
Applied Intelligence
https://doi.org/10.1007/s10489-022-03692-0

CookDial: a dataset for task-oriented dialogs grounded
in procedural documents

Yiwei Jiang1 · Klim Zaporojets1 · Johannes Deleu1 · Thomas Demeester1 · Chris Develder1

Accepted: 28 April 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
This work presents a new dialog dataset, CookDial, that facilitates research on task-oriented dialog systems with procedural
knowledge understanding. The corpus contains 260 human-to-human task-oriented dialogs in which an agent, given a recipe
document, guides the user to cook a dish. Dialogs in CookDial exhibit two unique features: (i) procedural alignment between
the dialog flow and supporting document; (ii) complex agent decision-making that involves segmenting long sentences,
paraphrasing hard instructions and resolving coreference in the dialog context. In addition, we identify three challenging
(sub)tasks in the assumed task-oriented dialog system: (1) User Question Understanding, (2) Agent Action Frame Prediction,
and (3) Agent Response Generation. For each of these tasks, we develop a neural baseline model, which we evaluate on
the CookDial dataset. We publicly release the CookDial dataset, comprising rich annotations of both dialogs and recipe
documents, to stimulate further research on domain-specific document-grounded dialog systems.

Keywords Dialog system · Procedural knowledge · Neural network modeling

1 Introduction

The last decade has seen a surge of work dedicated to
building conversational agents (CA) via annual challenges
(e.g., Dialog System Technology Challenges [1]) or
benchmark datasets (e.g., WoZ 2.0 [2], MultiWoZ [3], SGD
[4]). To provide meaningful responses, such conversational
agents typically rely on some form of background
knowledge. In question answering (QA), that knowledge
often takes the form of descriptive texts from which

� Yiwei Jiang
yiwei.jiang@ugent.be

Klim Zaporojets
klim.zaporojets@ugent.be

Johannes Deleu
johannes.deleu@ugent.be

Thomas Demeester
thomas.demeester@ugent.be

Chris Develder
chris.develder@ugent.be

1 IDLab, Ghent University – imec, Technologiepark Zwijnaarde
126, 9052 Ghent, Belgium

an answer is distilled (e.g., SQuAD [5]), while in
more complicated settings (possibly involving multi-hop
reasoning), the system reasons over knowledge graphs (e.g.,
KdConv [6]). Thus, these question answering works are
typically document-grounded. Recent QA works further
consider more advanced settings involving multi-turn
conversations on a given topic rather than single questions
(e.g., CoQA [7] and QuAC [8]), and/or span various
domains (e.g., DoQA [9].). Logical extensions of this line
of work pertain to dialogs including follow-up questions
(e.g., ShARC [10]), which may also be initiated by the agent
itself and require the system to track both the dialog and
the document context (e.g., doc2dial [11]). Going beyond
answering user questions, task-oriented dialog systems
assist with, e.g., flight, hotel and restaurant reservations, and
similarly are grounded in supporting knowledge. The latter
typically takes the form of a well-structured database, from
which the system retrieves information relevant to the user’s
task at hand (e.g., WoZ 2.0 [2]).

Despite this growing body of work, we note that an
under-explored use case in task-oriented systems is that of
assisting the user to follow a given procedure. A notable
exception is the work of Raghu et al. [12], which is
based on flowcharts describing the procedure. To facilitate
further research on procedural assistance dialog systems,
we focus on establishing an exemplary dialog dataset and

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-03692-0&domain=pdf
http://orcid.org/0000-0002-4906-7308
mailto: yiwei.jiang@ugent.be
mailto: klim.zaporojets@ugent.be
mailto: johannes.deleu@ugent.be
mailto: thomas.demeester@ugent.be
mailto: chris.develder@ugent.be

Y. Jiang et al.

baseline solutions for a conversational agent grounded in
textual procedural documents. Thus, our work relates to
aforementioned document-grounded systems. Yet, whereas
in these state-of-the-art works the documents contain a
descriptive text on a particular subject, in our case those
documents describe specific instructions. The procedural
task dialogs we consider thus concern entities that are
manipulated with certain tools, and steps that need to be
executed in a particular order, etc.

Specifically, we introduce a cooking dialog (CookDial)
dataset, comprising conversations where a conversational
agent instructs a user to follow a given (textual) recipe.
We consider this recipe-based dataset as prototypical for
procedural assistance conversations. The CookDial dialogs
thus reflect the required capabilities of such a procedural
CA, implying understanding the procedure’s structure,
and particularly the chronological steps it comprises,
as well as tracking the user’s state in relation to it,
i.e., which step the user has reached, and relating the
entities/tools in user questions to those in the recipe. Thus,
to build such procedural CA system we basically need
to solve three fundamental challenges: (C1) understanding
the procedural documents (i.e., recipes), (C2) aligning a
dynamic conversation with the accompanying document
and, and (C3) implementing a decision-making process
for the CA to generate the most appropriate utterance,
constrained by the grounded document.

For challenge (C1), we refer to our earlier work on
information extraction from procedural texts [13]. In the
current paper, we focus on challenges (C2)–(C3).

To illustrate these challenges, Fig. 1 lists an exemplary
conversation for an annotated crepe recipe shown in the
right part. Note that we assume the recipe has already
been processed [13] to identify the constituent ingredients
and instruction steps (respectively marked with ing-i
and inst-j), as well as entities such as tools and
attributes (e.g., temperature, duration) mentioned within
those steps. In challenge (C2), we need to determine the
User State Frame for each user utterance, i.e, to establish
which recipe step the user has completed as well as
the step which the user is requesting details about. This
will be Task I, User Question Understanding. Next, the
decision process of the agent’s response is annotated in
an Agent Action Frame, phrased as a list of at least one
function-like string specifying (a) an agent act, and (b) an
argument pointer linking to an item of the recipe (i.e., an
ingredient, a full instruction, or an entity within it). We
will split the challenge (C3) into two subtasks: Task II
will be Agent Action Frame Prediction; Task III, Agent
Response Generation, will be to generate natural responses
given a user question, the dialog context and extra
information from the agent action frame. For each of these
tasks we will provide a corresponding baseline model,

based on deep neural networks with pretrained language
models.

In summary, this paper offers three contributions:

• We create the CookDial dataset, which to the best of
our knowledge is the first that grounds the knowledge
of dialog systems in procedural documents. The final
dataset consists of 260 dialogs and 260 corresponding
recipes (Section 3). The dataset and codes are available
at https://github.com/YiweiJiang2015/CookDial.

• We introduce an annotation scheme (Section 4) for
such procedural document-grounded dialog systems,
in particular, cooking recipe documents. Specifically,
we propose symbolic annotations that assign unique
identifiers to steps and entities to facilitate the
alignment problem between dialogs and grounding
documents. We further propose two annotation phases,
separating the user state tracking problem and the agent
decision-making process.

• We identify three challenging tasks (Section 5) and
propose baseline models for each (Section 6), which
we evaluate on the CookDial dataset: User Question
Understanding (Task I), Agent Action Frame Prediction
(Task II) and Agent Response Generation (Task III).
We thus aim to stimulate further research on proce-
dural conversational agent systems, as a subfield of
document-grounded dialog models.

2 Related work

As indicated above, we consider a conversational agent
(CA) to assist a user to execute a given procedure, as
described in a textual document. Thus, our work is a specific
use case of a document-grounded dialog system (DGDS).
Furthermore, a core capability required by our CA is to
grasp the meaning of utterances in the dialog (and relate
them to the document). Therefore, our work is also in line
with the area of conversational semantic representation.
Below we sketch related work in both areas, and position
our proposed system against it.

2.1 Document-Grounded Dialog Systems (DGDS)

Given that a reasonable fraction of a conversation in
our procedural assistant setting amounts to resolving user
questions, our work is closely related to the field of
conversational question answering. In this area, recently
various datasets have been released, including QuAC [8],
CoQA [7], DoQA [9] and ShARC [10] .

CoQA and QuAC have similar settings where a multi-
turn conversation is grounded in a text passage (e.g., a
Wikipedia article). They go beyond reading comprehension

https://github.com/YiweiJiang2015/CookDial

CookDial: a dataset for task-oriented dialogs...

Fig. 1 The left part shows a
cooking dialog sample in which
U and A represent the user and
agent respectively. The upper
right table is the corresponding
recipe document. Identifiers
ing and inst denote
“ingredient” and “instruction”
respectively. These identifiers
are listed in the “Step ID”
column. Within the recipe text,
only three entities are
highlighted (see full recipe
annotations in Fig. 3). Further,
temp and dur are shorthands
for “temperature” and “duration”

challenges like SQuAD [5] by requiring the agent to resolve
coreferences, ellipsis and contextual reasoning in the dialog
history. Compared to QuAC and CoQA, we note that DoQA
is more oriented towards addressing information retrieval
needs, as it is collected from FAQ sites and covers multiple
domains. In particular, DoQA includes conversational
search tasks [14] that require models to retrieve relevant
documents across different domains, given a limited dialog
context. In ShARC, the information request is further
assumed to be underspecified, requiring the CA to pose
follow-up questions (based on rules/conditions expressed
in the text documents containing the information). This
implies that a substantial fraction of user utterances are
relatively easy to understand (e.g., many yes/no answers
to the CA’s follow-up question), meaning that the system
complexity mainly lies in understanding the supporting
textual documents (i.e., the rules/conditions they express).

