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Abstract—Graph neural networks (GNNs) have proven their
ability in modelling graph-structured data in diverse domains,
including natural language processing and computer vision. How-
ever, like other deep learning models, the lack of explainability
is becoming a major drawback for GNNs, especially in health-
related applications such as air pollution estimation, where a
model’s predictions might directly affect humans’ health and
habits. In this paper, we present a novel post-hoc explainability
framework for GNN-based models. More concretely, we propose
a novel topology-aware kernelised node selection method, which
we apply over the graph structural and air pollution information.
Thanks to the proposed model, we are able to effectively capture
the graph topology and, for a certain graph node, infer its most
relevant nodes. Additionally, we propose a novel topological node
embedding for each node, capturing in a vector-shape the graph
walks with respect to every other graph node. To prove the
effectiveness of our explanation method, we include commonly
employed evaluation metrics as well as fidelity, sparsity and
contrastivity, and adapt them to evaluate explainability on a
regression task. Extensive experiments on two real-world air pol-
lution data sets demonstrate and visually show the effectiveness
of the proposed method.

Index Terms—Explainable deep learning, graph convolutional
neural networks, geometric deep learning, air pollution.

I. INTRODUCTION

RECENT years have witnessed deep neural networks
(DNNs) achieving state-of-the-art performance in highly

complex problems within various application domains such as
natural language understanding and computational biology [1].
However, real-world data (e.g., social media data, IoT data) of-
ten exhibits a graph structure and can be represented by means
of graphs [2], [3]. While conventional DNNs neglect this
fact, graph neural networks (GNNs) have been proposed [4],
[5] to capture this graph structure. Thanks to their capability
in learning representations from graph-structured data, GNNs
have proven a powerful architecture for various tasks with ap-
plications in bioinformatics, computer vision, natural language
processing, recommendation systems and traffic forecasting, to
name a few [2], [6].
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Similarly, DNNs and GNNs have been successfully applied
to predict unknown pollutant concentrations. Air pollution esti-
mation based on deep learning aims at inferring or forecasting
unknown air pollution levels given historical data. Inference is
carried out by leveraging the input features and exploiting the
spatio-temporal correlation of the data [2], [7], [8], [9]. This is
mainly done by imposing constrains in the loss function and
by incorporating other data types such as meteorological [8],
[10] or traffic [9] information.

Nevertheless, one well-known limitation of DNNs and
GNNs is their inability to provide the rationale for their
decisions. This is due to the fact that DNNs comprise many
non-linear transformations, which combine input features and
parameters into activations. Eventually, a decision is made
based on the final outputs of the DNNs, leading to a difficulty
in tracing how particular input data drive a decision [11].
Hence, these models are usually considered black-box models.
In many critical applications (e.g., healthcare and autonomous
driving), however, explainability is a must in order to increase
confidence, trust, transparency, and safety. The understanding
of the inner workings of DNNs will allow experts and non-
experts to better make use of the models’ predictions. Whereas
explanation techniques have been developed for non-graph-
based deep models, the task remains challenging in graph-
based models since they must additionally consider the topol-
ogy of the underlying graphs. Most works have tackled the
problem by adapting existing explainability methods for DNNs
to GNNs, e.g., GNN-LRP [12] or Grad-CAM [13], or by
designing post-hoc techniques such as feature selection, e.g.,
GraphLIME [14] or GNNExplainer [15].

Existing works in explainable air pollution inference aim at
explaining the decisions taken by DNNs but not GNNs. These
studies mainly focus on computing the relevancy weights of in-
put features. For instance, [16], [17] perform feature selection
on the input, mostly by incorporating an additional layer to the
deep network. However, these approaches generally ignore the
inherent topology of the air quality data.

To tackle the aforementioned problem, in this study, we
propose a novel explainability method for air pollution in-
ference, referred to as NodeSel. NodeSel follows the white-
box explanation approach by deploying the interpretable HSIC
Lasso model to obtain the most relevant nodes for a certain
node’s prediction. We then apply the proposed method to
explain a GNN model—namely, the AVGAE model [2], [18]—
in the context of air pollution prediction. Specifically, given
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the estimated pollutant concentrations provided by the AVGAE
model and the graph topology, our method aims at identifying
the most influential graph nodes of a certain node. As a
result, the estimated concentration at the selected node can
be explained by looking at the concentrations and locations of
its most influential nodes. Although our method is evaluated
using air pollution data, our formulation is general and can be
applied to any graph-structured data set.

To summarise, the contributions of this study are three-fold:
• We propose a novel post-hoc explainability method for

GNN-based models on graph-structured data. The method
identifies the most influential nodes of a given node,
thereby explaining the node’s prediction.

• We define a novel topological node embedding that is
able to capture the global graph topology from a certain
node’s perspective. The topological node embeddings
are then used in the formulation of the Hilbert-Schmidt
Independence Criterion (HSIC) least absolute shrinkage
and selection operator (Lasso) model.

• We present comprehensive experiments on two real-world
air pollution data sets to evaluate the effectiveness of
our method in explaining the predicted pollutant con-
centrations. Experimental results show that the model is
able to maintain high-quality predictions while visually
explaining the underlying graph data structure.

The remainder of the paper is organised as follows. Sec-
tion II reviews related work on air pollution inference and
explainability. Section III introduces our notation, describes
the AVGAE inference model, and formulates our GNN expla-
nation problem. Section IV presents the proposed method in
detail and Section V describes our experimentation. Finally,
Section VI draws the conclusion and discusses future work.

II. RELATED WORK

Our work lies in the intersection of air pollution inference
with GNNs and post-hoc explanations. In this section, we
review these two topics and discuss the differences of our
method with respect to existing ones. Section II-A introduces
the problem of air pollution inference, focusing on GNN
models. Section II-B elaborates on explainable DNN and GNN
models and Section II-C reviews the prior art in explainable
air pollution inference models.

A. Air Pollution Inference

Air pollution prediction aims at inferring or forecasting
unknown air pollution levels, given historical data or related
urban data such as temperature, wind flow, traffic, etc. Graph-
and non-graph-based deep learning models have been applied
to air quality estimation [19]. Apart from these data-driven
approaches [7], [8], [19], [20], [21], a number of methods
following a deterministic [22], [23] or statistical [23], [24] ap-
proach have been proposed. Deterministic approaches leverage
fluid motion equations to model particles’ shift in time. These
models are computationally expensive and lack efficiency
since they are based on numerical approximations. More-
over, they require knowledge of meteorological data or the
distribution of pollution sources for parameter identification.

