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Abstract—Analog In-Memory Compute (AIMC) arrays can
store weights and perform matrix-vector multiplication opera-
tions for Deep Convolutional Neural Networks (CNNs). A number
of recent efforts have integrated AIMC arrays into hybrid digital-
analog accelerators in a multi-layer parallel manner to achieve
energy efficiency and high throughput. Multi-layer parallelism
on large-scale tile-based architectures need efficient mapping
support at the processing element (PE)-level (e.g., digital or
analog processing elements) and tile-level, which requires fast
and accurate design space exploration (DSE) support.

In this paper, a DSE framework, AERO, is presented to char-
acterize a CNN inference workload executing on a hybrid tile-
based architecture that supports multi-layer parallelism. Three
characteristics can be seen in our DSE framework: (1) It presents
a hierarchical Tile/PE-level mapping exploration strategy includ-
ing inter-layer interaction, and allowing layer fusion/splitting
configurations for PE-level mapping optimization. (2) It unlocks
different power-area-performance exploration points under both
sufficient and limited resource constraints, while limited resource
case is not considered in prior works of multi-layer parallel
architectures. The impact of weight loading and weight stationary
mapping are accessed for better insights into hybrid tile-based
architectures. (3) It incorporates a detailed PPA (Performance,
Power, Area) model that supports a broad range of hybrid
digital and analog units in a tile. Experimental case-studies are
performed for realistic and relevant benchmarks such as MLP,
CNNs (Lenet-5, Resnet-18,-34,-50,-101).

Index Terms—Design space exploration, hybrid digital-analog
accelerator, multi-layer parallelism, inference, AIMC, resource
constrained

I. INTRODUCTION

DEEP learning applications, such as deep convolutional
neural networks (CNNs) have achieved remarkable

breakthroughs in various application domains (e.g., image clas-
sification and speech recognition). These workloads involve
intensive matrix-vector multiplication (MVM) operations and
huge data communication (e.g., activation and weights of
CNNs). As CNNs grow deeper and deeper, the ever-increasing
computing and communication requirements have led to the
need for custom accelerator designs. Dedicated accelera-
tors [1], [2] have been designed to speed up computation using
a high degree of parallelism, and optimzed data storage and
data movement, in order to improve energy efficiency.

In recent years, analog in memory compute (AIMC) arrays
have attracted much attention in the accelerator design [3]. The
AIMC array stores the CNN weights in SRAM (or NVM-
resistive) array to achieve high storage density. In addition,
an AIMC array can effectively execute multiple/many MVM

operations simultaneously, thereby achieving low energy con-
sumption and high throughput [4]. Prior works [5]–[7] in-
tegrate AIMC with digital components to create a hybrid
digital-analog accelerator to support the execution of full CNN
workloads. Digital components are introduced to deal with
some non-MVM operations (e.g., Normalization, Pooling) that
are not easily adopted in AIMC arrays.

The state-of-the-art accelerator architectures (can be digital
or hybrid digital-analog) can be broadly classified into two
ways— single-layer parallel and multi-layer parallel. First,
single-layer parallel architectures (e.g., digital [1], [2]) execute
a single CNN layer on the architecture at any given point of
time, parallelising and speeding up execution of operations
within the layer. Execution of a layer is not started until the
whole output of the preceding layer(s) has been computed. In
such architectures, input and output activations are typically
stored in the same memory hierarchies (e.g., DRAM, buffer
in Eyeriss [2]). Many DSE frameworks (e.g., Timeloop [8],
Interstellar [9], Zigzag [10]) have merged to explore loop
transformation at memory hierarchies for high data reuse to
optimize energy efficiency.

Second, multi-layer parallel architectures (e.g., ISAAC [5]
and PUMA [7]) are capable of processing multiple CNN layers
simultaneously, allowing multi-layer pipelines to maximize the
throughput of a full CNN workload. Such an architecture is
often organized into multiple tiles, where each tile can be
composed of multiple processing elements (PE) containing
AIMC arrays and digital components. Typically, all the tile
resources are partitioned across different CNN layers. A given
CNN layer (with MVM operations) is processed by some
AIMC arrays, while the outputs of the layer are fetched by
other AIMC arrays to process the next CNN layer and so
on. This helps in reduction of intermediate result storage
space as well as speeding up execution [6]. Unlike DSE
frameworks for single-layer parallel architectures (i.e., con-
sidering loop mapping at memory hierarchies), the existing
DSE frameworks/methodologies for multi-layer parallel archi-
tectures (e.g., in [5]–[7], [11]) and they focus more on mapping
at AIMC-level and Tile/PE-level.

In this paper, a systematic design space exploration (DSE)
framework, AERO, is presented to allow early and fast eval-
uations of a CNN inference workload executing on a hybrid
multi-layer parallel tile-based architecture that integrates both
multiple AIMC arrays and digital components in each tile.
The AERO framework presents a complete mapping flow,
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including virtual mapping and physical mapping (hierarchical 
mapping exploration) at tile-level, PE-level and AIMC-level. 
Two key novelties can be seen in our DSE framework.

• The proposed framework supports hierarchical mapping
in multi-layer parallel architecture under both sufficient
and limited resource constraints (available tiles/PEs). Ex-
isting works consider sufficient tiles/PEs to execute all
layers of a full CNN simultaneously, assuming weights
(of all layers) are pre-loaded into sufficient AIMCs.
AERO unlocks different power-area-performance explo-
ration points under limited resources, which is not pos-
sible in prior efforts. Particularly, the impact of weight
loading and weight stationary are assessed to gain a better
insight into hybrid tile-based architectures.

• The proposed framework incorporates detailed PPA (Per-
formance, Power, Area) models, which support a broad
range of hybrid digital and analog units within a platform
tile, as well as instruction memory and weight loading
overhead. Most existing DSE frameworks do not take
into account instruction memory/weight loading overhead
(having a big bottleneck) or they consider quite high-level
estimations (e.g., for MAC computation and memory
access overhead as in Timeloop [8], Interstellar [9],
ZigZag [10]).

Moreover, experimental case-studies for MLP, (deep) CNNs 
(Lenet-5, Resnet-18,-34,-50,-101) offer insights into the im-
pacts of design parameters, e.g., (1) weight loading and 
weight stationary, (2) external memory access bandwidth of 
weights, (3) sufficient / limited resource constraints, (4) AIMC 
dimensions and (5) AIMC memory cell technology choices, 
on hybrid tile-based systems.

The rest of the paper is organized as follows. Section II 
compares the existing DSE frameworks for accelerators and 
highlights the novelties of our work. Section III introduces 
a hybrid digital-analog tile-based accelerator template as an 
experimental benchmark in our DSE framework. Section IV 
describes the mapping methodology and PPA estimation ap-
proach of the proposed DSE framework (first contribution). 
Section V discusses the insights derived from the experimental 
case-studies (second contribution). Section VI discusses the 
advantages and limitations of the current AERO framework. 
Section VII concludes our work.

II. RELATED WORK

Table I compares the state-of-the-art DSE frameworks (or 
methodologies) related to single-layer parallel and multi-layer 
parallel CNN architectures, in terms of mapping approaches 
(i.e., at AIMC level, Tile/PE-level, at memory hierarchies) and 
modeling supports (e.g., on PPA models, resource constraint). 

On one hand, multiple systematic DSE frameworks, such 
as Timeloop [8]+Accelergy [12], Interstellar [9], Zigzag [10], 
focus on convolution (Conv) or Fully-connected (FC) layers 
executing on single-layer parallel architectures. These frame-
works are primarily designed towards exploration of digital 
architectural templates (e.g., Eyeriss [2]) and corresponding 
mapping opportunities. The digital architectural template con-
sists of a digital processing element (PE) array, along with the

required memory hierarchies. A variant of Zigzag [4] considers
an analog in-memory compute (AIMC) array alongside the
required memory hierarchies. These DSE frameworks adopt
loop transformation approaches into the mapping flow to
represent and analyze the design space of Conv/FC layers
mapped at PE/AIMC arrays (see 1 column in Table I) and
memory hierarchies (see 3 column).