Aforementioned QuAC, CoQA and ShARC datasets
require the CA to “understand” the textual documents,
but mainly on the level of relatively short text spans.
The more recent doc2dial [11] is a document-grounded
dialog dataset in which addressing the user question
necessitates reasoning across paragraph- and document-
level structures. Furthermore, rather than pure information-
oriented conversations (in the cases of QuAC, CoQA and
DoQA), doc2dial is collected in a more goal/task-oriented
setting (e.g., how to get certain financial benefits). This
setting makes doc2dial the closest to our work. However,
since doc2dial grounds dialogs in documents specifying
administrative rules/regulations, the proposed models still
lack clear understanding of step-wise procedures. Further,
we note that the CA system’s “understanding” of the
supporting textual documents in above datasets closely
follows that in machine reading comprehension works [5],
by focusing on extracting text spans as answers from

documents. However, they show less interest in pragmatic
properties of dialogs such as dialog acts, which are
important in the semantic understanding of dialogs. Our
work goes further by providing rich annotations of dialog
acts, based on which we introduce semantic representations,
i.e., user state frames and agent action frames that abstract
away from the literal forms (we refer to Section 2.2 for
further discussion).

To summarize the characteristics of above DGDS
datasets, and how our newly created CookDial compares
to them, Table 1 outlines their characteristics in terms of
(i) annotation features, (ii) system abilities, and (iii) basic
statistics. The unique features of our CookDial dataset are
twofold. First, we use text-to-speech (TTS) in the collection
process of the dataset, which impacts the dialog flow in
that it induces user questions for clarification/repetition. Our
motivation for assuming a voice interface is that not having
to read the textual instructions avoids distraction from
executing the procedural actions. Second, we also include
agent act annotations: similar to the user intent, we also
include a formal, functional notation of the CA response
(cf the Agent Action Frame in Fig. 1). This action frame
consists of (a list of) function(s) that indicate the semantics
to express in the response, with arguments grounded in the
document (e.g., entities or steps from the recipe). Further,
as in doc2dial, the agent annotator is allowed to paraphrase
entities/statements of the grounding spans in the documents
supporting the conversation (as opposed to purely copying
document text spans).

In terms of system abilities, particularly the procedural
understanding is both unique and crucial in our procedural
CA setting. It implies that the CA needs to be able to clearly
identify the distinct steps and their order in the procedure.
The only other dataset that to some extent implies some
“procedural” notions is doc2dial, which however pertains

Y. Jiang et al.

Table 1 Summary of the characteristics of CookDial compared to other document-grounded dialog datasets

CookDial (ours) doc2dial [11] QuAC [8] CoQA [7] DoQA [9] ShARC [10]

Annotation Features

Task-oriented dialogs � � �
TTS setting† �
Rephrase grounding spans � �
User intent annotation �
Agent act annotation �
Grounding span annotation � � � �

System Abilities

Procedural understanding � �
User intent identification �
User question grounding � �
Agent response grounding � � � � �
Document retrieval � �

Statistics

Dialogs 260 4,800 13,594 8,399 2,437 6,637

Utterances per dialog 35 14 7.2 15.2 NA NA

Grounding documents 260 480 8,854 8,399 1,908 948

†
: TTS, or Text-to-speech, implies that the agent’s textual replies are converted to speech messages in the Wizard-of-Oz dialog collection process.;
#: Number of; NA: Not available;

to identifying certain rules or conditions (e.g., requirements
that need to be fulfilled to warrant benefit eligibility) rather
than an ordered sequence of distinct actions. Finally, from
the statistics it is clear that the size of CookDial is much
more modest than others, largely because of time and budget
constraints for our data collection. Still, CookDial covers
all features but the document retrieval ability and has been
carefully designed for building a DGDS with procedural
knowledge, thus filling a notable gap in the current body of
research works.

2.2 Conversational semantic representation

The level of “understanding” the user utterances in dialog
systems gradually evolved in terms of the complexity of
meaning representation. In specific domain contexts, such
as task-oriented CAs to assist users in finding/booking
restaurants etc., a slot-filling approach is commonly adopted
[3, 15–17]: a predefined template of slots is to be filled
by string values. To perform the task at hand, these slot
values are used to send queries to a database system, whose
response then allows the user to make a decision or require
further information. This sequential slot-filling process
stores dialog states in a flat semantic frame, which eases the
data collection of annotations, yet significantly constrains
the possible interaction among utterances in a complex

dialog flow. Further research in this domain focuses on
representing utterances with richer semantic meanings by
moving beyond the flat semantic frames. The authors
of [18–20] extend the classical intent-slot framework by
using nested intents in slots, thus allowing for more complex
queries that contain several intents and corresponding slot-
value pairs. These nested structures still rely on the static
attributes of the predefined database, comprising, e.g., food
type, price, restaurant location. Dialog systems based on
such a static database need to fill in these attributes (slots)
during the conversation. In fact, the CA cares little about the
occurring ordering of the slots, as long as it eventually can
form a valid query (e.g., the user can ask for the price and
location in any order as he or she likes, without influencing
the query result). However, in procedures such as recipes
in case of CookDial, the order of the steps is crucial and
needs to be strictly followed. Further, entities are not static
across this procedure: in our CookDial case, ingredients
are manipulated and change state, implying that the agent
may need to be aware of these changes (i.e., tracking how
the entity evolves throughout the procedure) to answer user
queries (as opposed to, e.g., restaurant attributes which
remain constant). Also, these procedural “actions”, which
are formally captured in semantic frames, may have varying
numbers and types of arguments, thus implying a greater
diversity than aforementioned pre-defined slots in more

CookDial: a dataset for task-oriented dialogs...

traditional task-oriented CA cases. This nature of procedural
documents makes the development of a dialog system based
on CookDial quite challenging.

3 CookDial dataset description

Our CookDial dataset contains 260 dialogs, each of which
corresponds to one recipe document. To generate dialogs,
we employed 3 paid workers to work in pairs, conversing
using a web chat platform. Workers were asked to switch
between the roles of user and agent after each of their
conversations. Later, 2 experts performed annotations in
two phases: (i) they first annotated all the entity identifiers
within each recipe document (see Section 4.1 for more
details), (ii) then they annotated the user state frames
(Section 4.2) and agent action frames (Section 4.3) for each
dialog. In total, it took approximately 600 hours to curate
CookDial, of which 350 hours (∼117 hours per worker)
were spent on generating the dialog conversations (∼40
minutes per dialog), 50 hours (∼25 hours per expert) for
document annotations and 150 hours (∼75 hours per expert)
for dialog annotations, excluding about 50 hours of initial
annotations to develop the format and guidelines. This time
cost reflects the difficulty of collecting human-to-human
dialogs, especially in a document-grounded setting.

3.1 Recipe collection

We use recipe texts from the RISeC corpus1 [13],
since it contains already annotated recipes, where the
entities involved (i.e., ingredients, tools) as well as the
actions on them (semantically represented as relations
between predicates and their arguments) already have
been rigorously identified. In CookDial, we extend the
original RISeC annotations by assigning unique identifiers
to entities. See Section 4.1 for more details.

3.2 Dialog Collection

As indicated previously (Section 2), a substantial body
of recent work has considered document-grounded dialog
systems (DGDS), but largely focused on information-
oriented conversations, mostly in question answering
settings. Conversely, we focus on task-oriented dialogs,
specifically focusing on procedural tasks involving a
sequence of steps to complete the task, grounded in
a document describing these steps textually. Therefore,
we collected the data with two objectives in mind:
(i) grounding dialogs in documents, i.e., recipes, and
steering the conversation towards a specific goal, i.e.,

1https://github.com/YiweiJiang2015/RISeC

complete the cooking process; and (ii) collecting high-
quality conversations that can be used for building a dialog
system or its components. To fulfill the first goal, we adopt
the recipe corpus from our previous RiSEC work, given its
already annotated entities and actions performed on them,
allowing linking them further to the conversation utterances
in the dialogs. In total, we gathered 260 dialogs, using the
following procedure.

We adopted the Wizard-of-Oz method in which two
workers talked to each other via a web chat platform. Each
cooking conversation lasted for 20-40 minutes, depending
on the length and difficulty of the recipe. We collected
exactly one dialog per recipe. One of the workers mimicked
the ‘agent’, thus having full access to a recipe text, and
was responsible for assisting the other annotator, namely
the ‘user’, to accomplish the cooking. In the remainder of
this section, we will use ‘agent’ and ‘user’ to represent the
corresponding workers. The user knew nothing about the
recipe except its title. To complete the cooking task, the
user had to keep asking questions until the recipe was done.
(Note that in practice, the user did not actually perform any
cooking — we simply asked the annotators to imagine an
actual cooking setting as accurately as possible.)

In our chatting application, the agent’s textual input
was converted to speech messages (by using a free text-
to-speech service2) while the user’s input remained as
is, in textual form. Such configuration resembles popular
chatbot services like Alexa, Google Assistant and Cortana.
This sometimes caused the ‘user’ to have difficulty fully
understanding utterances from the ‘agent’, either because
of text-to-speech quality issues or the complexity of the
sentence/word itself. This impaired comprehension then
drove the ‘user’ to ask questions for clarification or
repetition. Further, to offer a more understandable answer,
the ‘agent’ resorted to segmenting or paraphrasing the
original recipe instructions. In this way, the generated
dialogs benefited from these clarification questions in terms
of enhanced language diversity and non-linearity of dialog
flows. In contrast, in pilot experiments without the TTS
setting, ‘user’ annotators were found to lazily ask mostly
trivial procedural questions (e.g., “What is the next step?” or
“What should I do now?”). Such lack of creative questions
rendered the dialogs too linear and straightforward, and less
representative of dialogs we can expect to encounter in the
wild.