Similarly, statistical models often make a linearity assumption
which hinders their forecasting performance [20]. Recent
advances in deep learning have led to DNN and GNN models
surpassing deterministic and statistical methods in air pollution
estimation [19]. Generally, estimating unmeasured pollutant
concentrations with DNNs is carried out by exploiting the
spatio-temporal correlations of the data [2], [7], [8], [9]. This
is achieved by imposing constrains on the loss function or by
incorporating other data types such as meteorological [8], [10]
or traffic [9] information.

B. Explainability Methods for Deep Models

Recent studies have addressed the explainability short-
coming of deep learning models using different approaches.
One approach investigates to which extent an input feature
is responsible for a decision, either by studying the back-
propagation of the gradients of the target prediction with
respect to input features [25], [26], [27] or by perturbing the
input samples [28], [29], [30]. Other methods seek to explain
DNNs with white-box machine learning models (a.k.a., model
distillation) [31], [32]. These white-box models are designed
to be interpretable and trained to mimic the behaviour of the
DNNs that are to be explained. A third approach attempts to
provide the explanation as part of the model’s output. Methods
following this approach either use attention mechanisms [33],
[34] or employ an additional explanation task to be trained
jointly with the original task [35], [36].

While several explanation techniques have been developed
for non-graph-based deep models, explainability remains a
challenging task for graph-based models since these mod-
els additionally consider the topology of underlying graphs.
Different methods have attempted to address this by taking
into account information not only from the feature space but
also from the graph structure, such as node [15], [37] and
edge [12], [38] importance. A popular approach for explaining
GNNs focuses on adapting existing explainability methods
for DNNs to GNNs. To identify the importance of input
features, these models look at the gradients or hidden feature
maps. For instance, in the Guided Backpropagation (GB) [39]
and Sensitivity Analysis (SA) [40] methods, the gradients of
a class-specific prediction score (i.e., the score before the
softmax function) versus the input features when freezing the
learned model parameters are regarded as input importance
scores. Despite their simplicity and efficiency, these methods
suffer from the saturation problem; namely, the model output
hardly changes in response to input changes in the saturated
region [27]. Alternatively, an importance heat-map of the input
features is generated in CAM [41] by mapping the final node
embeddings to the input feature space. Grad-CAM [41] ex-
tends CAM by using gradients as weights in the linear combi-
nation of hidden feature maps to generate the importance heat-
map. These methods are simple and effective; however, their
assumption that node embeddings can reveal the importance
of input features is heuristic [42]. Another group of expla-
nation methods focuses on distributing final prediction scores
to the input space; these are referred to as decomposition-
based methods. Representative decomposition-based methods
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are Layer-wise Relevance Propagation (LRP) [43], Excitation-
Backpropagation (EB) [41], and GNN-LRP [12]. Other works
follow a perturbation-based approach [15], [38], which per-
forms variations in the input layer to measure their effects
on the output. Intuitively, if most of the relevant features are
retained, the final prediction should only change marginally.
These perturbations are often implemented via learnable mask
matrices. For instance, GNNExplainer [15] learns a binary
mask over the node features or graph edges and PGExplainer
[38] learns an approximate discrete mask only over edges.
Different from these approaches, there exist works that in-
corporate an interpretable model into a pre-existing GNN;
the interpretable model is then used to explain the GNN
model. This approach is similar to the white-box explanation
approach mentioned earlier (see the previous paragraph). For
example, GraphLIME [14] selects the most relevant features
of the nodes of a graph by employing a nonlinear HSIC
Lasso model. The method then uses the weights generated
by the HSIC Lasso model for different features to select
important input features, which are regarded as the explana-
tion for the considered GNN. Similarly, our NodeSel model
follows the white-box explanation approach by employing
the HSIC Lasso model to explain an arbitrary GNN. This
choice clearly differentiates our method from the gradient-
based, feature-based, decomposition-based and perturbation-
based approaches. Our method is similar to the GraphLIME
model [14] in that both methods are based on HSIC Lasso.
However, unlike GraphLIME, which provides the explanation
on the feature level, our formulation focuses on explaining
the interaction between nodes of the underlying graph, which
is crucial in GNNs. In this regard, our work attempts to
aggregate and interpret the joint effect of node interactions.
Furthermore, GraphLIME selects the local vicinity by n-hop
jumps, thereby foregoing important information from higher-
order nodes. We, on the other hand, argue that collecting
the subset of relevant nodes uniquely from the nearest n-
hop vicinity might not provide sufficient support to explain a
node’s prediction. Hence, we mitigate this issue by considering
a better choice in the vicinity selection process by proposing
a novel topological node embedding.

C. Explainable Air Pollution Inference

In air pollution estimation using DNNs, limited work has
addressed the problem of model explainability. While DNNs,
including GNNs, are able to effectively address the problem
of location-dependent prediction [2], [18], [44], [45], these
models generally do not provide the rationale behind their
decisions. Some authors [16], [46] have developed feature
selection techniques, such as Lasso [47] and Group Lasso
[48]. Other research proposed additional layers to the deep
model for feature selection. For instance, Qi et al. [16] perform
feature selection on the input layer by incorporating a sparsity
Kullback-Leibler (KL) divergence constraint on an additional
network layer. Similarly, Cheng et al. [17] attempt to learn
the feature weights from collected data at monitoring stations
by adding an attention-based pooling layer. Such approaches
could be considered explainable in that they give a relevancy

weighting of the input features. However, they generally ignore
the inherent topology of the air quality data. It is noteworthy
that the air quality data is commonly collected using a network
of monitoring stations or sensors, hence this data type is
location-dependent and has an underlying graph structure. As
a result, the interaction between stations or sensors is essential
in the modelling of air quality data.

III. PROBLEM FORMULATION

In this section, we formulate the graph neural network
(GNN) post-hoc explanation task. We first introduce our nota-
tion (Section III-A) and then briefly present our recent GNN
model for air quality inference [2], [18] (Section III-B), which
serves as the model to exemplify our post-hoc explanation
method (Section III-C). It is worth noting that the proposed
explanation method is not tailored to our prior GNN model
but instead, it can be used to explain the impact of the graph
structure in the decision of different GNN models.