Particularly for the mapping at memory hierarchies (see 3
column), single-layer parallel architectures typically consider
input activations coming from DRAM to buffers (e.g., L1
and/or L2 buffer) and PE/AIMC array, while the output
activations are stored in the same memory hierarchies. The
mapping flow is targeted to find energy-efficient solutions
that increase the data reuse within the PE/AIMC array and
also at different levels of the memory hierarchy. It is worth
mentioning that these DSE frameworks consider high-level
PPA models (see 4 column), focusing on MAC computation
and memory access overhead.

On the other hand, there has been some works [5]–[7], [11],
[13] consider multi-layer parallel architecture to support the
execution of a full CNN. Typically, the multi-layer parallel
architectures are organized in a tiled manner – one or more
compute arrays (either digital or analog) are grouped together
in the form of a tile and tiles communicate using network-
on-chip (NoC). These architectures take considerably larger
area compared to the single-layer parallel architectures and
are suitable for high performance scenarios.

For AIMC-level mapping (i.e., mapping weights onto AIMC
arrays, see 1 column), no exploration is performed in the
works of [5]–[7], [11], [13]. These existing works are based
on the conventional weight mapping method, aiming to further
increase the utilization and data reuse of AIMC arrays to
improve computational parallelism and energy efficiency. In
the conventional approach, a 3D Conv kernel (e.g., kx, ky, cin
as in Fig. 3) is transformed across AIMC rows, and multiple
3D kernels (e.g., cout as in Fig. 3) can be mapped across
AIMC columns. Our work also adopts the conventional weight
mapping in AIMCs for high utilization. More details about the
assumption can be seen in Section IV-A.

For tile/PE-level mapping (see 2 column), the objective is
to map nodes (e.g., layers or operations) to tiles and PEs. The
works of [5], [6], [11] perform the tile-level mapping manually
without exploration. PUMA [7] explores the optimized tile/PE-
level by a hierarchical partitioning strategy in bottom-up man-
ner (i.e., from PEs to tiles to accelerator). In contrast, a top-
down hierarchical partitioning strategy (i.e.,from accelerator
to clusters, to tiles/PEs) in used in our work, to reduce inter-
tile communication traffic within reasonable exploration time.
Moreover, our proposed DSE framework supports node fusion
and splitting configurations (at PE-level level) as in TVM com-
piler1 [15]. Similar to TVM, splitting factors are configured
manually in the current AERO framework. However, fusion
and splitting configurations are not supported in PUMA [7],
though splitting is discussed in [5], [6].

1TVM compiler does not directly/currently support multi-layer parallel
architectures in the published version [14].
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TABLE I
COMPARISON OF RELATED WORK ON CNN ACCELERATORS

Reference Architecture
& Workloads

Mapping approaches
4 Modeling supports

1 At PE/AIMC-level 2 At Tile/PE-level 3 At memory hierarchies
Timeloop [8] +
Accelergy [12] -Single-layer par-

allel architecture
- Conv and FC

- Exploration: spatial mapping in AIMC/PE array
- No tile-level mapping

- Exploration: loop trans-
formation in L1, L2,
DRAM

- PPA: high-level, considering
MAC computation and mem-
ory access overheadInterstellar [9]

Zigzag [4], [10]

ISAAC [5]

-Multi-layer par-
allel architecture
- Full neural net-
work

- Conventional mapping in
AIMC arrays
- Exploration: No

- Exploration: No
(manually)
- NF: No

- Analyze buffer require-
ment between two layers

- PPA: detailed, excluding In-
str Mem & WL overheads
- RC: sufficient

PUMA [7], [13] - Exploration: HPA
(bottom-up)

- Consider register alloca-
tion at compiler level

- Instr: compiled ISA
- PPA: detailed, excluding
WL overhead
- RC: sufficient

[6]
- Improve AIMC data reuse
w.r.t. conventional approach
- Exploration: No

- Exploration: No
- NS: Yes
- NF: No

- Discuss buffer require-
ment between two layers

- PPA: detailed, exlucing Instr
Mem & WL overheads
- RC: sufficient

[11]
- Improve AIMC utilization
w.r.t. conventional approach
- Exploration: No

- Exploration: No
- NS: No
- NF: No

- No exploration
- Consider DP of activa-
tions in input Mem

- PPA: high-level, excluding
WL overhead
- RC: sufficient

This work - Conventional mapping in
AIMC array, aligned to [4]
- Exploration: No

- Exploration: HPA
(top-down)
- NS: Yes
- NF: Yes

- Assume small buffer be-
tween two layers as in [5]
- Assume ideal DP of ac-
tivations in input Mem

- Instr: approximate ISA
- PPA: detailed, considering
Instr Mem & WL overheads
- RC: sufficient & limited

Note: NS: node splitting, NF: node fusion, HPA: Hierarchical partitioning algorithm, Instr: instructions, Mem: memory, WL: weight loading, RC:
resource constraint, DP: data placement. * The gray cells highlight the main difference between the closest related work (PUMA) and our work.

For mapping at memory hierarchies (i.e., loop transfor-
mation, see 3 column), the existing works of [5]–[7], [11]
do not perform exploration as in Timeloop [8] and Zigzag
frameworks [10] (for single-layer parallel architectures). As
previously discussed, single-layer parallel architectures store
input and output activations of a layer in the same memory
hierarchies. Differently, multi-layer parallel architectures typ-
ically store the output activations of one layer in the buffer of
a neighboring PE as input activations for the next layer. The
next layer can start computation without having to obtain all
the outputs of previous layer2. This can be further understood
as implicit assumptions in existing works ( [5]–[7], [11]), that
is, all loops related to output activations are ideally mapped to
the buffer of a neighboring PE and the next layer can consume
data before the buffer is full. This assumption still holds in our
work. Besides, the AERO framework currently assume ideal
data placement in input activation buffer (e.g., SRAM), where
the required data for generating an output is continuously
available. More investigations on mapping loops at memory
hierarchies and orchestrating data in input activation buffer
(such as in [11]), will be considered in future work.

Our work is further compared to existing works in two
more aspects (see 4 column). (1) While PUMA is a compiler
which generates compiled ISA (instruction set), our AERO
framework can be regarded as a preliminary step before a
real compiler. AERO generates approximate ISA, assuming
ideal data placement as previously discussed. The approxi-
mate instructions are further used to derive information (e.g.,
action counts of different hardware components, ISA execution

2The buffer between two layers can be in small size, which is about inx×
ky × cin, where inx is the number of columns in input feature, ky is the
number of rows in kernel, cin is the number of channels in input feature.

cycles) for detailed PPA (e.g., latency, energy) models. Most
of the existing works exclude instruction memory and weight
loading overheads (e.g., [5], [6]), or they consider quite high-
level estimations (e.g., [8]–[11]). (2) The works of [5]–[7], [11]
consider that the number of tiles is always sufficient to execute
all neural network layers simultaneously, and weights of all
layers are pre-loaded into sufficient AIMCs. This explains why
weight loading overhead is excluded in their PPA models. In
contrast, AERO considers the cases of sufficient and limited
number of available tiles/PEs, thereby unlocking different
energy-area-performance exploration points that are previously
not possible. AERO also assesses the impact of weight loading
to achieve better insight into hybrid tile-based architectures.