After the first round of dialog generation, the expert
annotators cleaned the data by fixing typos, wrong entities,
etc., as marked by annotators after their session was finished
or by our expert annotators. The final step was to merge
the sentences from the same speaker into one utterance,
as the user or agent sometimes sent a follow-up message

2https://responsivevoice.org/

https://github.com/YiweiJiang2015/RISeC
https://responsivevoice.org/

Y. Jiang et al.

to correct typos or mistakes. Figure 2 shows statistics of
the 260 dialogs and recipes. The average dialog length is
34.9 utterances. There are 9,068 utterances in total, with an
average length of 11.1 tokens per utterance.

4 Annotation details

This section introduces the annotation schema for our
corpus regarding the recipe texts and the dialogs. For the
recipes, we extend the original RISeC dataset [13] by
assigning an identifier to each entity, in order to facilitate
the dialog annotation, as described in Section 4.1. For the
dialogs, we annotate both the user’s and agent’s utterances
using dialog acts and entity identifiers from the recipe
annotations.

4.1 Recipe annotation

The RISeC corpus [13] contains entity and predicate-
argument relation annotations on 260 recipe texts. It focuses
on revealing semantic structures within the instruction part
of recipes, while ignoring the ingredient list that actually
provides basic entities (i.e., ingredients and their quantities,
or their mentions as part of descriptive instructions further
down the recipe) for dialogs. However, in the context of
recipe-grounded dialogs, these entities are key, since user-
issued questions are often entity-centric (e.g., “Could you
tell me the recipe title?” and “What is the next ingredient?”).
Moreover, the user often asks for a whole instruction from
the recipe (e.g., “That is done. What shall I do now?”),
which cannot be uniquely identified by the original RISeC
annotations.

To address these limitations, we extend the original
RISeC annotations by assigning unique identifiers to title,
ingredients, and instructions, as well as to the entities within
the instructions. Figure 3 shows a fully annotated recipe in
which all identifiers are visualized in colored rectangular
boxes. The title “California Chicken” is tagged as title,
followed by the list of ingredients of which each ingredient

(typically including an amount and description) is assigned
an identifier formatted as ing-i, where i indicates the rank
of the considered ingredient in the list. For example, the
last ingredient ing-7 in Fig. 3 corresponds to “1 package
Monterey Jack cheese”. The ingredient list is followed by
a list of instructions, each assigned an identifier inst-j,
where j denotes the instruction’s index in the ranked list
of instructions. In the instruction part, all the mentions
of ingredients are assigned the corresponding identifier
from the ingredient list, even when paraphrased or slightly
changed. For example, the description “1 to 2 slices of
tomato” is annotated as ing-6, referring to the ingredient
originally introduced as “2 ripe tomatoes, sliced”. Note
that the RISeC originally introduces a number of other
entity types for entities that appear in the instructions,
such as Action, Tool, Temperature, etc. [13], as
shown in Fig. 3(b). We extend these original annotations
into identifiers formatted as entity type-j-k, in which j
again refers to the instruction index (i.e., the same rank as
in the identifier of the instruction where the entity mention
appears), and k is the rank of entities of the same type
within that instruction. For example, in the first instruction
inst-0, there are two temperature expressions, i.e., “350
degrees F” and “175 degrees C”, which are assigned labels
temp-0-0 and temp-0-1, respectively. To wrap up,
there are four sets of identifiers within each recipe: title
identifier, ingredient identifier, instruction identifier and
extended entity identifier.

In order to facilitate the connection between dialog and
recipe annotations in the following sections, and for clearly
defining prediction targets in Section 6, we define two
supersets of identifiers: (i) the step identifiers, aggregating
title, ingredient, and instruction identifiers, and (ii) the full
set of all recipe identifiers comprising the step identifiers as
well as the extended entity identifiers.

4.2 User question annotation

Understanding a user’s utterance (which we will denote
freely as a question) usually requires converting a natural

Fig. 2 Statistics of dialogs and recipe documents in CookDial: (a) dialog distribution by the dialog length, (b) Utterance distribution by the
utterance length, (c) Recipe distribution by the number of instructions

CookDial: a dataset for task-oriented dialogs...

Fig. 3 A fully annotated recipe
text (viewing in color is
recommended)

inst-0 Preheat oven to 350 degrees F (175 degrees C).
 ac-0-0 tool-0-0 temp-0-0 temp-0-1
inst-1 Warm oil in skillet and add chicken and onion.
 ac-1-0 ing-1 tool-1-0 ac-1-1 ing-0 ing-2
inst-2 Cook 15 minutes or until chicken is browned and about done.
 ac-2-0 dur-2-0 cond-2-0
inst-3 Add salt and pepper to taste.
 ac-3-0 ing-3 ing-4 purp-3-0
inst-4 Place chicken on cookie sheet and top each breast with
 ac-4-0 tool-4-0
 1 to 2 slices of tomato and 2 to 3 slices of cheese.
 ing-6 ing-7
inst-5 Place in oven for 10 to 15 minutes, until cheese melts.
 ac-5-0 tool-5-0 dur-5-0 cond-5-0
inst-6 Remove from oven, add 2 to 3 slices of avocado on
 ac-6-0 tool-6-0 ac-6-1 ing-5
 top of each breast, and serve immediately.
 ac-6-2

California Chickentitle

ingredient
instruction

action
tool

temperature
duration
condition clause
purpose clause

titletitle
inst
ing
ac
tool

temp
dur

cond
purp

ing-0 4 skinless, boneless chicken breasts
ing-1 1 teaspoon olive oil
ing-2 2 sliced onions
ing-3 1 pinch salt
ing-4 1 pinch ground black pepper
ing-5 2 avocados - peeled, pitted and sliced
ing-6 2 ripe tomatoes, sliced
ing-7 1 package Monterey Jack cheese

(a) Title and ingredient list

(b) Entity types (c) Instruction list

utterance into a structured representation, i.e., a User State
Frame. Its annotation task is structured as follows.

The first level of user question annotations identifies
one or more suitable user intents. We considered 24 user
intents listed in Table 2, some of which are borrowed
from the work of [21] (e.g., greeting, confirm, negate)
while others are designed specifically for the cooking
dialogs (e.g., req temperature, req ingredient). Figure 4(a)
shows the relative frequency of each intent. The top
five intents (confirm, req instruction, req ingredient, thank
and other) together take up 75% of the total distribution
while the others fall in the long tail region. A detailed
description of all these user intents is listed in Table B.1,
Appendix B.

The second level of user question annotations is designed
to support user state tracking, and consists of annotating
the ‘completed step’ and ‘requested step’ associated with
the considered utterance. The ‘completed step’ annotation
refers to the step the user has just completed or understood,
whereas the ‘requested step’ denotes the step most directly
following the user request. Both are annotated as a
step identifier in the recipe (which can be the title, an
ingredient, or an instruction ID, as explained in the previous
section). For example, U1 in Fig. 1 can be interpreted
as the user acknowledging the title (completed step),
and asking for the first instruction inst-0 (requested
step).

4.3 Agent response annotation

Besides the user’s questions, we also annotate the agent’s
responses, using a different representation: each response is
labeled with an action frames consisting of an agent act and,
as an argument, an optional pointer to a particular element
in the recipe, under the form of an identifier from the full
set of recipe identifiers. For example, simple phrases like
“hello” and “yes” are annotated as greeting() and affirm()

without any argument pointer. Taking A1 in Fig. 1 as
another example, we annotate the response “Great. The first
step is to take 4 ready-made crepes and 1 cup of chocolate
hazelnut spread.” as fetch(ing-0); fetch(ing-1)”. Pointer
annotations, i.e., ing-0 and ing-1, are essential in this
case since the agent act fetch alone cannot grasp the full
semantic meaning of this response. Notice that the number
of agent acts contained in agent action frames varies among
different responses: for example, in Fig. 1, A0 and A1 have
two acts while A2 only has one. Table 2 lists the 29 agent
acts categorized by whether they need an argument pointer
or not. Again, we borrow some dialog acts from [21] (e.g.,
affirm, negate) while others are invented specifically for the
cooking domain (e.g., propose start recipe). We label the
sentences that do not belong to any act as other. Detailed
descriptions of the used agent acts are listed in Table B.2,
Appendix B. The relative frequency of agent acts in
Fig. 4(b) shows that inform instruction and inform ingredient
are the major acts used by the agent.

As we will validate in Section 6.3, not only do the pointer
annotations ground the agent answers, but they also help to
improve the response generation quality in the final system.
Since the argument pointers rely on the full set of recipe
identifiers, the agent action frame annotations are grounded
in a more fine-grained level of recipe texts compared to the
step trackers in user state frame annotations.