A. Notation

In this work, we consider row-vectors and denote them by
boldface lowercase letters. Matrices are denoted by boldface
capital letters. Subscripts refer to elements of a certain vector
or matrix; for instance, xi is the i-th element of the vector x
and F i,j is the element in the i-th row and j-th column of
the matrix F . Superscripts in specific vectors (e.g., β(v)) or
matrices (e.g., F (v)) refer to that these computations have been
performed with respect to a certain graph node v. The overline
notation over a matrix or vector represents the normalised
centered version of the original. Lastly, constants are denoted
by small Greek letters in regular font and sets of elements are
denoted by capital calligraphic fonts (e.g., V).

B. The Graph Neural Network Model

The Variational Graph Autoencoder (AVGAE), presented
in [2], [18], aims at inferring missing air quality data from
a set of known measurements. It employs a graph-based
encoder-decoder approach that leverages the spatio-temporal
correlation in air quality data. Let us consider a data set of
measurements of pollutant concentrations in a specific city.
Each measurement is expressed as {m, s, t}, where m denotes
the pollutant concentration, reported in terms of micrograms
per cubic meter (µg/m3) or parts per billion (ppb), s indi-
cates the location (in terms of latitude and longitude) where
the measurement was collected and t is the corresponding
time instant. We aggregate the measurements at discrete time
instants and locations; hence, the considered time interval of
interest is divided into uniform slots of duration τ , obtaining
a set of T timeslots {t1, . . . , tT }. Similarly, the road network
of the considered city is divided into a set of N points
{p1, . . . ,pN}. The spatial aggregation is adapted to the road
network and the considered locations in it, meaning that we
consider a non-uniform aggregation across space. Formally, for
a certain time instant tj , the measurements collected within a
predefined distance r from pi are averaged. Hence, the set
of the considered locations {p1, . . . ,pN} and the timeslot



4

duration τ determine the spatial and temporal resolution of
the model, respectively. The aggregation process results in a
matrix of measurements M ∈ RN×T , where N and T are the
number of considered locations and time instants. Accordingly,
an entry M i,j with i = 1, ..., N, j = 1, . . . , T , corresponds to
the (averaged) measurement at location pi and timeslot tj .

The AVGAE model [2], [18] estimates the missing entries
in M by solving a matrix completion on graphs problem.
Each row of matrix M is associated with a location; hence,
entries of M corresponding to nearby locations should have
similar values within the same time instant. The AVGAE
model considers the spatial correlation between matrix entries
by constructing an undirected weighted graph based on the
road network topology. The graph is built by computing the
geodesic distances between the N discretised locations of the
road network. Two graph nodes (i.e., locations) are connected
if their distance is smaller than a predefined threshold δ or if
they belong to the same street segment. The AVGAE model
follows an encoder-decoder architecture over the constructed
graph. The model inputs the highly-incomplete matrix M
concatenated with the matrix S of geo-coordinates of the street
locations. The encoder step is built of graph convolutional
layers and outputs two matrices each containing the mean
and standard deviation values of a multivariate Gaussian
distribution. These matrices are then forwarded to the decoder
step, which also consists of graph convolutional layers. In
this step, the model approximates the known entries in the
matrix M and infers the missing ones to finally recover the
reconstructed matrix of measurements M̃ .

We briefly discuss the architecture of the AVGAE model [2],
[18] in what follows. To infer the unknown pollutant concen-
trations in M and generate M̃ , the AVGAE model first learns
a latent representation of the input data, which is denoted as Z.
In particular, the AVGAE assumes that p(Z) = N (0, I) and
q(Z|M ,S,A) = N (µ,η); where M is the matrix of known
pollutant concentrations, S is the matrix of geo-coordinates of
nodes (i.e., locations) and A denotes the weighted adjacency
matrix of the considered graph. Simultaneously, the AVGAE
model learns the parameters µ and η and the generative
process to produce M̃ . The former two parameters are learnt
through two separate neural network branches, that is, µ =
fµ(M ,S,A,Θ1) and η = gη(M ,S,A,Θ2), parameterised
by Θ1 and Θ2, respectively. Concretely, to incorporate the
graph knowledge into the model, functions fµ and gη are
designed to be stacked graph convolutional layers (GCNs).
The final generative process is described by another stack of
GCN layers parameterised by Φ. The AVGAE model [2], [18]
is described by the following set of operations:

µ = GCNµ(M ,S,A,Θ1) (1)
η = GCNη(M ,S,A,Θ2) (2)
Z ∼ N (µ,η) (3)

M̃ = GCNz(Z,A,Φ) (4)

In the previous equations, the functions GCNµ, GCNη and
GCNz are composed by stacking GCN layers, Θ1,Θ2 and
Φ are parameters that are learned from the data, N (µ,η)
represents a Gaussian distribution with mean and standard

deviation. The matrix of geo-coordinates of nodes locations
S is horizontally concatenated with M . The AVGAE model
utilises two separate branches for training µ and η, thereby
allowing to select proper activation functions for µ and η.

C. Explainability Problem Formulation

In this work, we focus on explaining air quality inference at
the street level of urban areas. Our key insight is that the graph
structure, as seen by a certain node v, partially determines the
information the GNN uses to generate the prediction of node v
at a certain time instant. In particular, the GNN’s aggregation
mechanism mathematically defines how to compute the node
embedding and directly influences node v’s prediction.

Let G = {V, E ,X} denote the graph structure, where G
is an undirected and weighted graph, V is the set of graph
nodes, E is the set of graph edges, and X is the associated
topology matrix (computed in Section IV-B). Since each graph
node represents a street location, we have |V| = N . Each
node in the graph has an associated topological node embed-
ding x(i) ∈ RD with D the predefined vector dimensionality,
which mainly captures the observations of the graph structure
as seen from the i-th node’s perspective. Hence, all the
topological node embeddings x(i) of nodes in G are gathered
in a N × D matrix, referred to as the associated topology
matrix X ∈ RN×D. Let v ∈ V and f : RN×T → RN×T

be the node and the GNN model to be explained, respectively.
Moreover, let M̃ = f(M) denote the output of this regression
task, that is, the predicted pollutant concentrations for all the
possible geo-locations p and timeslots t. Finally, let ŷ ∈ RN

be vector of predicted pollutant concentrations at a pre-defined
time instant tj (i.e., column j of the reconstructed matrix
of measurements M̃ ) and ŷ(v) ≡ ŷv ∈ R to denote the
v-th element of vector ŷ, namely, the predicted pollutant
concentration of node v at the selected time instant tj .