III. ARCHITECTURE TEMPLATE

This section introduces a multi-layer Tiled Analog In-Memory
Accelerator (TANIA) architecture template, which is used for
design space exploration. For reference, Table II lists the
parameters in the architecture template and other variables
used in rest of this paper. Fig. 1(a) illustrates the top level
TANIA architecture template. It comprises of multiple clusters,
with two external interfaces – host interface and a weight bank
interface. Each cluster consists of multiple tiles, which share a
local (e.g., L2) buffer for storing intermediate results if needed.
The tiles communicate over NoC for transferring activations.

Each tile consists of multiple PEs, consisting of Na analog
Aicores [16] and Nd digital Vector Functional Units (VFUs),
as shown in Fig. 1(b). As introduced in [16], each Aicore
has an AIMC array to performs MVM operations and it has
additional digital circuits for batch-normalization (BN) and
non-linearity (NL) operations. This offers the possibility to
immediately process the MVM results through BN or NL
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Fig. 1. TANIA architecture template: (a) description of the accelerator-level
with multiple clusters; (b) description of the tile-level.

TABLE II
NOTATIONS USED IN THIS PAPER

Architecture template
Ncluster Number of clusters in the TANIA template
Ntile Number of tiles in a cluster
J = Ncluster × Ntile Total number of tiles in the TANIA
Na Number of analog Aicores in a tile
Nd Number of digital VFUs in a tile
Na + Nd Number of activation buffers in a tile
Neural network inference workload
Conv Convolution
Gemm General Matrix Multiply
Psum Partital Sum
Bias Bias add
Add Residual add
BN Batch Normalization
NL Non-Linearity
Virtual mapping
nodea A virtual node targeting an analog Core
noded A virtual node targeting a digital VFU
noder A virtual node targeting data reshape
I Total number of virtual nodes
K Total number of virtual communication edges
Physical mapping
SR Sufficient resource constraint
LR Limited resource constraint
WL Weight loading mode
WS Weight stationary mode

operations to reduce the amount of intermediate data. For 
simplicity, the number of BN and NL is considered to be equal 
to number of AIMC columns. Notice that Aicore and AIMC 
are not the focus of this paper. More details about them can 
be found in [16], [17]. Similar to [7], each VFU is a SIMD 
unit, which concurrently performs digital operation on multi-
channel (e.g., 64) activations for high throughput. Analog 
Aicores and digital VFUs support different operations, which 
are summarized in Table III. Each PE has a local activation 
buffer. A low fan-out network is used for communication 
between the PEs, which offers a much lower energy cost for 
data transfer within the tile, compared to inter-tile data transfer 
(via NoC). The output of a PE is written to the activation buffer 
of the destination PE either L2 buffer within a cluster.

Each PE has a local instruction memory and program 
counter. This allow PEs to operate independently, with the 
flexibility o f m apping l ayers t o a rbitrary P Es. S ince t he cost 
of inter-tile communication is higher than intra-tile commu-
nication, a mapping strategy is required to map layers in 
a way that reduces inter-tile communication. The mapping 
framework will be presented in the following section.

TABLE III
SUPPORTED OPERATIONS FOR AICORE AND VFU

Operations Supported PE types
Conv, Gemm Aicore

Pooling, Residual Add, Partial Sum (Psum) VFU

Bias, Batch Normalization (BN), Non Linear (NL) Aicore or VFU

IV. AERO DESIGN-SPACE-EXPLORATION FRAMEWORK

The overview of the proposed DSE framework, AERO, is
shown in Fig. 2. The framework takes a hardware architecture
template and a neural network (e.g., CNN) inference workload
as input. TANIA architecture template (See Section III) is
used as the base hardware architecture in the framework.
The inference workload is imported in Open Neural Network
Exchange (ONNX) format [18]. ONNX format is introduced
to enable interoperabililty among a variety of frameworks [18].
Microsoft NNI [19] is leveraged for performing multiple DSE
experiments in parallel locally or on a cluster.
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Fig. 2. Overview of AERO DSE framework.

AERO framework encompasses a generic mapping method-
ology, which consists of virtual mapping (see 1 in Fig.2)
and physical mapping (see 2 ). This generic mapping strategy
can be applied to inference workloads executed on different
accelerator templates (e.g., ISAAC [5], PUMA [7]). Based
on mapping solution, preliminary instructions (assuming ideal
data placement as discussed in Section II) are generated for
each PE (see 3 ). Additionally, a latency characterization
approach (see 4 ) is presented to model the start time and
finish time of each pixel computation, considering inter-layer
data dependencies. To estimate the area of an architecture
template, and the energy cost for a given workload mapped to
it, the Accelergy [12] framework is integrated into the AERO
DSE flow (see 5 ). A number of component-level estimation
plugins specific to the architecture (e.g., for AIMC array, NoC,
and other building blocks) are added for energy computation.
The generated results are displayed in a dashboard.

The following sections will present the details of mapping
and PPA modeling. The custom ISA for instruction generation
(see 3 ) is out of the scope of this paper.

A. Virtual mapping

Virtual mapping ( 1 in Fig. 2) aims to map each neural
network layer to Aicores or VFUs, with respect to AIMC di-
mension constraints. Virtual mapping implies that the resource
availability (i.e., Aicores and VFUs) of the physical platform
is not considered in this stage. Virtual mapping is fulfilled in
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Fig. 3. Overview of virtual mapping. (a) Part of application graph of Resnet-18. (b) Virtual initial layer-PE mapping: Case I-II maps a MVM layer to one
AIMC array (i.e., one Aicore); Case III-IV map a MVM layer to multiple AIMC arrays by diving a Conv kernel across cin and cout dimension, respectively.
(b.1) Example of a Conv layer with kernel, input and output features.(b.2) In Case I, AIMC mapping without output unrolling. (b.3) In Case II, AIMC mapping
with output unrolling. (c) Virtual node fusion. (d) Virtual node splitting.

three steps: initial virtual mapping, virtual-node fusion and
virtual-node splitting, as illustrated by the example in Fig. 3.

1) Initial layer-PE virtual mapping: For a neural network
graph, initially, each MVM layer (e.g., Conv and Gemm) is
mapped to Aicores, and each digital operation layer is mapped
to a VFU (see Fig 3 (a-b)). For Aicores, weights should be
appropriately mapped to AIMC arrays (i.e., at AIMC-level).
The AIMC-level mapping can be summarized into four cases
according to [16]. Case I-II map a MVM layer to one AIMC
(i.e., in one Aicore). Case II maps multiple copies of weights
to a (large) AIMC array, allowing computing multiple outputs
simultaneously (i.e., output unrolling in Fig. 3 (b.3)). Case III-
IV map a MVM layer to multiple AIMC arrays by dividing a
Conv kernel across input (cin) and/or output channels (cout).
More details about AIMC mapping can refer to [16].

2) Virtual-node fusion: The mapping of a layer to a
Aicore/VFU is denoted (Fig.3 (b)) as a virtual node. The node
fusion step fuses the adjacent operations of the same pixel into
one PE (see Fig. 3 (c)), aiming to reduce intermediate data
transfer at memory hierarchies [20]. Based on the hardware
supports shown in Table III, AERO performs node fusion
according to the following three operation orders. These orders
are usually observed in most of the existing CNN workloads
(e.g., MLP, Resnet-18).

• Conv-Bias-BN-NL (fuse into Aicore)
• Psum-Bias-BN-NL (fuse into VFU)
• Add (residual)-Relu (fuse into VFU)
Fusion can be performed even when some operations are

skipped in each order. For instance, AERO fuses Conv-BN
operations for Resnet-18 (see the red arrow in Fig. 3 (c)),
while Bias and NL operations are skipped (in the first order).

AERO currently incorporates a first fusion heuristic which will
be explored more in-depth in the future work.