4.4 Dialog flow

Since recipes comprise a sequence of ordered steps, the
dialog is expected to roughly follow the steps of the
corresponding recipe linearly. Figure 5 illustrates such
linearity by counting and normalizing the occurrences of
(a) the requested recipe step identifier vs. the dialog turn
number, and (b) the requested recipe step identifiers of a pair
of two consecutive user questions. Note that the recipe step
identifiers in Fig. 5 refer to a concatenation of the title and

Y. Jiang et al.

Table 2 dialog acts for the user
and agent annotation Dialog Acts

User Intents greeting, thank, confirm, negate, other, affirm, goodbye

req start, req temperature, req instruction, req repeat

req amount, req ingredient, req use all, req title

req is recipe finished, req tool, req duration

req is recipe ongoing, req substitute

req ingredient list, req ingredient list length

req ingredient list ends, req parallel action

Agent Acts† inform instruction, inform ingredient, inform title

inform duration, inform temperature, inform amount

inform tool, fetch, repeat, verify, simplify begin

simplify continue

Agent Acts‡ greeting, goodbye, affirm, negate, enjoy, fence, end recipe

thank, other, count ingredient list, propose start recipe

end ingredient list, propose list ingredients

propose skip ing list, propose next instruction

propose start instruction, propose other help

†: pointers are compulsory.
‡: no argument pointer.

the instructions (i.e., ingredients are not considered) as the
plotted statistics3 were obtained from 86 dialogs in which
the agent skips introducing the ingredient list.

Interestingly, most of the mass in the cone-shaped area
marked in Fig. 5(a) lies below the diagonal line. If the
mass entirely followed the diagonal line, it would imply
that the user never has any problem in understanding the
agent’s utterances and just keeps asking “What is next?”
through the conversation, which is apparently unrealistic.
Instead, the user’s continuous requests for clarification
cause the distribution’s mass to diverge from the diagonal
line and shift downwards. Figure 5(b) displays the transition
between requested recipe step identifiers for the current user
question and the next one. The two distinctive diagonal lines
reflect that the grounding knowledge for the next question is
mostly either in the same recipe step as the current question
or in the step immediately following it.

5 Task definitions

As stated in Section 1, we focus on solving two
challenges during the development of our CA system, i.e.,
challenge (C2), aligning a conversation and its document,
and challenge (C3), simulating the CA’s decision-making
process to generate proper responses. We introduce three

3We performed vertical normalization on each cell by dividing its
frequency by the sum of all the cell frequencies in the same column.

tasks to tackle these challenges as well as to assess the
required language understanding abilities in a procedural
document setting. Note that the challenge (C3) is split into
two tasks, i.e., Task II and Task III. The definition of each
task is listed below.

5.1 Task I: User question understanding

Understanding a user’s question requires the agent to
resolve the user’s intents and track the dialog state, i.e., the
annotated User State frame. Every state frame contains at
least one intent yI and two state trackers pointing to the
completed step yC and the requested step yR respectively.
Predicting the requested step can be quite challenging, as it
may refer to the dialog context rather than the document.
For example, the question U2 in Fig. 1 asks for repeating
the first mentioned ingredient in A1.

Formally,the inputof Task I includes (1) the user question
Q, (2) its dialog history H , i.e., a given number of utterances
preceding the current user question that the CA has to
respond to, and (3) the grounding recipe document D

including the span boundary indices of step identifiers
{(sstartj , sendj)}NS

j=1 (where NS denotes the number of step
identifiers in a recipe). (Note that we will experiment with
a varying number of preceding turns for the history, see
further.) The targets are an unordered set of intents (yI)
and two state trackers (completed step yC , requested step
yR). Predicting user intents can be viewed as a multi-
label classification problem. The state tracker prediction

CookDial: a dataset for task-oriented dialogs...

Fig. 4 Statistics of user intents and agent acts

is formulated as a span selection problem. Unlike the
typical question answering task, e.g., SQuAD [5], our model
does not predict the start or end indices of a span from
a document. Instead, as the recipe step span indices are
provided a priori in our setting, we just need to select the
most likely one from these given candidate spans. Note that
for each dialog, the number of span candidates varies with
the recipe document.

5.2 Task II: Agent action frame prediction

As described in Section 4.3, every agent action frame
is composed of agent acts (e.g., greeting) and argument
pointers, i.e., identifiers of the grounding spans. Predicting
the agent action frame can be viewed as end-to-end
modeling of the agent’s decision-making process in
response to the user’s questions. Although seemingly
similar to Task I, Task II differs in two aspects: (i) the
sequential order of agent acts (whereas user intent order

is less important); (ii) whether or not there need to be
argument pointers depends on the agent acts (i.e., some acts
do not take any arguments).

Like Task I, the input of Task II includes (1) the user
question Q, (2) the dialog history H and (3) the recipe
document D along with the span indices of the full set of all
recipe identifiers {(sstartj , sendj)}NF

j=1 (where NF denotes the
number of full set of all recipe identifiers in a recipe).

The targets consist of agent acts yact and the correspond-
ing argument pointers yfrag in which we use a “dummy
span” to pad those positions without any pointers (also
called null pointers).

5.3 Task III: Agent response generation

Assuming that the grounding text spans are already given
for agent turns, this task focuses on generating a natural
language response. This agent response generation is
challenging because (i) in many cases, the model needs

Fig. 5 Heatmaps illustrating the dialogs flow along with the recipe
steps. (a) Requested recipe step identifier vs. dialog turn number; (b)
The next turn’s requested recipe step identifier vs. the current turn’s.

(a) and (b) share the same color scale. The lengths of dialog turns (i.e.,
a pair of user and agent utterances) and recipe steps are truncated to 15
for simplicity

Y. Jiang et al.

to paraphrase the imperative expressions from recipes into
different forms (e.g., “Preheat oven to 220◦C.” → “Can you
preheat the oven to 220◦C?”) and (ii) the system is supposed
to resolve the coreferences within a dialog, e.g., “Could you
repeat the last ingredient?”.

Task III takes as input: (1) the user question Q, (2) its
dialog history H , (3) a Prompt composed of agent acts
of the agent’s response, and (4) the argument pointer span
tokens G as the context. The target is the agent’s gold
response.

6 Baselinemodels and empirical results

For each task in Section 5, we propose a baseline
model leveraging neural networks and pre-trained language
models. Detailed experimental settings and result analysis
can be found in the subsequent subsections. For all our
baseline models, the empirical results are averaged over
5 runs, each with a different random seed used for
model weight initialization and mini-batch sampling. To
reduce the impact of selection bias due to the limited
number of conversations, a different random partition
into train/dev/test sets (distributed as 80%, 10%, 10%) is
constructed for each of these runs. Since each dialog is
linked to a unique recipe text, we ensure that none of the
recipes in the dev/test sets are part of the train set.

6.1 User question understanding (Task I)

Figure 6(a) sketches our baseline model for Task I. For
all the training instances, the grounding document D is
appended after the dialog history H and user question Q

in the input. We experiment with the number of history
utterances, denoted by #H , ranging from 0 to 10. Note
that our model in Fig. 6(a) takes the utterances in a
chronological order, while doc2dial [11] also experimented
with a reversed setting, in which the user question and
dialog history are concatenated in reversed time order, i.e.,
the latest user question appears first in the input. Although
doc2dial claimed that the reversed input outperformed the
normal one, our pilot experiment results revealed that there
was no significant difference between these two settings in
our dataset.

The vanilla BERT encoder has a limited input size
(i.e., there is a 512 token limit), which does not suffice
to contain longer full documents. A common solution to
circumvent this limitation is to segment the long input
document and adopt a sliding window approach to do
so [11, 22]. Since this means that a single original training
instance is converted to multiple ones each covering part
of the long input document, this implies a non-negligible
computational overhead. Simply truncating the document

would clearly lead to discarding potentially useful input
information. Therefore, we use BigBird transformer [23] as
the encoder, which has the advantage of sparse attention,
which reduces the computation complexity from O(n2) to
O(n) in case of long inputs. As a result, the model can
handle long documents more efficiently. Training instances
are fed in batch to the encoder, which transforms tokens to
hidden representations h ∈ R

b×m×s , as per (1); here, b, m, s

denote the batch size, length of input tokens and hidden size.
We use the [CLS] token embedding h[CLS] ∈ R

b×m×s to
represent the query vector. The document token embeddings
{hD

i }ND

i=1 are passed to a span embedder (ND is the total
number of document tokens), which concatenates the start
and end token embeddings indexed by the step span tuples
{(sstartj , sendj)}NS

j=1 to form step span vectors Vstep ∈ R
NS×2s .

h = BigBird(H, Q, D) (1)

Vstep = SpanEmbedder({hD
i }ND

i=1, {(sstart
j , send

j)}NS

j=1) (2)

On top of the encoder, a feed-forward neural network
(FFNN)4 maps h[CLS] to a logit vector of which each
dimension represents the unnormalized classification score
of an intent. Given the multi-label nature of the user
intent classification task, the probability p̂I of each
intent I is modeled by applying a sigmoid function
on the corresponding logit, denoted by (3). After the
span embedder, span vectors are sent to two independent
FFNNs and softmax layers that predict the probability
distributions p̂c, p̂r for completed and requested state
trackers, respectively, shown in (4)–(5).

p̂(I |X; θ) = sigmoid(FFNN(h[CLS])) (3)

p̂(C|X; θ) = sof tmax(FFNN(Vstep)) (4)

p̂(R|X; θ) = sof tmax(FFNN(Vstep)) (5)

During training, the model computes the cross entropy
losses of the 3 probability distributions against their
corresponding target distributions p(yI), p(yC), p(yR). We
implement joint training by minimizing the sum of three
losses. For a given training instance X, the local loss is:

L = − [
p(yI) · log p̂(I |X; θ) + p(yC) · log p̂(C|X; θ)

+ p(yR) · log p̂(R|X; θ)
]

(6)

We use the F1 score for the intent prediction evaluation.
The performance of state tracking is evaluated using the
accuracy metric.

4By default, all FFNNs in this work are composed of 1 hidden layer
activated by the GELU function and 1 output layer.

CookDial: a dataset for task-oriented dialogs...