We aim at giving an explanation of node v’s prediction ŷ(v)

by finding a subgraph of the graph structure that inherently
contains the knowledge required for node v’s prediction.
Formally, given a GNN model f and its predictions f(M), the
time tj and a node v whose prediction needs to be explained,
the whole graph structure mapped to a topology matrix X ,
the predefined size of relevant nodes K and our explanation
model Ψ, the explanation for node v’s prediction is obtained
as follows:

(K(v),β(v)) = argmin
Ψ∈Γ

Ψ(f(M),X, (v, tj),K) , (5)

where K(v) is the subset of most relevant nodes and their
respective relevancy weight with respect to node v is captured
in β(v). In effect, we employ γ(v) = (K(v),β(v)) as the
formal explanation of node v, generated based on the optimal
explanation model Ψ ∈ Γ from all classes of explanation
models Γ.

IV. THE PROPOSED METHOD

In this section, we describe the proposed NodeSel post-
hoc explanation model, which is applicable to any trained
GNN model (Section IV-A). NodeSel can exploit the topology
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Fig. 1. A block diagram explaining the different elements of our method. Pre-
trained blocks are represented in dark green while light green is employed
for the blocks to be optimised during training. White blocks show elements
of the model with no training required.

of the graph structure and node predictions, and infer the
most relevant nodes (i.e., locations) for a particular node’s
prediction. Additionally, we propose a novel node embed-
ding, which we refer to as the topological-relevancy node
embedding (Section IV-B). With the proposed node embedding
definition, we are able to capture the whole graph structure
with respect to a certain node in a meaningful manner.

A. The Proposed GNN Explanation Method

We solve the node regression task by deploying any GNN-
based model, in our case, the AVGAE model [2], [18]. We
have first constructed the undirected weighted graph based
on the road network topology. Then, the matrix of node
embeddings X is built (see Section IV-B for a detailed
description on this point). After that, the proposed NodeSel
method determines per node the subset of nodes that have
the most influence on its prediction (a.k.a., predicted pollutant
concentration per location). We refer to the subset of nodes
for a certain node v as K(v). We assess the explanations of
NodeSel that is, K(v), ∀v, by contrasting the quality of the
predictions made by a GNN model—in this case, the AVGAE
model—when we train and test the model using either all
graph nodes (V) or the set of most influential ones (K). We
refer to Fig. 1 for a visual description of the different blocks
of the proposed NodeSel architecture.

In essence, given a certain node and time instant for
which we seek an explanation for the prediction, we aim
at classifying every other node in the graph as relevant or
not. In other words, we expect to select a subset K of graph
nodes (corresponding to locations) of size |K| = K, whose
information will suffice to correctly predict a node’s output.
As such, the subset K ⊂ V will contain the most relevant
nodes for a certain node’s prediction. We opt for a model
that can capture non-linear decision boundaries. Motivated
by this, we build our model upon the kernelised non-linear
supervised selection method, HSIC Lasso [49], which aims at
finding a non-redundant vector with a strong non-linear depen-
dency with the output prediction. Lasso selection techniques

are commonly used to eliminate redundant features of the
node embeddings. Our approach, on the other hand, presents
an HSIC Lasso-like optimisation function which efficiently
performs a topology-aware selection over the existing graph
nodes. Moreover, we perform the topology-aware selection
with respect to the specific node we wish to explain. The
architecture of the proposed NodeSel design is depicted in
Fig. 2. Hence, given a certain node v to be explained, the
proposed model minimises the following loss function with
respect to β(v) = [β1 . . .βN ] ∈ RN , namely, the topological-
relevancy row-vector of node v:

min
β(v)∈RN

1

2
||L− F · diag(β(v))||2F

+
1

2
||L(v) − F

(v) · diag(β(v))||2F

+ ρ||β(v)||1
s.t. β1, . . . ,βN ≥ 0, (6)

where N is the number of nodes in the graph, || · ||F is the
Frobenius norm, || · ||1 is the ℓ1-norm to enforce sparsity and
ρ ≥ 0 is the regularisation parameter. We define diag(β(v)) as
the diagonal matrix with the elements of β(v) along its main
diagonal. To simplify the notation, in what follows, we will
refer to β(v) simply as β. F and L are the centered normalised
Gram matrices for the input and predicted output, respectively.
With v the selected node to be explained, F

(v)
is the centered

normalised Gram matrix which captures the dependency of
every graph node with respect to node v. Equivalently, L

(v)

is the centered normalised Gram matrix which captures the
dependency between the predicted output of every graph node
with respect to v’s predicted output. We employ Gaussian
kernels to compute the centered normalised Gram matrices as
follows. First, we compute the kernelised matrices and vector
as:

F i,j = F (x(i),x(j)) = exp

(
−||x(i) − x(j)||22

2σ2
x

)
, (7)

Li,j = L(ŷi, ŷj) = exp

(
−
(ŷi − ŷj)

2

2σ2
y

)
, (8)

F
(v)
i,j = F (v)(x(i),x(j)) = exp

(
−
(x

(v)
i − x

(v)
j )2

2σ2
xv

)
, (9)

l
(v)
j = l(v)(ŷv, ŷj) = exp

(
−
(ŷv − ŷj)

2

2σ2
yv

)
, (10)

where F i,j ,Li,j and F
(v)
i,j are the elements in the i-th row

and j-th column of matrices F ,L and F (v) ∈ RN×N ,
respectively, l(v)j is the j-th element of the vector l(v) ∈ RN ,
and σx, σy, σxv and σyv are Gaussian kernel widths which add
a normalisation factor between input and output features.

Then, we obtain the normalised centered Gram versions of
matrices L,F and F (v), namely, L,F and F

(v) ∈ RN×N ,
by applying the following normalisation operations:

L =
HLH

||HLH||F
, (11)
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Fig. 2. Proposed model architecture (NodeSel) to explain the prediction based on the graph topology of a network. The input of the model consists of
the graph and the predicted air pollutant concentrations. In addition, the model is given the node to be explained (pointed out by a red arrow in the input
rectangle) and the kernel operators to be employed. The model is able to compute the topological node embeddings x(i) and optimise with respect to the
topological-relevancy vector β. The model outputs a relevancy score for every node of the graph with respect to the node to be explained, which is collected
from the topological-relevancy vector β. In the figure, we show this with line widths representing the strength of connections from node 1 to the other nodes.