3) Virtual-node splitting: AERO performs node splitting to
allow different PEs to generate different parts of the output
activations (e.g., ox and oy of a Conv layer). This can speed
up the the computation of shallow layers (e.g., first couples
of layers due to the big size of output dimensions [6]) and
consequently reduce the inference latency. In the example
of Fig 3 (c), Split 2 2 refers to using two Aicores and
two VFUs for Layer0 and Layer1 respectively. The current
AERO framework allows setting splitting factor for every layer
manually. A good set of splitting factors can be obtained by
adding an explicit search space exploration method, which will
be resolved in our future work.

4) Virtual mapping result: A virtual mapping can be char-
acterized by a set of I virtual nodes (nodei), and a set of K
communication edges (edgek) representing data dependencies
among the nodes. The virtual nodes targeting an analog
Aicore, a digital VFU and a Reshape operation (e.g., for data
organization in activation buffer), as shown in Fig. 3 (b-d), are
denoted by nodea, noded and noder, respectively.

B. Physical mapping

Physical mapping ( 2 in Fig. 2) aims to map virtual nodes
to the physical architecture entities: clusters, tiles, Aicores and
VFUs. The objective is to optimize inter-tile communication
over the NoCs, subject to resource constraints.

1) Problem formulation of physical mapping: Given: (1)
Virtual mapping result, with I heterogeneous virtual nodes
and K communication edges (see Section IV-A4). (2) An
architecture template (e.g., TANIA in see Section III).
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Conv
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P_0
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L2 buffer
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Fig. 4. (a) Overview of hierarchical optimization of physical mapping,
under resource constraint (RC) and graph sequence constraint (GSC); (b) An
example of accelerator-level physical mapping.

Find: An optimized physical mapping, which maps virtual
nodes to clusters, tiles, PEs (i.e., Aicores and VFUs). Let
the matrix of binary variables [pi,j ]I×J represent a physical
mapping on tiles (including clusters), where pi,j is defined as:

pi,j =

{
1, if nodei is assigned to tilej .

0, otherwise.
(1)

where J refers to the number of all tiles in the architecture
(e.g., J = Ncluster×Ntile in TANIA). Here, the cluster index
is hidden into the tile index (tilej) for clarity of the formula.

Objective: To optimize NoC communication traffic, the
inter-tile (including inter-cluster) communication is formulated
as in Eq.(2), where edgek refers to the edge between nodes
nodei and node′i. Then the physical mapping objective can be
formulated into Eq.(3).

Commnoc(pi,j , pi′,j′) =

{
0, if j = j′.

edgek, otherwise.
(2)

min
I−1∑
i=0

J−1∑
j=0

Commnoc(pi,j , pi′,j′) (3)

Subject to: Resource constraints can be understood by: (1)
Each virtual node (except noder) is mapped into one tile
(Eq.(4)); (2) The number of nodea and noded in each tile
should respect the tile-level resource availability of Aicores
(Eq.(5)) and VFUs (Eq.(6)), respectively.

J−1∑
j=0

pi,j = 1,∀i, pi,j ∈ {0, 1}, nodei /∈ noder (4)

I−1∑
i=0

pi,j <= Na,∀j, nodei ∈ nodea (5)

I−1∑
i=0

pi,j <= Nd,∀j, nodei ∈ noded (6)

Here, the physical mapping at PE-level is not shown for
sake of simplification. It is considered that the nodes in each
tile can be allocated to any feasible Aicore or VFU. This is
based on the assumption that intra-tile communication (e.g.,
using fan-out networks in TANIA template) is more energy
efficient compared to inter-tile communication via NoC.

2) Hierarchical physical mapping strategy: A hierarchical
strategy is proposed to achieve optimized physical mapping
solution. Mapping on multi/many-cores systems has been
proved as a NP-hard problem [21]. The large number of CNN
layers (i.e., virtual mapping nodes) and the large scale of
hardware resources (i.e., Aicores and VFUs in TANIA) lead to
a huge design space. Hierarchical mapping approaches [22],
[23] are usually used to resolve the scalability issue. The
overview of our hierarchical physical mapping strategy is
shown in Fig 4 (a), which consists of three levels.

The proposed hierarchical physical mapping strategy is in
top-down manner. The accelerator-level mapping divides vir-
tual nodes into multiple partitions. It is particularly proposed
for the case where the number of virtual nodes is larger than
the number of physical resources (i.e., Aicores and VFUs).
The accelerator-level mapping can be further understood as
partitioning / cutting a neural network to meet resource
constraint and graph sequence constraint. It is assumed that the
nodes of different partitions execute sequentially at available
resources, and the execution of each input node should not
be later than its output node (i.e., graph sequence constraint).
One example is shown in Fig 4 (b), where virtual nodes are
divided into two partitions (i.e., P 0 and P 1). The nodes
of P 0 execute on available PEs first (e.g., 4 Aicores and
2 VFUs). After P 0 finishes the execution, the intermediate
data between the two partitions are stored into L2 buffer.
Then, nodes of P 1 load the intermediate data from L2 buffer
to corresponding PEs and start their executions. Afterwards,
according to resource constraints, the cluster-level mapping
divides each set of partitioned nodes to available clusters,
while the tile/PE-level mapping divides each set of clustered
nodes to available tiles, as well as PEs.

3) Hierarchical physical mapping strategy implementation:
METIS [24] graph partitioning program is used at the three
hierarchical levels to support efficient explorations. METIS
is claimed to be one to two orders of magnitude faster than
other widely used partitioning algorithms. To further improve
solution quality (i.e., reducing inter-tile communication via
NoCs, and exploiting the intra-tile communication), on top of
METIS, a custom genetic algorithm is implemented at tile/PE-
level to have local optimization. The combined strategy is
denoted by METIS-Genetic.

The developed genetic algorithm is based a standard micro-
bial genetic algorithm (MGA) [25]. MGA takes cluster-level
physical mapping (i.e., a set of virtual nodes mapped to a
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cluster) as input to explore tile/PE-level mapping optimization. 
Firstly, MGA initializes population, which consist of a set 
of random chromosomes. The METIS solution (at tile/PE-
level) is inserted as a basic chromosome. The chromosome 
of a tile/PE-level mapping solution is decoded as in Fig. 5. 
The chromosome is a vector of PE’s length in a cluster (i.e., 
Na×Ntile+Nd×Ntile in TANIA), consisting of two segments 
for Aicores and VFUs respectively. The chromosome is a 
permutation of tile index of each PE. In each target cluster, 
the virtual nodes for Aicores (or VFUs) are sequentially 
allocated to a tile (with a tile index) according to the Aicore 
(or VFU) chromosomes. Secondly, the∑fitness f unction of 
a chromosome is defined b y exp ( 1/( C ommnoc + 1))3, 
where 

∑
Commnoc refers to the inter-tile NoC communica-

tion within a cluster (based on Eq.(3)). The smaller the NoC 
communication, the better the chromosome’s fitness is.

Aicore: length = Na x Ntile VFU: length = Nd x Ntile 

0 0 0 0 1 1 1 1 ... 0 0 1 1 ...tile index 3 3

Fig. 5. The chromosome with two segments for Aicores and VFUs in each
cluster. In this example, a cluster has 4 tiles (with tile index from 0 to 3).
Each tile has 4 Aicores (4 same tile indexes in blue segment) and 2 VFUs (2
same tile indexes in purple segment).

The proposed hierarchical physical mapping strategy im-
plemented by METIS-Genetic is able to exploit up to 82.01%
communication data (Bytes) within tiles (i.e., intra-tile), which
enables more energy-efficient data transfer than inter-tile data
transfer via NoCs (recall Section III). Deep Resnet-34,-50,-
101 take 0.01 ∼ 0.06 seconds to obtain METIS solutions, and
about 3 ∼ 10 seconds for genetic improvement in each cluster.
This indicates that the proposed METIS-Genetic is suitable
for the architecture template in terms of exploration efficiency
and exploration time. The relevant experimental details are not
shown due to the limit space of the paper.