6.1.1 Experimental results

From Fig. 7, we note that the number of history utterances
has less influence on the intent prediction than that on
the accuracy of state tracking. The F1 score of predicting
user intents stays around 91% for the test set. This
stationary performance suggests that a single user question
is informative enough for the model to infer the user’s intent.
The fact that there is no drastic drop of the F1 score when
the history length is 0 also validates this assumption.

As for state tracking on the test set, the accuracy
increases to 86.4% and 94.5% for the requested step
and completed step tracker, respectively, by adding more
history utterances. However, the F1 scores of both step
tracker predictions start plateauing from #H=3 onward.
This implies that, as intuitively expected, understanding a
user question benefits little from its distant context. We
note that predicting the completed step reaches higher
performance than the requested step, which stems from the
fact that the user’s request can be rather ambiguous. For
example, when the user is asking “What is next?”, they may
request an ingredient or instruction depending on the dialog
context. Further, as expected, without any history (#H=0)
the model largely fails at state tracking (with accuracy
dropping to around 50%).

6.2 Agent action frame prediction (Task II)

Figure 6(b) gives an overview of the baseline model for
Task II. We again use BigBird as the encoder but fine-tune
it independently from Task I. The span embedder creates a
zero vector Vz as the dummy span embedding to represent
null pointers. In addition, given the argument span tuples,

the final output of the span embedder is Vfrag = {Vz, V̂frag},
where V̂frag is an end-point span vector.

h = BigBird(H,Q,D) (7)

Vfrag = {Vz, V̂frag},
where V̂frag = SpanEmbedder

(
{hD

i }ND

i=1, {(sstartj , sendj)}NF

j=1

)
(8)

Again, the [CLS] token embedding h[CLS] is used as
the query vector. To predict the agent act sequence, we
use conditional random fields (CRFs) [24] to model the
dependency between agent acts.

Since in our dataset we observe at most 4 agent acts
in the agent response, we simplify the model by fixing
the CRF output length as 5 (appending an <eos> token
after an act sequence). The potential function in the CRF
layer is decomposed into an emission function φ and a
transition function ψ . For the emission function φ, we train
an FFNN layer to transform the contextual vector h[CLS] into
the emission scores φ(yact

k , k,X). The transition function
ψ is represented by a trainable matrix Ws maintaining the
transition score between agent act tags and two extra tags
i.e., <start> and <end>. Finally, the predicted probability
for an agent act sequence is computed as (10). As for
the argument pointer prediction, we pass the argument
pointer span vector V frag to another FFNN layer. The output
logit is then activated by a softmax function to predict
the probability distribution p(yfrag|X; θ) of the argument
pointers, as shown in (11).

φ(y act
k , k,X) = FFNN(h[CLS]), ψ(y act

k−1, y
act
k) = (

y act
k−1

)T Ws y act
k

p̂(y act|X; θ) = 1

Z(X)
exp

(
τ∑

k=0

φ(y act
k , k,X) +

τ−1∑

k=1

ψ(y act
k−1, y

act
k)

)

, (9)

Question tokens

BigBird Transformer

Span Embedder

Intent Classifier
Requested Step

Classifier

Completed Step

Classifier

(a) User Question Understanding baseline model

BigBird Transformer

Span Embedder

CRF for Agent Acts
Argument Pointer

Classifier

(b) Agent Action Frame Prediction baseline model

Emission Layer

All the tokens of a recipe text.

To a what?
Remove the crepes to a wire rack.

(c) Input types and examples

History tokens

Document tokens

Fig. 6 Baseline models for (a) Task I: User Question Understanding (b) Task II: Agent Action Frame Prediction. H, Q, D denote tokens of dialog
history, user question, and entire recipe text respectively. Example inputs are given in (c)

Y. Jiang et al.

Fig. 7 Experiment results of Task I User Question Understanding. The results are averaged over 5 runs with different randomly sampled splits of
CookDial

where Z(X) =
Y act∑

ỹ act

exp

(
τ∑

k=0

φ(ỹ act
k , k,X) +

τ−1∑

k=1

ψ(ỹ act
k−1, ỹ

act
k)

)

(10)

p̂(yfrag|X; θ) = sof tmax(FFNN(Vfrag)) (11)

For one training instance, the local loss is computed by
summing the negative log likelihood of p̂(y act |X; θ) and
the cross entropy of the predicted pointer likelihood against
its target distribution p(y frag):

L = −
[

log p̂(y act|X; θ) + p(yfrag) · log p̂(y frag|X; θ)
]

(12)

For this task, we investigate the influence of the number
of history utterances. Both of the act sequence and argument
pointer predictions are evaluated by F1 scores.

6.2.1 Experimental results

Prediction results in Fig. 8 show that the length of dialog
history more significantly impacts the performance of
argument pointer prediction (F1 score drops by > 30% for
#H decreasing from 5 to 0) than agent act prediction (where
F1 score drops by ∼ 6%). This difference is expected,
since predicting the agent acts mainly relies on good
understanding of the user intent embedded in the previous
question and is less history dependent. For example, if the
user intents are “confirm, req instruction”, we can presume
an act sequence like “inform instruction” as the most likely
prediction without knowing extra information from distant
utterances. In contrast, predicting the argument pointer
sequence is strongly dependent on at least some history,
since the model needs to update the user state (i.e., cooking
progress) when the user is asking about a distant entity.

When #H exceeds 3, the model performance plateaus,
suggesting that it is not necessary to include all of the dialog
history as input in our system.

6.3 Agent response generation (Task III)

For the answer text generation, we rely on the pretrained
T5-base model [25], which adopts a unified “text-to-text”
approach casting NLP tasks as text generation and currently
attaining state-of-the-art results on many of them. The
pretrained encoder and decoder of T5-base are finetuned
during our training. We use beam search with a beam width
of 10 during decoding. Figure 9(a) illustrates our baseline
model. For the dialog history, we prepend the history tokens
to the current question. The number of history utterances
#H is fixed at 5 for all the models. Our model is designed
to tackle the two challenges mentioned in Section 6.3 (i.e.,

Fig. 8 Experiment results of Task II Agent Action Frame Prediction.
All the numbers are calculated over 5 random seeds

CookDial: a dataset for task-oriented dialogs...

paraphrasing and coreference resolving) by leveraging the
semantic information from Agent Action Frames. Firstly,
we hypothesize that generating a proper response can be
enhanced by introducing the agent’s dialog acts into the
model input. More specifically, we integrate the agent acts
into the prompt of the T5 model to inject essential semantic
information, which is denoted as the (+act) setting as shown
in Fig. 9(b). We also investigate another setting in which
prompts contain no agent dialog act information, named as
(−act) in our experiments. In the latter case (−act), the
prompt remains static for all the training instances, i.e.,
“Answer question”. In contrast, the (+act) setting makes
the prompt dynamic, since the agent acts vary among agent
utterances in a conversation. For example, the dynamic
prompt used in Fig. 9(b) is “Answer question guided
by [affirm, inform ingredient]”. Secondly, identifying the
needed information from a long recipe is actually highly
dependent on the grounding part, i.e., G in Fig. 9(a). For
the argument pointer spans, we also experiment with two
settings: using gold argument pointer spans (+pointer) or
not (−pointer). For the former, G is in fact composed of the
recipe text spans denoted by argument pointers within an
Agent Action Frame. In the (−pointer) setting, we replace
the gold spans with the entire recipe text, which makes it
hard for the model to locate the key information precisely.
Since the combination of (+act, +pointer) brings minimal
noise into the input, we also call it the oracle model.
We perform ablation experiments to asses the influence of
providing agent dialog acts and argument pointers as input
to the generation model. Given a training instance X and its
paired response Z, the model minimizes cross-entropy loss:

L = −
Z∑

t=1

log p(zt |zt−1, . . . , z1,X; θ) (13)

6.3.1 Experimental results

We adopt BLEU-1/2/3/4 and ROUGE-L as automatic
evaluation metrics for the answer generation task. Table 3
reports the performance of our oracle model and its ablated

Table 3 Experiment results of Task III Agent Response Generation

Settings BLEU-1/4 ROUGE-L

1 (+act, +pointer) oracle 54.2±0.6 / 36.9±0.6 54.2±0.5

2 (−act, +pointer) 51.6±0.8 / 35.3±0.6 51.0±0.6

3 (+act, −pointer) 52.6±1.8 / 36.08±1.4 52.54±1.6

4 (−act, −pointer) 46.2±0.4 / 31.10±0.5 46.31±0.9

The results are averaged over 5 runs with different randomly sampled
splits of CookDial. “act” and “pointer” denote agent acts and argument
pointer spans respectively.

variants on test set. Not surprisingly, the oracle model is
the most competitive with 36.5 BLEU-4 and 54.4 ROUGE-
L. Ablation of agent acts and argument pointer spans
individually (row 2 and 3) shows little impact on the
BLEU-4 score, while BLEU-1 and ROUGE-L results are
more clearly affected. The larger decrease of ROUGE-
L when agent acts are not used (−act, +pointer) implies
that excluding the agent acts from the model input could
harm the model’s ability to generate responses or copy
phrases from the document in a more appropriate way (see
generation samples in Section 6.3.2). Moreover, when we
remove both agent acts and pointer spans (−act, −pointer),
the sharp drop of performance suggests the necessity of
agent acts and document spans as inputs to improve the
response generation quality of a document-grounded dialog
system.