F =
HFH

||HFH||F
, (12)

F
(v)

=
HF (v)H

||HF (v)H||F
, (13)

where H = IN − 1
N 1N1T

N is the centering matrix, with
IN and 1N the identity matrix and the all-ones vector, re-
spectively. By left and right multiplication with the symmetric
and idempotent matrix H , the input matrix becomes a doubly
centered matrix whose row and column means are equal to
zero.

Note that in (10), the vector l(v) ∈ RN . Hence, to compute
the centered normalised matrix we perform the following
diagonalisation plus normalisation operation:

L
(v)

=
H diag(l(v))H

||H diag(l(v))H||F
, (14)

where L
(v) ∈ RN×N becomes a matrix.

In eqs. (7), (8), (9), and (10), the index v ∈ V denotes
the graph node with respect to which the optimisation is
performed, i.e., the node to be explained, and indices i, j ∈ V
denote graph nodes. ŷi, ŷj and ŷv ∈ R respectively cor-
respond to the i-th, j-th and v-th elements (i.e., i-th, j-
th and v-th graph nodes) of the vector ŷ of the predicted
pollutant concentrations. Finally, the vectors x(i),x(j) ∈ RN

correspond to the topological node embeddings of nodes

i and j, respectively. Additionally, x
(v)
i ,x

(v)
j respectively

correspond to the i-th and j-th elements of the topological
node embedding x(v). Essentially, a certain topological node
embedding x(i) is a vector which contains the structural
dependency between node i and every other node in the graph.
Hence, x(i)

l is the l-th element of vector x(i) and contains the
graph dependency score between nodes i and l. The proposed
topology embedding is based on the shortest graph path. In our
case, the employed graph is undirected; hence, the property
x
(i)
l ≡ x

(l)
i is valid. For now, we assume that the topological

node embeddings x(i) and x(j) (∀i, j ∈ V) are given; we
will later discuss how to determine them (see Section IV-B).
Finally, the σ-parameters in eqs. (7), (8), (9), and (10) are
required to have normalised Gaussian kernels. In that case, the
integral

∫∞
−∞ exp

(
− x2

2σ2

)
dx =

√
2πσ must be true. Hence,

the parameters σy , σx, σyv and σxv are set so that the area
under the curve is always the unit. This allows the elements
of matrices L,F ,L

(v)
and F

(v)
to be comparable in value.

The first term in the objective function in (6) can be
understood as a minimisation between the predicted output
and input data. The second term can be interpreted as the
minimisation between the predicted output and input data with
respect to the node v to be explained. To be more specific,
to optimise with respect to node v in the second term of
(6), we only employ topological node embeddings and output
predictions with respect to that certain node v.
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Fig. 3. A directed weighted graph with five nodes and five edges (solid lines)
with directed edges indicated by dashed lines. Vector ŷ shows the predicted
air pollution concentrations based on the output of the AVGAE at a certain
time instant. The synthetic graph is built based on [2], [18], meaning that
nodes represent locations in the road network and edges are built based on
the nodes geodesic distances and the road network topology of the considered
city. As an example, below the graph one can observe a toy-example output
we might obtain after computing the topological-relevancy vector β(1) with
respect to node 1 and before applying the normalisation factor. Note how
node 6 is not directly connected to node 1, for which we wish to obtain an
explanation. However, node 6 may obtain a high topological relevancy score
in β(1), due to their structural similitude in the network and predicted output
of the AVGAE. Concretely, we observe that nodes 1 and 6 share the following
structural characteristics (i.e., structural similitude). First, only nodes 1 and 6
have high pollutant concentrations (and these are similar). Additionally, only
these certain nodes (node 1 and 6) are connected to two nodes which are
again connected amongst them: Node 1 connects to nodes 3 and 4 (which are
connected amongst them) and node 6 is connected to nodes 2 and 7 (which
are interconnected). Finally, observe that the pair of nodes to which nodes 1
and 6 are connected (nodes 3, 4 and nodes 2, 7 respectively) have similar pairs
of pollutant concentrations: one of the neighbours has medium-high pollutant
concentrations (nodes 4 and 7) and the other has low pollutant concentration
(nodes 2 and 3).

The non-negative least angle regression [50] is used to
optimise the loss function in (6), obtaining the topological-
relevancy vector β for a certain node v. In the output block
of Fig. 2, the topological-relevancy scores are illustrated by
the thickness of the edges connecting the graph nodes. We
introduce the variable K = |K| ≤ N , which determines the
predefined number of most relevant nodes to be selected for a
certain node’s prediction. Hence, in the explanation process of
node v, the indices of the K-th highest scores of its β compose
the subset of K(v) most relevant nodes (i.e., locations). To
simplify the notation, K(v) will be referred simply as K. These
nodes are then employed as explanations of the selected node
v’s prediction. Once the K set of top K nodes has been
computed for this node, the GNN-based model, that is, the
AVGAE model, is re-trained given the graph of the K set
of nodes and their related data, that is, the subset of known
concentrations and point locations.

Finally, we want to capture the K subset by leveraging
similitude metrics amongst the nodes. In the model, we include

knowledge coming from geodesic distance and output pre-
diction similarity—in our application, pollutant concentration
levels—amongst the nodes. See Fig. 3 for a possible output
of this computation which leverages the geodesic distance and
output prediction similarity amongst two nodes (1 and 6) to
predict a high relevancy score for node 6 with respect to
node 1. Note that the proposed explanation model is applied
on air pollution data; however, it can be extended to other
applications where the graph topology and node relevancy can
be of interest.

B. The Proposed Topological Node Embedding Definition

We now describe how to compute the topological node
embeddings, which capture the graph structure seen from a
certain node perspective. In essence, the definition of x(v) aims
at capturing the inherent characteristics of the whole graph
structure from node v’s perspective. To this end, we introduce
a novel definition to measure the influence a node has on the
network with respect to node v’s point of view. Among the
possible multiple paths between two nodes, in this definition
we only consider the shortest path. See Fig. 4 for an illustration
of how to compute the topological node embeddings of an
specific graph example.

