compared to SR-WS, LR-WL has
close or even 54% higher area efficiency.

• The 1152 col×512 row AIMC has a good trade-off in
inference latency, energy efficiency and area efficiency
for Resnets as well as Lenet-5 and MLP-3.

• For AIMC cell technologies (SRAM, IGZO and SRAM),
SRAM has lowest energy/latency in WL mode, while
IGZO has the best energy/area efficiency in WS mode.

Further, AERO supports a broad range of DSE options to
facilitate co-exploration of mapping, architecture and technol-
ogy decisions. Table VIII summarizes the currently supported
DSE options in AERO.

The current version of AERO has two main limitations.
First, latency estimation at the NoC level does not model
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TABLE VIII

SUPPORTED DSE OPTIONS IN AERO

communication contention. Second, loop transformation
exploration over the memory hierarchy is not supported.
It must be noted, however, that existing loop transformation
DSE tools (e.g., Timeloop [8], Interstellar [9], Zigzag [10] for
single-layer parallel architecture) are too pessimistic for multi-
layer parallel architectures as they do not take into account the
dynamic data-flow between two neighboring layers.

VII. CONCLUSION

This paper presents a DSE framework, AERO, for a
hybrid digital-analog CNN accelerator architecture that sup-
ports multi-layer parallel execution. The AERO framework
presents a general mapping flow, including virtual mapping
(allowing node fusion, node splitting configurations) and phys-
ical mapping (a hierarchical strategy) to fulfil the mapping
at accelerator-level, cluster-level, tile/PE-level and AIMC-
level. Besides, AERO incorporates detailed PPA models to
characterize the latency, energy and area of a full neural
network executing under sufficient and limited resource con-
straints. The experimental case-studies on MLP, Lenet-5 and
Resnets (-18, -34, -50, and -101) derive insights of design
parameters, such as weight loading scenarios, and resource
constraints, on the tile-based hybrid architectures.
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