6.3.2 Case study on generated response samples

Table 4 compares the generated responses sampled from
two models, i.e., the (−act, −pointer) model and oracle
model (+act, +pointer). In general, the oracle model
generates more coherent responses than the ablated model
does, which complies with our hypothesis that introducing
the agent dialog acts into the model input can enhance
the generation quality. On the other hand, the agent act is
found to have great impact on steering the generative model.
For example, in questions 1 and 4, the act “affirm” helps

Fig. 9 (a) Baseline model of
Task III: Agent Response
Generation. (b) Examples of
dynamic and static Prompt
depending on whether agent acts
are used or not. (c) Input and
output examples

T5 Encoder T5 Decoder

Yes, you should use 2 sliced onions.

(a) Agent Response Generation baseline model

Add chicken and onion, stir them well.

Warm oil in skillet and add chicken
and onion.

(c) Input types and examples

Shall I use all the onions?Question tokens

History tokens

Grounding spans

Generated response

Answer question guided by
[affirm, inform_ingredient]:

Answer question:

(b) Prompt Example

(act)

(+act)

Y. Jiang et al.

Table 4 Generated responses sampled from different experimental settings. The blue and italic font indicates a wrong response

Question Gold Response Agent Acts Responses generated by Responses generated by

(−act, −pointer) model (+act, +pointer) model

1. What kind of flour should it
be? Is all-purpose flour good?

Yes it is! Also add 1
cup of white sugar.

affirm(); sim-
plify continue(ing-1);

Sorry I cannot answer that
question.

Yes, it should be all-purpose
flour.

2. Should I add
all of the egg?

I cannot answer
that question.

fence(); Yes, you should add all
of the eggs.

Sorry I cannot answer that
question.

3. Something else to do still
before putting them in the
oven?

No that is it! negate(); You can now bake it
for 10 to 12 minutes.

No.

4. Ok no problem, can
we start with the recipe?

Yes let us start! Do you
have a slow cooker?

affirm();
verify(tool-0-0);

First place the chicken in
a slow cooker.

Great! Can you take a
slow cooker?

5. Okay, what is the first
thing I have to do?

There are 12 ingredients.
Do you need me to list
the ingredients?

sum ingredient list();
pro-
pose list ingredients();

Preheat the oven to 175
degrees Celsius.

This recipe has 9 ingredients.
Do you want to prepare them
now?

the oracle model to produce affirmative phrases like “yes,
great” to respond smoothly to the user’s yes/no questions,
e.g., “Is all-purpose flour good?”. In questions 2 and 3,
without the guidance of agent acts, the ablated model gives
totally wrong answers, which may confuse the user or even
lead to a failure task in real applications. However, even
when integrating agent acts (+act), the task remains highly
challenging and responses are not perfect. In question 1,
the oracle model ignores the act “simplify continue” and
does not mention the next ingredient “white sugar”. In
question 5, although the oracle model understands the
meaning of “sum ingredient list”, the total number is
wrongly calculated. This numerical mistake reveals that
our model lacks the ability to reason over the numerical
information in the recipes. Mitigating this is left for future
work.

The dialog snippets in Table 5 are consecutive turns
generated by the two same models in Table 4. Without
the assistance of argument pointers, the ablated model’s
generated responses are more erroneous and inconsistent.
Compared to the ablated model, the oracle model succeeds
in finding correct references for both user questions, i.e.,
“the beginning” and “what kind of sugar”. This empirical
observation implies that our argument pointer annotation
helps the model to alleviate the difficulty in finding
coreferences within dialogs. However, both models fail to
answer the last question correctly, which requires the model
to resolve long-distance anaphora. This limitation will be
further discussed in Section 7.

7 Conclusion and future work

The main objective of this paper was to present a
new dataset to facilitate research on document-grounded

conversational agents (CAs) to assist in procedural tasks.
Existing works on document-grounded CAs lacked the
procedural aspect of the supporting documents, i.e., the
fact that they are organized in a sequence of steps
wherein entities undergo state changes that the CA
needs to be aware of and be able to relate to one
another. Indeed, for a CA it is crucial to relate the
dialog context (e.g., which procedural step the user has
arrived at) to the prescribed procedure to be able to
generate an appropriate utterance in the conversation. Our
newly created CookDial dataset contains 260 human-
to-human dialogs that were collected based on recipe
documents. We proposed an annotation approach for dialog
systems grounded in procedural knowledge, with a schema
that enables entity and state alignment between dialogs
and corresponding documents. Our resulting annotated
conversations exhibit non-trivial agent decision-making
behavior, including responses containing a varying number
of agent acts, segmentation of long instructions and
paraphrasing the source document texts. From the CA
perspective, we identified three major tasks, for which
we also established baseline solutions: (i) user question
understanding, (ii) agent action frame prediction, and (iii)
agent response generation. We publicly release the dataset
and the baseline models to spur further research. In terms of
next steps, we highlight three directions that will guide our
future work.

First, we want to explore generalization of our annotation
method by applying it to other types of procedural
tasks. Two more technical application domains of interest
include chemical and mechanical operations. In these
different domains, most definitions in our dialog-act
taxonomy (Table 2) will still be useful like “req instruction,
req subsititute”. However, chemical processes are extremely
sensitive to the element quantities, which raises the

CookDial: a dataset for task-oriented dialogs...

Table 5 Dialog snippets from different experimental settings. The blue and italic font indicates a wrong response

Role Gold dialog Dialog generated by
(−act, −pointer) model

Dialog turn generated by
(+act, +pointer) model

Agent Good. The next two are one and
one third cup of white sugar and
2 eggs.

The next two ingredients are 1 1/3
cup of white sugar and 2 eggs.

The next two ingredients are 1 1/3
cup of white sugar and 2 eggs.

User Could you repeat the beginning please?

Agent The first ingredient is 1 and 1/3
cup of white sugar.

2 eggs. 1 and 1/3 of a cup of white sugar.

User Ok. Thanks for the clarification. What
kind of sugar should it be?

Agent It should be white sugar. sorry I cannot reply to that question. White sugar.

User You said 2 eggs after that, right?

Agent Yes, you also need to add 2 eggs 1 tablespoon of baking powder. Yes, you need 1 1/3 cup of white sugar.

importance of accurate numerical understanding for the
dialog system. On the other hand, in mechanical manuals,
the spacial relation plays a significant role, e.g., in complex
assembly tasks. Such mechanics related conversations may
need intent annotations about the relative position between
objects (e.g., “req distance”). To facilitate such more
refined acts, we envision a hierarchical structure of dialog
acts to develop a cross-domain system. The hierarchy would
start with domain-agnostic acts, then branch into domain-
specific acts. Furthermore, it will be of great value to train
a general language understanding model that can be applied
for different procedural domains.

Second, our current solution lacks the ability to resolve
ambiguous anaphora, which makes some user questions
particularly hard to answer. A dialog snippet in Fig. 10
illustrates this.

For question U1, the system needs to understand that
the order reference “first and third” relates to the preceding
utterance A1, rather than the ingredient order in the
grounding recipe step. The user would be very confused if
the agent answers wrongly with the first and last ingredients

from inst-2, i.e., “butter and vanilla extract”. Similarly,
the subsequent user question U2 with “the one after vanilla
extract” is even more ambiguous, and the CA should attach
the context of A2 (rather than A1) to resolve it. Our
current annotation relies on the absolute identifiers from
the recipe, while coreferences within the dialog are not
annotated (e.g., linking “the one after vanilla extract” to
the preceding agent utterance’s “2 fresh strawberries”). To
overcome this problem, we envision extra annotations of
coreference linking across utterances.

Third, we note that in our collected dialogs, users some-
times tend to ask for clarifications on items (ingredients,
tools) that they are not familiar with. For now, our sys-
tem performs poorly on answering those questions, given
that the dialog agent’s knowledge (besides the conversation
itself) is limited to the grounded document. The most com-
mon answer observed in our collected dataset is “Sorry, I
cannot answer your question”. These uninformative answers
normally do not disrupt the dialog flow but might damage
the user satisfaction with (and therefor limit adoption of)
the CA solution. This problem can be overcome by incor-

Fig. 10 A dialog snippet
illustrating ambiguous anaphora
across utterances

Dialog:
Context: The agent already told the user to cream butter and sugar in a bowl.

A1: Now you can add 1 spoon vanilla extract, 3 eggs and 2 fresh strawberries.

U1: Sorry, can you repeat the first and third ingredients? What extract?

A2: No problem. 1 spoon vanilla extract and 2 fresh strawberries.

U2: Ok. But wait, I still did not catch the one after vanilla extract. What is it again?

Grounding recipe step:
inst-2: In a large bowl, cream butter and sugar until light and fluffy. Then add vanilla

 extract, beaten eggs and strawberries. Mix them well.

Y. Jiang et al.

porating external knowledge sources (e.g., Wikipedia) or
knowledge graphs (e.g., DBpedia). How to efficiently fuse
such knowledge base information with grounded documents
is another direction for our future work.

Acknowledgements We thank Maarten De Raedt and Amir Hadifar
for their insightful suggestions in the initial data collection.
The first author is supported by China Scholarship Council
(No. 201906020194) and Bijzonder Onderzoeksfonds (BOF) van
Universiteit Gent (No. 01SC0618). This research also receives funding
from the Flemish Government under the “Onderzoeksprogramma
Artificiële Intelligentie (AI) Vlaanderen” programme.