The initial topological node embedding of node v can be
written as x(v) ∈ RD, with D the vector dimensionality. Note
that we compute the topological node embedding in such a
way that the vector dimensionality equals the number of graph
nodes N , i.e., D = N . An element x

(v)
i of the topological

node embedding is obtained following the proposed topology-
aware score, which is formulated leveraging notions from
electricity flows through parallel and serial resistors. By defini-
tion, the element x(v)

i corresponds to the relationship between
nodes v and i and, since the topological node embedding
must be understandable, the score of this relation must be
meaningful. If the topological node embedding is made unitary
after computing the score of its elements, the smaller the
score x

(v)
i relating nodes i and v, the weaker their relationship

and vice-versa. The importance score between two nodes will
depend, among other variables, on the number of jumps in
the graph between them. Subsequently, the topological node
embedding must contain this knowledge. Before introducing
the computation rules for the topological node embedding,
the weight scores wi,j of the graph edges are normalised, i.e.,
Ωi,j =

wi,j

W , applying a normalisation factor W calculated as
follows W =

∑
∀(i,j) wi,j .

The rules for the computation of the topological node
embedding x(v) of a certain node v with respect to any other
graph node i are defined as follows:

• Rule (0): x(v)
i will be equal to 1 if and only if i = v and

otherwise x
(v)
i ∈ [0, 1).

• Rule (1): If only one jump is needed to connect nodes v
and i, that is, if v and i are neighbouring nodes:

x
(v)
i = Ωv,i

where Ωv,i is the normalised weight of the edge between
nodes i and j in the graph.
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Fig. 4. A directed weighted graph with five nodes and five edges (solid lines)
with directed edges indicated by dashed lines. To exemplify the computation
process, we show the topological node embedding of node (2). Equation (a)
gives the computation of the initial normalisation factor, where wi,j represents
each of the direct edge weights. Equation (b) gives the computation of the
normalised weight scores in the graph. (c) X is the matrix of topological
node embeddings x(i), used as input to the explanation model to compute
the vector β.

• Rule (2): If two jumps are needed to connect nodes v and
i, that is, if the relevant path between v and i is though
node k:

x
(v)
i =

1
1

Ωv,k
+ 1

Ωk,i

• Rule (3): If three jumps are needed to connect nodes v
and i, going though nodes k and l:

x
(v)
i =

1
1

Ωv,k
+ 1

Ωk,l
+ 1

Ωl,i

and so on.
Note that Rule (3) can be employed for any path of arbitrary
length. For instance, let us solve for a path of length 4: v →
k → l → i as follows. Given that nodes v and k are adjacent
neighbours, x(v)

i is calculated as

x
(v)
i =

1
1

Ωv,k
+ 1

x
(k)
i

. (15)

From Rule (2) we can conclude that Ωv,k is the weight of the
link connecting nodes v and k. On the contrary, the connection
k → i is a two-jump path though l that can be calculated as:

x
(k)
i =

1
1

Ωk,l
+ 1

Ωl,i

(16)

Substituting (16) into (15) we recover Rule (3). As such, we
can generalise the computation of the topology-aware score for
every pair of two nodes, independently of the walk distance
amongst them.

Finally, consider two pairs of nodes (a, b) and (c, d) where
the paths connecting a to b and c to d have an equal sum
of edge scores amongst them

∑
wa,b =

∑
wc,d. Consider

now that less jumps are required for path connecting a to b
than for connecting c to d. Note that, even if the sum of edge
scores between the nodes are equal, the more jumps needed,
the lower the topological node embedding score amongst them

will be. This is a desired behaviour because even if we want
every node to be considered as a potential relevant node for v,
nodes that are closer still have more probability of becoming
an influential node. In the case of multiple shortest paths of
the same length and jumps, the proposed topological node
embedding definition has been designed so that it respects
the dynamics of air pollution, namely, the physical equations
of air flow. In the context of air pollution, the existence of
multiple shortest paths does not have any physical meaning
since pollution will flow in a defined direction, which is
determined by external factors (i.e., wind, traffic, differences
of pressure). To be more specific, as long as the selected path
is the shortest in length, there is no difference which of them
is followed for the explanation model.

V. EXPERIMENTS

In this section, we perform an evaluation of both our
explanation model and its explanations. In other words, we
aim at providing a study on the quality of predictions and
explanations. In our experiments, we consider the task of
providing explanations of the output predictions given by the
AVGAE model [2], [18] and alternative GNN models [4] [51].
We leverage the graph structure of the data and propose
to infer, for a certain node, the most relevant nodes (i.e.,
locations) of the network. In addition, we study how the model
performs under various conditions and evaluation metrics
when the most and least important nodes are masked out. In
Section V-A, we provide a summary of the characteristics of
the considered data sets. Section V-B describes the evaluation
metrics and the experimental procedure. Section V-C describes
the hyper-parameter selection of the model. Section V-D refers
to the experimental results based on the previously explained
evaluation metrics. Finally, Section V-E includes a visual study
of the model’s explainability.

A. Data Sets

The results in this paper are obtained for two air quality
data sets containing measurements of two air pollutants: NO2,
measured in parts per billion (ppb), and PM10, measured in
µg/m3. Specifically, we employ the imec air pollution data
set1, which includes NO2 measurements collected in the city
of Antwerp, Belgium during April 2019 and the Snuffelfiets
data set2, which contains PM10 measurements of the city
of Utrecht, Netherlands during June 2020. In both scenarios,
we employ the settings reported in [2], [18] for the AVGAE
model, namely, a time period equal to 30 days, a time span
of temporal resolution of τ = 1 h, and a distance threshold
δ = 100 m for the aggregation step, which results in the
following two data sets: 1) an Antwerp NO2 data set with
N = 4954 and T = 720; and 2) an Utrecht PM10 data set
with N = 8292 and T = 720. A statistical description of
the data sets together with some relevant statistics concerning
AVGAE original inference results is given in Table I. It is
worth noting the scarcity of data: observed entries ranges from

1collected from https://obelisk.ilabt.imec.be/api/v2/docs/
2collected from https://snuffelfiets.nl/
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0.355% in the Antwerp data set to 0.439% in the Utrecht data
set, showing that mobile data collection still results in a lot of
unmeasured locations, which highlights the need for air quality
inference.