C. Latency characterization approach

The proposed latency characterization approach ( 4 in
Fig. 2) describes start time and finish time of pixel com-
putation, on-chip communication (i.e., intra-tile and inter-
cluster/tile communication) and off-chip data transfer behav-
iors, while taking into account inter-layer data dependencies.

Computation
order

Output of Layer0

B
Loading weights 
Loading off-chip activations
Aicore Computation
Communication

1
2

3
4

8
7

6
5

9
... time

Layer0_Aicore

1
2

... time

Layer1_VFU
VFU
ComputationCommunication

A

C

3 4

7 8

9 10 11 12

13 14 15 16

1 2

5 6

4
Output of Layer1

3

1 2

Fig. 6. Latency estimation for Layer0 and Layer1 examples. * For simplicity,
the figure characterizes the weight loading (WL) latency in terms of data
communication. WL latency caused by AIMC write speed (related to AIMC
technology) is discussed in Section V-G.

Fig. 6 illustrates the latency characterization for two ex-
ample neural network layers, Layer0 (e.g., Conv layer) and

31 is added to avoid the case where divisor is 0.

a

Layer1 (e.g., Pooling layer). At the beginning of system 
execution, weight loading and off-chip activation transferred 
are performed in parallel through separated NoCs (see A in 
Fig. 6). Similar to [5], data transfer via NoCs is assumed to 
be statically routed without any conflicts. I n A ERO frame-
work, once all off-chip activation (of the first i mage frame) 
are loaded from off-chip memory, Layer0 starts to execute 
according to computation order sequentially (see B in Fig. 6). 
The pixel computation time is characterized by the average 
cycles of executing the instructions for one pixel generation, 
ignoring corner cases (e.g., padding). Computation and inter-
tile NoC communication can overlap. NoC communication 
latency is determined by data size and NoC bandwidth (i.e., 
NoC communication latency = data size / NoC bandwidth). 
The generated output pixels are written into the activation 
buffer (of Aicore/VFU) of the next layer. From the next layer 
(e.g., Layer1), the computation for an output pixel depends on 
the maximum latency of the required input activations (e.g., 
1,2,5,6 of Layer0, see C in Fig. 6).

Fig. 7 characterizes latency for all layers of a full CNN for 
sufficient and limited resource constraints. Multi-layer parallel 
execution on hybrid tile-based architectures under limited 
resource constraints is the key novelty in this paper.

1) Sufficient r esources ( SR): I n t his c ase, t he n umber of
physical PEs (Aicore or VFU) is always sufficient f or a 
full neural network (with all virtual nodes). There is no 
need to use accelerator-level physical mapping strategy (in 
Section IV-B2) to deal with accelerator resource constraints, 
but using cluster-level and tile/PE-level strategies. For a set of 
virtual nodes in Fig. 7 (a), part (b.1) illustrates the data transfer 
behaviors under SR constraints, while part (b.2) characterizes 
the corresponding latency behaviors. Initially, the off-chip data 
transfer, including weight loading (WL) for all nodea and 
image loading (IL) for the input node (see IL 0 for node0 ), are
performed in parallel. When WL is finished for the first Aicore,
it continues for the next Aicore (see A, A’ in Fig. 7 (b.2)), and
so on. Then, all Aicores and VFUs can start execution with on-
chip communication (intra-tile and inter-tile/cluster) depending
on data availability. The finish time of the last layer refers to
network inference latency (see B). From the second image,
the off-chip IL latency (see IL 1 and IL 2) can be hidden in
our assumption, and computation and communication can be
performed without WL. This mode is typically called weight
stationary (WS, see C and C’). As a consequence, latency (see
B’) can be reduced compared to that of the first image.

2) Limited resources (LR): In this case, the number of
virtual nodes is larger than the number of physical PEs.
It requires accelerator-level physical mapping strategy (see
Section IV-B2) to divide the virtual mapping nodes into
multiple partitions, followed by cluster-level and tile/PE-
level strategies. For the virtual noes in Fig. 7 (a) under LR
constraints, part (c.1) describes the data transfer behavior
and (c.2) shows the corresponding latency characterization.
Due to LR constraints, the virtual nodes are divided into 3
partitions. The off-chip WL is firstly performed for node0−3

a

in P 0 (partition index), and IL is performed for node0a. Then
all nodea and nodev in P 0 start computation and on-chip
communication (intra-tile, inter-tile/cluster) considering data
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WL for nodea
0-3

WL for nodea
3-5

WL for nodea
5-7

Load image for nodea
0

L2 Comm from
nodev

1
 to nodea3

,nodev2

L2 Comm from nodea5
, 

nodev
2

 to nodea
6-7

(a)

WL for all nodea
Load image for nodea

0

data transfer
sequence

On-chip comm for
all nodea and nodev

SR LR

...

(b.1) (c.1)

nodea
2

nodea
1

nodev
1

nodea
0

nodea
4

nodea
3

nodea
6

nodea
5

nodev
3

nodea
7

nodev
0

P_0

P_1

P_2

Aicore

VFU

Aicore

Aicore

VFU
......

timeVFU

IL_1 IL_2

P_1 nodea
3nodea

0

P_0

P_0

Aicore

VFU

Aicore

Aicore

nodev
0

P_0

VFU nodev
1

nodea
2

nodea
1

time

P_1 nodea
4

P_1

nodev
2

nodea
5

(b.2)

SR

LR

IL_0

(c.2)

nodea
0

nodev
0

nodev
1

nodea
2

nodea
1

nodev
n...

...

A: WL C: WS C' : WS

E: WL E' : WL

F

F 

B' : LatencyB: Latency

A' : WL

nodea
0

nodev
0

nodev
1

nodea
2

nodea
1

nodev
n...

nodea
0

nodev
0

nodea
1

...D:Gap

nodev
2

On-chip comm for 
nodea

0-2, nodev
0-1

On-chip comm for 
nodea

3-5, nodev
2

(off-chip)

data transfer
sequence

...

F 

P_2

P_2

nodea
6

nodea
7

P_2...

D':Gap

E'' : WL

F'

F'

Write L2 

IL_0

Fig. 7. (a) Example of virtual mapping nodes for a full network. (b.1) Data transfer behaviors of off-chip (WL and IL) and on-chip (intra-tile (via fan-out
network), inter-tile/cluster (via NoC), inter-partition (via L2 buffer)) and (b.2) latency characterization, under SR constraint. (c.1) Data transfer behaviors of
off-chip and on-chip and (c.2) latency characterization, under LR constraint. Note: The Aicore (or VFU) comm & comm characterizes the start time of the
first pixel and the finish time of the last pixel for an image frame. *Particularly for part (c.2), different nodes mapped to the same Aicore/VFU are displayed
in the same row.

availability. When any physical Aicores are released by nodea
in P 0, WL can be performed for node3−5

a in P 1. This can
lead to a time gap (see D) between the WLs for different
partitions. Additionally, the AERO framework stores the on-
chip intermediate data between partitions into L2 buffer. The
intermediate data (from node1v , see F) is then used for the
computation (of node3a and node2v) in P 1. Similar off-chip
WL and on-chip intermediate data (via L2 buffer) should be
performed for different partitions until the end of the full
network. As a result, the inference latency can be increased to
get area benefits. The L2 intermediate data transfer depends
on the applied accelerator-level physical mapping strategy.

The AERO framework considers both WL-mode and WS-
mode for SR constraints. However, for LR constraints, the
framework focuses on WL-mode (as previously discussed) and
currently does not support WS-mode. WS-mode is possible for
a set of partitioned nodes in multiple image frames, but a large
L2 buffer space is required to store the intermediate data of
the multiple frames. This is out of the context of this paper.