Appendix A: Experiment settings

All the transformer modules in our models are implemented
with the Huggingface library [26]. We conducted the
experiments with a single Nvidia-Tesla-V100 (32GB) card.
For all the tasks, we use the AdamW optimizer [27]. For

both of Task I and Task II, we use two different learning
rates depending on the layers to accelerate convergence: (i)
10−5 for the layers within the BigBird encoder; (ii) 10−3

for the top classifier layers (FFNNs and CRF). For Task
III, the learning rate for all the layers is set to 3 × 10−4.
The batch size is set to 8. The hidden size for all the
FFNN layers is 128 except the intent classifier layer (64)
in Task I. The dropout is set to 0.2 in the fine-tuning when
needed.

Appendix B: User intent and agent act
annotations

Elucidation on how we annotate the user intents and agent
acts is presented in Tables B.1 and B.2 respectively. For each
intent or agent act, we also provide an annotation example
except a few, i.e., other, repeat.

Table B.1 Annotation scheme for the user intents

User Intent Meaning Examples

greeting User says “Hi” or “Hello” to start a conversation. Hi! / Hello! / Good morning!

thank User expresses gratitude. Thank you. / Thanks.

confirm User establishes the fact that he or she has
accomplished one or several actions.

Done. / I have made it. / All of them are taken out of oven.

negate User gives a negative statement. No, I don’t have any avocado. / Sorry, I cannot remove
the cover.

affirm User gives a positive statement. Yes, I have an electrical beater. / Of course, lasagne is my
favorite.

goodbye User expresses good wishes at the
end of a conversation.

Bye. / Goodbye. / See you.

req start User requests the agent to give the first guidance. How should I start? / How do I make the secret pie?

req temperature User requests the exact temperature
expression for an action.

What temperature shall I set for the baking?

req instruction User requests the next instruction after
he or she confirms accomplishment of
previous instructions.

What is next? / Next is? / What should I do now?

req repeat User asks for repeating a men-
tioned entity or instruction.

Can you repeat the first ingredient? /
Could you tell me the last step again?

req amount User asks for the exact quantity of an entity. How much sugar do I need? / How much
does a package of cheese weigh to?

req ingredient User asks for the next ingredient. What is next? / What is next ingredient?

req use all User wants to know if a specific
ingredient shall be used up.

Can I use all the pepper? / Shall I add all
the berries?

req title User asks for the recipe title. What are we making today?

req is recipe finished User asks if the cooking process ends or not. Is it done? / Is the recipe finished? / Is it over?

req tool User requests a specific tool entity. What should I use to make the star shape?

req duration User requests the time needed for an action. How long shall I bake the cake? / When do I know it is ready?

req is recipe ongoing User asks if there are more steps to follow. Are there more steps? / Anything else to do?

req substitute User wants to know if it is possible to use an alternative
ingredient instead of the prescribed one.

Can I use white sugar instead of brown?

req ingr list User requests a detailed list of ingredients
before the instruction part starts.

Can you give me all the ingredients I need?

CookDial: a dataset for task-oriented dialogs...

Table B.1 (continued)

User Intent Meaning Examples

req ingr list length User requests the total number of ingredients. How many ingredients do I need?

req ingr list ends User wants to know if all the ingredients have
been introduced.

Is it over? / That is all the ingredients?

req parallel action User asks for another plausible action while waiting for the
current one to be finished.

What can I do in the meantime?

other Used for user utterances that cannot be attributed to any of
intents above.

–

Table B.2 Annotation scheme for the agent acts

Agent Acts Meaning Examples

greeting Agent responds to the user’s “greeting”. Hi. / Greetings.

goodbye Agent responds to the user’s “goodbye”. Bye. / Have a nice day.

affirm Agent gives a positive statement. Yes, you need 6 eggs. / Yes, the recipe is finished.

negate Agent gives a negative statement. No, you still have to wait.

enjoy Agent wishes the user to enjoy the food. Enjoy the juicy burger.

end recipe Agent states that the cooking process is finished. This is the last step.

thank Agent acknowledges user’s gratitude. You are welcome.

fence Agent cannot answer the user’s question. Sorry, I cannot answer that. / Sorry, it is
beyond my knowledge.

count ingredient list Agent gives the total number of all ingredients. We will use 10 ingredients in total.

propose start recipe Agent proposes to start the cooking process. Shall we start now? / Are you prepared?

end ingredient list Agent states that introducing ingredients is finished. That is all the ingredients we need. / This is the last
ingredient.

propose list ingr Agent proposes to introduce ingredient
details before the instruction part start.

Do you want to prepare the ingredients beforehand?

propose skip ing list Agent proposes to skip the ingredient list
if it is too long.

Do you want me to announce the ingredients when needed?

propose next inst Agent proposes to continue to give the next instruction. Shall we continue? / Are you prepared for the next step?

propose start inst Agent proposes to start the instruction part after
finishing introducing all the ingredients.

Do you want to know the first step?

propose other help Agent asks the user if he or she needs extra help.
(normally this occurs at the end of a conversation.)

Anything else I can do for you?

inform instruction Agent informs one instruction
symbolized by its step identifier.

The next step is to remove the cake from oven.

inform ingredient Agent informs one ingredient
symbolized by its step identifier.

You also need 1 bottle of honey.

inform title Agent informs the recipe title. We will cook Flemish Stew today.

inform duration Agent informs time duration of an action. Are there more steps? / Anything else to do?

inform temperature Agent informs a temperature expression. Set the oven to 220 degrees C.

inform amount Agent informs quantity of an ingredient. Please add 1/2 teaspoon of salt.

inform tool Agent informs a tool used in an action. Prepare 2 feet long lining paper.

fetch Agent asks the user to prepare necessary
stuff for one instruction.

Take a large bowl.

repeat Agent repeats a mentioned entity or instruction. It
normally appears after the user intent “req repeat”.

–

verify Agent checks if the user has the required tool or if
the previous instruction is accomplished.

Do you have a slow cooker? / Are
both sides of the breast browned?

Y. Jiang et al.

Table B.2 (continued)

Agent Acts Meaning Examples

simplify begin Agent segments a long instruction into a sequence
of sub-instructions. This act remarks the first one.

First, add chopped onions.

simplify continue The other sub-instructions after “simplify begin” Then add salad oil and some spices as desired.

other Used for agent responses that cannot be attributed
to any of acts above.

–

References

1. Gunasekara C, Kim S, D’Haro LF et al (2021) Overview
of the ninth dialog system technology challenge: DSTC9. In:
Proceedings of the DSTC workshop at AAAI, Online

2. Wen TH, Vandyke D, Mrkšić N, Gašić M, Rojas-Barahona LM,
Su PH, Ultes S, Young S (2017) A network-based end-to-end
trainable task-oriented dialogue system. In: Proceedings of EACL,
Valencia, pp 438–449. https://aclanthology.org/E17-1042

3. Budzianowski P, Wen TH, Tseng BH, Casanueva I, Ultes
S, Ramadan O, Gasic M (2018) Multiwoz - a large-scale
multi-domain wizard-of-oz dataset for task-oriented dialogue
modelling. In: Proceedings of EMNLP, Brussels, pp 5016–5026.
https://doi.org/10.18653/v1/D18-1547

4. Rastogi A, Zang X, Sunkara S, Gupta R, Khaitan P (2020)
Towards scalable multi-domain conversational agents: the schema-
guided dialogue dataset. In: Proceedings of AAAI, vol 34. New
York, pp 8689–8696. https://doi.org/10.1609/aaai.v34i05.6394

5. Rajpurkar P, Jia R, Liang P (2018) Know what you don’t know:
Unanswerable questions for SQuAD. In: Proceedings of ACL,
vol 2. Melbourne, pp 784–789. https://doi.org/10.18653/v1/P18-2124

6. Zhou H, Zheng C, Huang K, Huang M, Zhu X (2020) KdConv:
A Chinese multi-domain dialogue dataset towards multi-turn
knowledge-driven conversation. In: Proceedings of ACL, Online,
pp 7098–7108. https://doi.org/10.18653/v1/2020.acl-main.635

7. Reddy S, Chen D, Manning CD (2019) CoQA: a con-
versational question answering challenge. Transactions of
the Association for Computational Linguistics 7:249–266.
https://doi.org/10.1162/tacla00266

8. Choi E, He H, Iyyer M, Yatskar M, Yih WT, Choi Y,
Liang P, Zettlemoyer L (2018) QuAC: question answering in
context. In: Proceedings of EMNLP, Brussels, pp 2174–2184.
https://doi.org/10.18653/v1/D18-1241

9. Campos JA, Otegi A, Soroa A, Deriu J, Cieliebak M, Agirre
E (2020) DoQA - accessing domain-specific FAQs via conver-
sational QA. In: Proceedings of ACL, Online, pp 7302–7314.
https://doi.org/10.18653/v1/2020.acl-main.652

10. Saeidi M, Bartolo M, Lewis P, Singh S, Rocktäschel T, Sheldon
M, Bouchard G, Riedel S (2018) Interpretation of natural language
rules in conversational machine reading. In: Proceedings of EMNLP,
Brussels, pp 2087–2097. https://doi.org/10.18653/v1/D18-1233

11. Feng S, Wan H, Gunasekara C, Patel S, Joshi S, Lastras L
(2020) Doc2Dial: a goal-oriented document-grounded dialogue
dataset. In: Proceedings of EMNLP, Online, pp 8118–8128.
https://doi.org/10.18653/v1/2020.emnlp-main.652

12. Raghu D, Agarwal S, Joshi S (2021) Mausam: end-to-end learning
of flowchart grounded task-oriented dialogs. In: Proceedings of
EMNLP, Online and Punta Cana, Dominican Republic, pp 4348–
4366. https://doi.org/10.18653/v1/2021.emnlp-main.357