B. Experimental Setup

We select three pre-trained GNN-based models to solve
the regression task of estimating air pollution concentra-
tions. We test our explanation method with the AVGAE [2],
[18] model, the recurrent graph convolutional neural network
(RGCNN) [51] and the graph neural network (ChebyNet) [4].
To the best of our knowledge, AVGAE [2], [18] is the best
performing GNN-based model for air quality estimation that
does not leverage additional data other than the location
of measurements. We also consider the RGCNN [51] and
ChebyNet [4] models to demonstrate that our explanation
method is independent of the underlying graph-based inference
model. We test our explanation model in the two data sets
containing air quality measurements described in Section V-A.
The data, which contains measurements of air pollutant con-
centrations associated with time and geographical coordinates,
is mapped to a weighted and undirected graph, where nodes
correspond to specific locations in street segments of the city
and edges depict geodesic similarity between nodes. Hence, as
explained in Section III-B, an edge will be created amongst
two nodes if the distance between them is smaller than
δ = 100 m or they belong to the same road segment. The
weight of a connection is the inverse of the geodesic distance
in meters computed by the Haversine formula [52].

We firstly compute the topological node embeddings as
presented in Section IV-B. Then, we run the GNN model to
obtain the predicted pollutant concentrations under different
conditions. First, we obtain the predictions made by the GNN
model before applying the NodeSel explanation method, that
is, when all other nodes are considered when computing a
node’s value. Additionally, we obtain the predicted concentra-
tions after applying the NodeSel method—in which case only
the top K relevant nodes are considered when computing a
node’s prediction. Specifically, to train and test the AVGAE
on each dataset, we randomly split the known data in train
(90%) and test (10%) sets. We then train and test the AVGAE
model (or the other GNN-based models) with the V set of
graph nodes. For each node of the train and test set (i.e., the
nodes to be explained), we apply the NodeSel model and find
the set of its most relevant nodes K. To be able to evaluate
the quality of the NodeSel model in selecting the subset K,
we again train and test the AVGAE model using as input the
data of subset K and compare the results with the AVGAE
predictions when using V .

We select the root-mean-square error (RMSE) and mean
absolute error (MAE) to evaluate the prediction error made
by the GNN model in the estimation of the air pollution
concentrations. These results are reported in the first two
columns of Tables II and III for the three GNN models.
The rows with italic fonts in these tables show the RMSE
and MAE scores of the GNN model when every other node
in the network is considered for the prediction of a certain

node (i.e., K = N ). The remaining rows of RMSE and
MAE are computed as follows. For each node in the net-
work, the GNN model predicts the pollutant concentration
of v when only the set of most relevant nodes K of v is

considered. Then, we compute RMSE =

√∑N
i=1(y

(i)−ŷ(i))2

N

and MAE =
∑N

i=1 |y(i)−ŷ(i)|
N , with y(i) and ŷ(i) the true and

predicted pollutant concentrations of node i. As such, the
RMSE and MAE metrics, calculated on the GNN model’s
prediction before and after applying the NodeSel method, can
be used to indirectly assess the quality of the explanation.

In addition, we compute fidelity, contrastivity and sparsity
to measure explainability in GNN-based regression tasks.
Fidelity, contrastivity and sparsity were initially defined in [41]
to assess explanations for graph-based deep learning models
applied on the task of classification. In our work, however, the
GNN model is solving a regression task; therefore, in order to
apply these metrics, the predicted air pollution concentrations
are turned into binary scores. To do so, we threshold the
estimated air pollution values with the allowed guideline
values defined by WHO [53]. Specifically, we use the upper
limit of 42 µg/m3 for NO2 and 10 ppb for PM10.

Fidelity captures the intuition that masking out the nodes
highlighted by the explanation model should decrease the
quality of the predictions. Concretely, fidelity is defined as
the difference in accuracy when masking out its K set of K
most relevant nodes. Consider V as the set of graph nodes
and let S = V \ K be the set of less relevant nodes for a
certain node v in the network that we wish to explain. The
fidelity score of v is calculated as accV − accS , where accV
and accS are the GNN model accuracy when the sets V or S
are used in the prediction. The accuracy accV (respectively,
accS ) is computed as the sum of the accuracy scores of
the nodes in V (respectively, S) divided by the number of
nodes in V (respectively, S). Note that, in order to follow the
definition in [41], each graph node’s values is classified as
polluted or unpolluted based on the WHO threshold described
above; therefore, its value becomes binary. The accuracy of
a specific node v is then equal to 1 if both their true and
predicted pollutant concentrations are classified as polluted or
unpolluted, and 0 otherwise. Furthermore, to make differences
more pronounced in our results, we express the accuracy score
of a set in percentage, i.e., it belongs in the range [0, 100]. As
a result, fidelity scores range between [−100, 100]; we shift
the scores to the positive range of [0, 200].

In classification problems, contrastivity was introduced
to express the fact that highlighted class-specific features
should differ between classes. We adapt the definition to
our topology-aware explainability task by suggesting that two
nodes v, u ∈ V with different predicted pollutant concen-
trations should have different sets of top K relevant nodes,
which we refer to as K(v) and K(u). Hence, we calculate
the overall contrastivity score by averaging the individual
scores of node pairs with opposite pollutant concentrations
(i.e., v polluted and u unpolluted node). For a node pair (v, u),

their contrastivity is computed as
dH(ζ(K(v)),ζ(K(u)))

|K(v)∪K(u)| where
ζ(K) = (l1, . . . , lN ) ∈ {0, 1}N with li = 1 if node i ∈ K
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TABLE I
CHARACTERISTICS OF THE EMPLOYED DATA SETS. NO2 DATA IS

MEASURED IN µg/cm3 AND PM10 DATA IS MEASURED IN ppb. NOTE
THAT THE MAXIMUM AND MINIMUM predicted CONCENTRATIONS

CORRESPOND TO THE MAXIMUM AND MINIMUM VALUES OF THE
PREDICTIONS MADE BY THE AVGAE MODEL.

Data Set Antwerp NO2 Utrecht PM10

# Nodes 4,954 8,292
# Edges 69,032 99,738

Max. true concentration 124.41 11.0
Max. predicted concentration 164.64 14.76

Min. true concentration 0.0 0.0
Min. predicted concentration -78.04 -0.80

Mean true concentration 81.91 3.64
Mean predicted concentration 66.47 3.42

belongs to the set K and otherwise 0, and dH(·, ·) computes
the Hamming distance between these binary strings of relevant
nodes.