D. Energy and Area estimation approach

Fig. 8. Area/Energy estimation in AERO through Accelergy [26] methodology

For area estimation of a given architectural instance and
energy estimation corresponding to a specified workload,
AERO integrates Accelergy [26], a component-level area

and energy estimation methodology ( 5 in Fig. 2). In this
approach, a system architecture is hierarchically described in
terms of components of various classes. For each component
class, there needs to be a component-level estimator plugin
(CEP) that can be queried—given the specified attributes on a
component instance—for area, and energy corresponding to all
actions defined on that component class. A CEP may support
as fine a level of granularity for the feasible actions on a
component (e.g,. read action on SRAM with the same address,
or compute action on the AIMC array with specified array
utilization). Accelergy also supports constructing ‘compound
components’ from the primitive ones, the actions on which
are defined in terms of actions on the constituent primitive
components.

Accordingly, the TANIA architecture template (Fig. 1)
is described as a set of yaml files, in terms of various
components such as: the external storage for weights-banks
and host-side/input-activations, inter-tile NoCs (mesh), the
analog AIMC arrays of various compute-cell types, a com-
pound component containing the SIMD lanes in a VFU
(composed in turn from primitive components like integer
adders/multiplers/dividers, comparators, barrel-shifter, etc.,),
the intra-tile fan-out network, and the on-chip activation
(L1) and L2 level SRAM buffers. While Accelergy does
include a few CEPs covering primitive components (e.g., arith-
metic/combinational operations, registers, etc.,) with analytical
models, SRAMs modeled with CACTI, etc., considering the
target process for this work (22 nm GF22FDX), and favoring
more specificity, the estimation methods of some compo-
nents where updated as necessary and new estimation plugins
(CEPs) were added, for the components specific to Fig. 1.
In particular, (highlighted in blue text in Fig. 8): an in-house
model for SRAM buffers (corresponding to GF22FDX) is used
in place of CACTI; a model for AIMC array (modeling this
as a ‘compound component’ as in [27] was an option, but
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modeling it as a primitive with a dedicated CEP is a better 
choice in this case); the NoC is also modeled as a primitive 
component, and DSENT [28] was introduced as a new plugin; 
for the of arithmetic and other digital components, the existing 
table-based plugin is leveraged together with post-synthesis 
data (targeting the 22nm process and with Cadence Genus) 
based on RTL descriptions of respective components.

V. CASE-STUDIES

In this section, the AERO framework uses TANIA architecture 
template to study the impacts of: (1) WL and WS, (2) 
external memory access bandwidth of weights, (3) SR and LR 
constraints, (4) AIMC dimensions and (5) AIMC memory cell 
technology choices. Notice that the experimental section does 
not include estimating the impact of host DRAM bandwidth 
and NoC bandwidth4, as they have less impact on inference 
latency than weight DRAM bandwidth.

A. Experimental setup

The AERO framework was developed in Python and Mi-
crosoft NNI [19] was used for exploration of the design space.
The experiments were executed on a machine running Red
Hat Enterprise Linux with Intel CPU E5-2690 at 2.60GHz
configuration. ONNX format is used [18] for input workloads.
Table IV lists the workloads that are considered in experi-
ments, including a MLP (denoted by MLP-3 with 3 Fully-
connected layers), Lenet-5 (a small CNN) and multiple deep
Resnets (-18,-34,-50,-101). The MLP-3 [29] and Lenet-5 [30]
workloads are exported to ONNX format based on their open-
source code, while the Resnets are obtained from ONNX
Zoo [31]. All the operations including digital operations,
skip connection are modelled in the current framework. The
table summarizes the number of different layers and the total
weight size of each workload, considering ternary weights.
In the experimental case-studies, 2 PEs are allocated to each
of the first two layers (Split 2 2, recall Fig. 3 (d)) of the
neural networks by default to optimize the inference latency.
Split 2 2 can reduce inference latency by up to 70% with less
than 13.5% increase in energy consumption (for Lenet-5 and
Resnets). The relevant experimental details are not shown due
to the limit space of the paper. Splitting is not performed for
MLP-3, since the output dimension (ox, oy) of FC layer is 1.
Note that the hardware technology nodes used for energy and
area estimation haven been described in Section IV-D.

B. Baseline Architecture and Area Analysis

Table V presents the baseline architecture used for the
experiments. Given an area budget of 200 mm2, 4 clus-
ters can fit when using different dimensions (Row ∈
{512, 576, 1024, 1152} and Col ∈ {256, 512, 1024}) in each
AIMC array. 1152 rows × 512 columns dimension is selected
for the baseline architecture (as explained in Section V-F).

The area breakdown of the baseline architecture is presented
in Fig. 9. The AIMC arrays contribute significantly (46.6%).

4The multi-layer parallel architecture offers the possibility to hide the
latency of loading input images from host DRAM and intermediate data (e.g.,
input, output and accumulation) via NoC.

TABLE IV
CONSIDERED WORKLOADS

Networks #FC #Conv #Pooling NL types Weights (MB)
MLP-3 3 0 0 Relu 0.159

Lenet-5 2 3 2 Tahn 0.015

Resnet-18 1 20 2 Relu 2.784

Resnet-34 1 36 2 Relu 5.193

Resnet-50 1 53 2 Relu 6.080

Resnet-101 1 104 2 Relu 10.596

* Ternary weights are considered for all experiments.
TABLE V

BASELINE ARCHITECTURE PARAMETERS.

Abstraction Hardware Resources

Accelerator-
level

4
Clusters

Host DRAM
(LPDDR4, 10
Bytes/cycle)

⋆Weight
DRAM (HBM2,
40 Bytes/cycle)

Inter-cluster
& Inter-tile
NoC (60
Bytes/cycle)Cluster-level 4 Tiles L2 buffer (512KB)

Tile-level 4 Aicores 2 VFUs Tile Shuffler

PE-level Activation
Buffer

Instruction
Memory

AIMC array for Aicore
(1152 rows × 512 cols)

*Digital frequency=1GHz, Analog AIMC frequency=0.1GHz
*⋆ is set for demonstration purpose (see Section V-D). This bandwidth is 
sufficient for CNNs (Lenet-5, Resnet-18), but leads to weight loading stalls 
for deep CNNs (Resnet-34,-50,-101).

to the overall area. The digital blocks inside the Aicores (pie
in red) account for 20.9%. Activation buffers are another
major contributor to area (17.5%). In modern day CNNs, the
number of MAC operations dominate the total percentage of
computations. For example, Resnet-18 has 3628.15 millions
analog MAC operations and 9.65 millions digital operations.
The area is dominated by AIMC arrays, which are responsible
for performing the MAC operations that constitute the bulk of
operations in the CNNs.

confidential
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20.9%

17.5%

AIMC arrays

Aicore minus AIMC arrays

Activation buffer

CFU (compound function units, with SIMD lanes)

L2 buffer

Fan-out network

Instr Mem

NoC (Weights)

NoC (Activation)

VFU minus CFU1.78%

0.00149%

0.291%

1.61%1.61%

1.92%

1.86%

Fig. 9. Area breakdown of TANIA baseline architecture (4-cluster, 103.60
mm2). Note: CFU: Compound function units (SIMD lanes).

C. Impact of weight loading and weight stationary

This case-study assesses the impact of SW and WS under
SR constraints. As previously discussed in Section IV-C1,
sufficient clusters allow loading weights of all layers at once.
Table VI shows the resource requirements, indicating that
as the application layer gets deeper (e.g., from Resnet-18 to
Resnet-101), the number of required clusters and correspond-
ing area increase.

To reduce energy/latency overheads due to WL, weights
can be loaded once for the first input (e.g., image) and reused
for the next multiple inputs (i.e., denoted by weight reuse).
When #reuse>1, multiple input images can be processed in
parallel and the pipeline throughput is dependent on the critical
path (i.e., layer costing the longest computation time). When
#reuse=infinite, the mapping can be approximated WS.