13. Jiang Y, Zaporojets K, Deleu J, Demeester T, Develder C (2020)
Recipe instruction semantics corpus (RISeC): resolving semantic
structure and zero anaphora in recipes. In: Proceedings of AACL,
Online and Suzhou, China, pp 821–826. https://aclanthology.org/
2020.aacl-main.82

14. Burtsev M, Chuklin A, Kiseleva J, Borisov A (2017) Search-
oriented conversational AI (SCAI). In: Proceedings of ACM
SIGIR ICTIR, Amsterdam, The Netherlands, pp 333–334.
https://doi.org/10.1145/3121050.3121111

15. Henderson M, Thomson B, Williams J (2014) The third dialog
state tracking challenge. In: Proceedings of the SLT workshop at
IEEE, pp 324–329

16. Wen TH, Vandyke D, Mrkšić N, Gašić M, Rojas-Barahona
LM, Su PH, Ultes S, Young S (2017) A network-based end-to-
end trainable task-oriented dialogue system. In: Proceedings of
EACL, vol 1. Valencia, Spain, pp 438–449. https://aclanthology.
org/E17-1042

17. El Asri L, Schulz H, Sharma S, Zumer J, Harris J, Fine
E, Mehrotra R, Suleman K (2017) Frames: a corpus for
adding memory to goal-oriented dialogue systems. In: Pro-
ceedings of SIGDIAL, Saarbrücken, Germany, pp 207–219.
https://doi.org/10.18653/v1/W17-5526

18. Kollar T, Berry D, Stuart L, Owczarzak K, Chung T,
Mathias L, Kayser M, Snow B, Matsoukas S (2018) The
Alexa meaning representation language. In: Proceedings of
NAACL, vol 3. New Orleans - Louisiana, pp 177–184.
https://doi.org/10.18653/v1/N18-3022

19. Gupta S, Shah R, Mohit M, Kumar A, Lewis M (2018) Semantic
parsing for task oriented dialog using hierarchical representations.
In: Proceedings of EMNLP, Brussels, Belgium, pp 2787–2792.
https://doi.org/10.18653/v1/D18-1300

20. Aghajanyan A, Maillard J, Shrivastava A, Diedrick K,
Haeger M, Li H, Mehdad Y, Stoyanov V, Kumar A,
Lewis M, Gupta S (2020) Conversational semantic pars-
ing. In: Proceedings of EMNLP, Online, pp 5026–5035.
https://doi.org/10.18653/v1/2020.emnlp-main.408

21. Bunt H, Petukhova V, Traum D, Alexandersson J (2017) Dialogue
act annotation with the ISO 24617-2 Standard, pp 109–135.
https://doi.org/10.1007/978-3-319-42816-1-6. Springer, Cham

22. Qu C, Yang L, Qiu M, Zhang Y, Chen C, Croft W, Iyyer
M (2019) Attentive history selection for conversational question
answering. In: Proceedings of CIKM, Beijing, China, pp 1391–
1400. https://doi.org/10.1145/3357384.3357905

23. Zaheer M, Guruganesh G, Dubey KA, Ainslie J, Alberti C,
Ontanon S, Pham P, Ravula A, Wang Q, Yang L, Ahmed A (2020)
Big bird: transformers for longer sequences. In: Proceedings of
NeurIPS, vol 33. Online, pp 17283–17297

24. Sutton C, McCallum A (2012) An introduction to conditional
random fields. Foundations and Trends in Machine Learning
4:267–373. https://doi.org/10.1561/2200000013

25. Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M,
Zhou Y, Li W, Liu PJ (2020) Exploring the limits of transfer
learning with a unified text-to-text transformer. J Mach Learn Res
21(140):1–67

26. Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, Cistac
P, Rault T, Louf R, Funtowicz M, Brew J (2020) Huggingface:
Transformers: State-of-the-art natural language processing. In:
Proceedings of EMNLP: system demonstrations, Online, pp 38–
45. https://doi.org/10.18653/v1/2020.emnlp-demos.6

https://aclanthology.org/E17-1042
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/2020.acl-main.635
https://doi.org/10.1162/tacla00266
https://doi.org/10.18653/v1/D18-1241
https://doi.org/10.18653/v1/2020.acl-main.652
https://doi.org/10.18653/v1/D18-1233
https://doi.org/10.18653/v1/2020.emnlp-main.652
https://doi.org/10.18653/v1/2021.emnlp-main.357
https://aclanthology.org/2020.aacl-main.82
https://aclanthology.org/2020.aacl-main.82
https://doi.org/10.1145/3121050.3121111
https://aclanthology.org/E17-1042
https://aclanthology.org/E17-1042
https://doi.org/10.18653/v1/W17-5526
https://doi.org/10.18653/v1/N18-3022
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/2020.emnlp-main.408
https://doi.org/10.1007/978-3-319-42816-1-6
https://doi.org/10.1145/3357384.3357905
https://doi.org/10.1561/2200000013
https://doi.org/10.18653/v1/2020.emnlp-demos.6

CookDial: a dataset for task-oriented dialogs...

27. Loshchilov I, Hutter F (2019) Decoupled weight decay regu-
larization. In: Proceedings of ICLR, Vancouver, BC, Canada.
https://openreview.net/forum?id=Bkg6RiCqY7

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Yiwei Jiang is a PhD student
pursuing a degree of Compu-
ter Science Engineering at the
IDLab, Department of Infor-
mation Technology of Ghent
University. He received bache-
lor and master degrees both in
Aerospace Engineering from
Beihang University, Beijing,
China in 2015 and 2018
respectively. His research inte-
rest includes conversational
AI, natural language under-
standing and semantic parsing.

Klim Zaporojets is a PhD stu-
dent at the Internet Technology
and Data Science Lab (IDLab)
at the Ghent University. He is
part of the Text-to-Knowledge
(T2K) Group. His supervisors
are Prof. Chris Develder, Prof.
Thomas Demeester, and Prof.
Véronique Hoste. He received
his master’s degree in com-
puter science from University
of Massachusetts, Amherst,
United States in 2015. His
main research interest lies in
Information Extraction (IE)
with a special focus in linking

the information in text to Knowledge Bases and leveraging the external
knowledge sources to improve the performance of IE tasks.

Johannes Deleu received the
Master of Science degree in
computer science engineering
from Ghent University, Bel-
gium, in 2005. He is currently
a Senior Research Engineer
within the IDLab, Department
of Information Technology,
Ghent University-imec. His
research concentrates on infor-
mation extraction, machine lear-
ning, and in particular deep
learning applied to natural lan-
guage processing (NLP). He
has participated in multiple
research projects, developing

automatic content enrichment systems for the media sector and more
recently the education sector.

Thomas Demeester is assis-
tant professor at IDLab, at
the Department of Infor-
mation Technology, Ghent
University-imec in Belgium.
After his master’s degree in
electrical engineering (2005),
he obtained his Ph.D. in com-
putational electromagnetics,
with a grant from the Research
Foundation, Flanders (FWO-
Vlaanderen) in 2009. His
research interests then shifted
to information retrieval (with a
research stay at the University
of Twente in The Netherlands,

2011), natural language processing (NLP) and machine learning (with
a stay at University College London in the UK, 2016), and more
recently to Neuro-Symbolic AI. He has been involved in a series of
national and international projects in the area of NLP, and co-authored
around one hundred peer-reviewed contributions in international
journals and conferences. He is a member of AAAI and ELLIS.

Chris Develder is associate
professor with the research
group IDLab in the Dept.
of Information Technology
(INTEC) at Ghent University-
imec, Ghent, Belgium. He
received the MSc degree in
computer science engineer-
ing and a PhD in electrical
engineering from Ghent Uni-
versity (Ghent, Belgium),
in Jul. 1999 and Dec. 2003
respectively (as a fellow of the
Research Foundation, FWO).
He has stayed as a research
visitor at UC Davis, CA, USA

(Jul.-Oct. 2007) and at Columbia University, NY, USA (Jan. 2013 -
Jun. 2015). He was and is involved in various national and European
research projects (e.g., FP7 Increase, FP7 C-DAX, H2020 CPN,
H2020 Bright, H2020 BIGG, H2020 RENergetic, H2020 BD4NRG).
Chris currently (co-)leads two research teams within IDLab, (i)
UGent-T2K on converting text to knowledge (i.e., NLP, mostly infor-
mation extraction using machine learning), and (ii) UGent-AI4E on
artificial intelligence for energy applications (e.g., smart grid). He has
co-authored over 200 refereed publications in international confer-
ences and journals. He is Senior Member of IEEE, Senior Member of
ACM, and Member of ACL.

https://openreview.net/forum?id=Bkg6RiCqY7

	CookDial: a dataset for task-oriented dialogs...
	Abstract
	Introduction
	Related work
	Document-Grounded Dialog Systems (DGDS)
	Conversational semantic representation

	CookDial dataset description
	Recipe collection
	Dialog Collection

	Annotation details
	Recipe annotation
	User question annotation
	Agent response annotation
	Dialog flow

	Task definitions
	Task I: User question understanding
	Task II: Agent action frame prediction
	Task III: Agent response generation

	Baseline models and empirical results
	User question understanding (Task I)
	Experimental results

	Agent action frame prediction (Task II)
	Experimental results

	Agent response generation (Task III)
	Experimental results
	Case study on generated response samples

	Conclusion and future work
	Appendix A A: Experiment settings
	 B: User intent and agent act annotations
	Appendix B B: User intent and agent act annotations
	References