Fig. 10 compares the power efficiency (TOPs/W) and
pipeline throughput (#inference/s) with increasing number of
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TABLE VI
COMPARISON OF WL AND WS WITH SUFFICIENT CLUSTERS

Networks #Clusters (SR) Area (mm2)
Power efficiency (TOPs/W ) Pipeline throughput5 (#inference / s)

WL6 WS7 Ratio=WS/WL WL WS Ratio=WS/WL
MLP-3 1 25.90 0.442 262.267 593.364 23618 2×107 846.811

Lenet-5 1 25.90 1.087 1.707 1.570 239291 283849 1.186

Resnet-18 4 103.60 29.723 80.313 2.702 10836 17173 1.585

Resnet-34 7 181.31 28.739 92.165 3.207 6415 17174 2.677

Resnet-50 8 207.21 21.077 50.562 2.399 5426 11104 2.046

Resnet-101 15 388.52 17.048 48.789 2.745 3303 11105 3.362

* Pipeline throughput is calculated at 1GHz based on latency cycles
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Fig. 10. (a) Normalized power efficiency (TOPs/W) and (b) Normalized
pipeline throughput (#inference/s) at different #reuse, under SR constraints.
Note Res-18→4C (Resnet-18 mapped to 4 cluster).

weight reuses. It can be observed that WL mode (#reuse=1)
has the lowest power efficiency. MLP-3 workload (with 3 FC
layers) is sensitive to #reuse in terms of power efficiency and
performance, as FC layers are typically dominated by WL.
Compared to WL mode (#reuse=1), WS mode (#reuse=inf )
is ∼100× better in power efficiency and performance.

On the other hand, for Resnet-18,-50 (in Fig. 10), their
power efficiency and pipeline throughput approaches up to
90% of WS mode (#reuse=inf ) when #reuse=16. This indi-
cates that weight reuse can enable power efficiency and per-
formance for CNNs close to WS mapping, even for low values.
Hence, the theoretical optimum can be approached with our
architecture template and our mapping strategy. A broader
comparison for all the considered workloads can be seen in
Table VI. The table shows that WS mode has 1.570× ∼
3.207× better power efficiency and 1.186× ∼ 3.362× better
performance than WL mode (for CNNs, excluding MLP-3).

D. Impact of external memory access of weights

This case-study assesses the impact of external memory
access bandwidth (BW) on latency in WL mode. An intuition 
overview can be seen Fig. 13 (a), which describes the latency 
behavior of Res-34→7C when BW=40 Bytes/cycle. Indexes A 
and B refer to the behaviors of initial layers, where WL latency 
is significantly smaller than computation latency. Nevertheless, 
possible WL stalls (index C) can defer the execution of later 
layers. For better performance, multiple HBMs could be 
interfaced to achieve higher bandwidth, similar to TPUs [32]. 
Fig. 11 shows the evolution of latency due to increasing weight 
DRAM bandwidth. It can be observed that the latency of 
MLP-3 is sensitive to the increase in bandwidth due to its 
weight-rich FC layers. Besides, the latency of Lenet-5→1C and 
Res-18→4C do not change with increasing bandwidth, which 
implies that small CNNs are dominated by computation 
activities (w.r.t WL). Lastly, for deep neural networks with a 
huge amount of weights (e.g., Resnet-34,-50,-101), an increase 
in weight DRAM bandwidth can reduce latency. Thus, the
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Fig. 11. Impact of external memory access of weights at increasing bandwidth 
(BW, Bytes/cycle) in WL mode, under SR constraints.

tiled architecture can take benefits of higher available weight 
bandwidth to reduce the inference latency of deep CNNs. But 
in the end, latency saturates to a critical path, which happens
around bandwidth of 60 Bytes/cycle for Resnets.

E. Impact of resource constraint

This case-study assesses the impact of SR and LR con-
straints. In the baseline architecture with 4 clusters, the deep
Resnets (Resnet-34,-50,-101) are resource constrained. For
an intuitive overview, Fig. 13 compares the latency behavior
of Res-34→7C and Res-34→4C (i.e., SR and LR). Under
SR constraints, WL is performed for all Aicores (mapped
MVM layers) in layer depth order (see index A). Under LR
constraints, the virtual nodes of Resnet-34 are divided into
2 partitions (see P 0 and P 1 in part (b-c)). WL is first
performed for nodes in P 0 (see index D). Once Aicore
resources are released by one/some node(s) in P 0, WL can
be started for P 1 (see index E, with a gap between D and E).
As previously illustrated in Section IV-B, the intermediate data
between two partitions are transferred via the shared L2 buffer
(see F and G, corresponding to Add-Relu 3, Conv 35 0 and
Conv 35 1 in part (c)). Nodes in different partitions execute
sequentially until the end of the last layer.
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efficiency (TOPs/mm2) in three cases: LR-WL (i.e., limited resources in
weight loading mode), SR-WL and SR-WS.

Fig. 12 shows the comparison of three cases: LR-WL (i.e.,
limited resources in weight loading mode), SR-WL and SR-WS
for the deep Resnets (-34,-50,-101). Part (a) indicates that LR-
WL has the highest latency (about 18% higher than SR-WL,
35% ∼ 47% higher than SR-WS), with area saving 43% ∼
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Fig. 13. Latency behavior Resnet-34 with of weight access bandwidth of 40 Bytes/cycle: (a) Res-34→7C (SR) and (b) Res-34→4C (LR). (c) Partition of
Res-34→4C (e.g., for Conv x y, x is the layer index and y is the mapping index on multiple Aicores (recall Section IV-A)). Note: A: weight loading (WL). B:
computation. C: WL stalls. E: write to L2 buffer. F: read from L2 buffer. G: WL for P 0 (e.g., partition index). H: WL and WL stalls for P 1. *Particularly
for part (b), different nodes mapped to the same Aicore/VFU are displayed in different rows.

73% (4 clusters w.r.t. 7, 8 and 15 clusters). This is because 
in LR case, a full network is divided into multiple partitions. 
WL and intermediate data transfer (via the shared L2) are 
performed for each set of partitioned nodes, which leads to 
extract overheads (e.g., latency, energy). Fig. 12 (b) shows
that SR-WS has the highest power efficiency, followed by LR-
WL (15% higher than SR-WL). Additionally, LR-WL has the 
highest area efficiency for Resnet-50,-101 (up to 54% higher 
than SR-WS). Since Resnet-34 is less resource constrained in 
4 clusters than Resnet-50,-101, the area efficiency of 
Resnet-34 in LR-WL is close to (i.e., 7% lower than) SR-
WS. This proves that the AERO framework unlocks 
different power-area-performance exploration points under 
LR constraints, while LR constraints (for hybrid tile-based 
accelerators) are not considered in existing works.

F. Impact of AIMC dimensions

This case-study assesses the impact of AIMC dimensions.
Fig.14 (a-b) shows the latency evolution of Res-18→4C (SR)
and Res-50→4C (LR) across different AIMC dimensions
(represented by Columns×Rows), considering WL overheads.
Larger AIMC dimensions typically have lower latency, since
higher output-unrolling factors (i.e., more copies of weights
in AIMC, recall Fig. 3 (b.3)) allow computing multiple output
activations simultaneously. However, higher output-unrolling
factors in a AIMC can take more time for WL. This explains
why the latency of 1152×1024 is higher than 1152×512.

Fig. 14 (c-d) shows power efficiency (TOPs/W ) and area
efficiency (TOPs/mm2) for the two considered networks.
Good power efficiency can be achieved in large array dimen-
sion (i.e., 1152×256, 1152×512, 1152×1024), out of which,
1152×512 AIMC dimension has the highest power efficiency.
However, the AIMC array dimensions with largest number of
rows (1024) have low area efficiency, due to severe under-
utilization of array. High area efficiency is achieved in the
AIMC arrays with small number of rows (e.g., with 256 rows).
Similar trade-offs between latency, power efficiency and area
efficiency can be seen in other Resnets (i.e., kernel dimension,
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Fig. 14. (a-b) Latency evolution, (c-d) power efficiency and area efficiency of
Resnet-18 and Resnet-50 mapping in 4 clusters, considering different AIMC
dimensions (Columns × Rows) and WL overheads.

kx, ky = 3). On the other hand, the small networks, MLP-
3 and Lenet-5, have small fluctuations in latency, power
efficiency, and area efficiency in different AIMC dimensions.
For MLP-3→1C, 1024 × 512 has the best trade-offs, while
1152 × 512 is the second best5. For Lenet-5→1C (kernel
dimension, kx, ky = 5), 1024× 1024 has the lowest latency,
while 1152× 512 has higher energy and area efficiency6.

Overall, 1152× 512 is selected in the baseline architecture,
due to its good trade-off in latency, power efficiency and area
efficiency for the considered networks in this paper. To the best
of our knowledge, AERO is the only framework that explicitly
reports such trade-offs, under both SR and LR constraints, on
hybrid tile-based architectures.

G. Impact of AIMC memory cell technology choices

This case-study evaluates the impact of AIMC compute cell
technology choices, i.e., SRAM, IGZO, SOT-MRAM [17]. For

51152×512: 4234 cycles, 0.443 TOPs/W and 0.013 TOPs/mm2; 1152×512:
4234 cycles, 0.442 TOPs/W and 0.012 TOPs/mm2

61024×1024: 3451 cycles, 0.878 TOPs/W and 0.002 TOPs/mm2; 1152×512:
4179 cycles, 1.004 TOPs/W and 0.005 TOPs/mm2
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TABLE VII
AIMC TECHNOLOGY CHOICES

Parameter SRAM IGZO SOT-MRAM
Area 0.785 um2 0.26 um2 10.368 um2

Write Energy 71118.62 pJ 686909.03 pJ 1191501.10 pJ

Compute Energy 1064.98 pJ 693.16 pJ 1655.76 pJ

Write Latency 1 ns 10 ns 3 ns [33]
Compute Latency 2.3 ns 0.5 ns 2 ns [34]

*Write energy is for writing a row of cells. Compute energy is for MVM operations
in one AIMC cycle (10 ns, 0.1GHz in the baseline architecture).
*Compute latency of SOT-MRAM is in 45nm node [34], while other parameters
are in 22nm node (in-house data). The largest parameter in each row is highlighted.

the three technology choices, Table VII compares their area,
energy and latency parameters, showing clear Pareto trade-offs
in the 3 dimensional space.

In the baseline architecture, the digital frequency (fD) and
analog AIMC frequency (fA) are set to 1 GHz and 0.1 GHz,
respectively (see Table V). In our assumptions, when the
AIMC write latency (LW , affecting the speed of WL) is
the same as the digital cycle (1 ns), there is no WL stall
due to AIMC write (e.g., for SRAM). The higher LW of
IGZO and SOT-MRAM results in additional WL stalls at fD,
and their WL speeds are 10× and 3× slower than SRAM,
respectively. On the other hand, AIMC compute latency (LC)
limits the maximum analog frequency (max(fA) = fD

LC
)

and has a large impact on the overall latency for a given
inference workload. In WS mode, ideally, the inference latency
of the three technologies is approximately proportional to their
LC . Considering DAC/ADC requirement between analog and
digital components, this case-study fixes fA = 0.1GHz (with
10 ns analog cycle). Since the LC of the three technologies
are within the analog cycles, the compute latency of SOT-
MRAM (45nm node [34]) caused by different technologies
(w.r.t. 22nm node, see Table VII) does not affect the AIMC
computation nor the experimental results.
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Fig. 15. (a) Normalized energy and latency, along with (b) normalized power
efficiency (TOPs/W) and area efficiency (TOPs/mm2) for SRAM (S), IGZO
(I) and SOT-MRAM (O) AIMC technology choices.

Fig. 15 compares normalized energy and latency, power
efficiency and area efficiency (w.r.t. SRAM) for different

AIMC technologies. Two observations can be made.
• In WL mode (SR-WL and LR-WL, under SR and LR

constraints), SRAM leads to the lowest energy and lowest
latency. This is because SRAM has the minimum AIMC
write energy and write latency. Consequentially, SRAM
has the highest power efficiency and area efficiency.

• In WS mode, IGZO results in the lowest energy, due
to its lowest compute energy. The latency is comparable
across the three AIMC technologies. Besides, IGZO has
the highest power efficiency and area efficiency.

VI. DISCUSSION

This section discusses the advantages and limitations of
the proposed AERO DSE framework. As presented in the
previous sections, AERO is able to assess the impacts of
several design parameters and derive insights into tile-based
hybrid accelerators, such as:

• Low values of weight reuse (e.g., 16) can enable energy
efficiency and performance for CNNs close to weight
stationary mapping.

•

•

Higher weight access bandwidth can reduce the inference
latency of deep CNNs. But in the end, latency saturates
to a critical path, which happens around 60 Bytes/cycle.
LR-WL is a power-area-performance trade-off solution. It
has 18% higher latency than SR-WL, with 15% higher
power efficiency a nd 7 3% l ower a rea. C ompared t o SR-
WS, LR-WL has close or even 54% higher area efficiency.

• The 1152 col×512 row AIMC has a good trade-off in
inference latency, energy efficiency and area efficiency
for Resnets as well as Lenet-5 and MLP-3.

• For AIMC cell technologies (SRAM, IGZO and SRAM),
SRAM has lowest energy/latency in WL mode, while
IGZO has the best power/area efficiency in WS mode.

TABLE VIII
SUPPORTED DSE OPTIONS IN AERO

Abstraction DSE options

Accelerator-level #Clusters; NoC design / technology parameters; Instr Mem
Dim (E, A); Bandwidths of host & weight bank & NoC (L)

Cluster-level #Tiles in a cluster; L2 buffer dimensions

Tile-level Aicores-VFU organization in a tile; Actbuf Dim

PE-level #Rows & #Colums of AIMC; AIMC cell technology;
ADC & DAC precision; AIMC & VFU compute speed

Mapping-level Fusion operation order; Splitting factor configuration

* Instr Mem: Instruction memory, Actbuf: Activation buffer, Dim:
dimension, L: Latency-only, E: Energy-only, A: Area-only

Further, AERO supports a broad range of DSE options to
facilitate co-exploration of mapping, architecture and technol-
ogy decisions. Table VIII summarizes the currently supported
DSE options in AERO.

The current version of AERO has two main limitations.
First, latency estimation at the NoC level does not model
communication contention. Second, loop transformation ex-
ploration over the memory hierarchy is not supported. It must
be noted, however, that existing loop transformation DSE tools
(e.g., Timeloop [8], Interstellar [9], Zigzag [10] for single-
layer parallel architecture) are too pessimistic for multi-layer
parallel architectures as they do not take into account the
dynamic data-flow between two neighboring layers.
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VII. CONCLUSION

This paper presents a DSE framework, AERO, for a hy-
brid digital-analog CNN accelerator architecture that supports 
multi-layer parallel execution. The AERO framework presents 
a general mapping flow, i ncluding v irtual m apping (allow-
ing node fusion, node splitting configurations) a nd physical 
mapping (a hierarchical strategy) to fulfil t he m apping at 
accelerator-level, cluster-level, tile/PE-level and AIMC-level. 
Besides, AERO incorporates detailed PPA models to charac-
terize the latency, energy and area of a full neural network 
executing under sufficient a nd l imited r esource constraints. 
The experimental case-studies on MLP, Lenet-5 and Resnets 
(-18,34,50,101) derive insights of design parameters, such as 
weight loading / weight stationary, and sufficient /  limited 
resource constraints, on the tile-based hybrid architectures.
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