Sparsity aims at measuring how localised an explanation
is in the graph and it is computed by averaging the sparsity
score of every polluted or unpolluted node pair (v, u). First,
we classify each node as polluted or unpolluted following the
same procedure as for fidelity. Then, for every pair of nodes
(v, u ∈ V) where both have been classified as polluted or
unpolluted, sparsity is defined as 1− |K(v)∪K(u)|

N , where N is
the total number of nodes. If the subsets of K most relevant
nodes, K(v) and K(u), amongst two nodes greatly differ, i.e.,
|K(v) ∪ K(u)| ≈ N , the fraction will converge to 1 and the
sparsity factor will be close to 0. On the contrary, as the
subsets become more similar, the fraction will be smaller than
1 and the sparsity score will increase. Note that, for fidelity,
contrastivity and sparsity, higher scores imply better explain-
ability performance. Finally, note that in Tables II and III,
sparsity and contrastivity are mainly defined as a control
metric. By definition, a smaller size K of the relevancy set K
directly implies higher sparsity and contrastivity scores. These
two metrics only become meaningful in Tables V and VI,
addressed in Section V-D, where the values are compared with
other explanation methods.

C. Hyperparameter Settings

We follow the best configuration suggested in [2], [18]
to define the hyperparameters of AVGAE. Specifically, we
select a learning rate of 0.005 over 1000 epochs. Similarly,
the hyperparameters of the RGCNN and ChebyNet models
are set as in [51] and [4], respectively. Furthermore, the
hyperparameters of the proposed explanation model are found
empirically via tuning. We find the best results are obtained
when the NodeSel model is trained with a small learning rate
of 0.000001 and 500 epochs, we make use of early stopping
to avoid over-fitting and employ a 4-fold cross validation
procedure.

For each data set, we wish to select the optimal number
of relevant nodes K. Accordingly, we perform an evaluation
study based on the metrics described in Section V-B. To
obtain the best K value for each data set, we firstly test our
explanation model with different K values, from which we

obtain the most relevant nodes for each location. Then, we run
the GNN-based model only employing the data coming from
the K set of more relevant nodes and collect the metric scores.
In Tables II and III, we show the quality of the GNN-based
model predictions for different K values, under the condition
that K ≤ N . Table II contains the results of the Antwerp NO2

data set and Table III contains the results of the Utrecht PM10

data set. Note that these results were obtained employing a
4-fold cross validation procedure. Lower values are better for
RMSE and MAE while higher values are better for fidelity,
contrastivity and sparsity. N/A stands for not applicable since,
by definition, the computation of fidelity, contrastivity and
sparsity needs subsets of the whole data set. Our goal is to
select the lowest K value that provides good quality, namely,
the K value with which the quality performance is comparable
with the results of the italic row (where K = N ). As such,
scores in bold represent the best results for K values different
than K = N . The results in Tables II and III show that
with certain K values we can achieve similar performance
to K = N with a high fidelity score. This is because we infer
the subset of most influential nodes in such a way that the
most relevant information for the node of interest is inherently
present in the subset. We notice that the scores for RMSE and
MAE do not change monotonically with K. We believe this
behaviour is due to the fact that increasing K over an optimal
value (which depends on each data set), negatively affects the
performance of the GNN-based model. To be more specific,
for a certain node’s prediction, by increasing K, the GNN-
based model is receiving as input the relevant nodes as well as
nodes that are less relevant, thereby lowering the performance
of the GNN-based model. Finally, note that, in both data sets,
the best performance is obtained when K is approximately
N/2; specifically, K = 2000 for the Antwerp data set and
K = 4000 for the Utrecht data set.

D. Experimental Results

In this section, we assess the explainability capability and
performance of the NodeSel model using the aforementioned
data sets and GNN-based models. We employ AVGAE [2],
[18] as the underlying GNN-based model. Moreover, we
perform the same study with RGCNN [51] and ChebyNet [4]
as GNN-based models for comparison. We first aim to study
the relevancy of the K set of K most relevant nodes found by
the NodeSel model. Specifically, we assess the deviation in the
GNN-based model performance when employing the subset of
least relevant nodes, that is, the set S defined as S = V \ K,
and compare the results with those obtained with the K set.
Secondly, we compare the effectiveness of the NodeSel model
with respect to other benchmark models; namely, (i) a random-
based selection method, which selects the most relevant graph
nodes randomly; (ii) GraphLIME [14], which selects the n-hop
jumps closest graph nodes maximising the spatial correlation;
and (iii) GNNExplainer [15], which computes a binary mask
that maximises the negative cross entropy between the label
class and the model prediction. Note that, in the graph signal
processing domain [54], method (i) is somehow equivalent
to a node selection through random walks as in [55], [56]



11

TABLE II
PERFORMANCE OF VARIOUS GNN-BASED MODELS AFTER APPLYING OUR PROPOSED MODEL (NODESEL) WITH VARIOUS K VALUES USING THE

ANTWERP NO2 (N = 4954) DATA SET.

GNN Model #Relevant Nodes RMSE MAE Fidelity Contrastivity Sparsity

AVGAE [2], [18]

K = 1000 11.173 9.4537 2.535 0.000571 0.646
K = 2000 10.413 7.250 55.132 0.000335 0.395
K = 3000 11.244 9.255 10.605 0.000255 0.230
K = 4000 10.951 7.977 9.424 0.000204 0.104

K = N = 4954 10.294 7.551 N/A N/A N/A

RGCNN [51]

K = 1000 15.049 10.867 15.751 0.000529 0.639
K = 2000 12.995 9.008 58.657 0.000359 0.401
K = 3000 13.724 9.035 58.729 0.000293 0.228
K = 4000 13.194 9.052 57.245 0.000215 0.101

K = N = 4954 12.678 8.263 N/A N/A N/A

ChebyNet [4]

K = 1000 12.167 9.001 51.092 0.000590 0.523
K = 2000 11.632 8.735 54.890 0.000462 0.398
K = 3000 11.927 8.976 54.821 0.000356 0.204
K = 4000 11.553 8.434 54.832 0.000231 0.116

K = N = 4954 11.348 8.245 N/A N/A N/A

TABLE III
PERFORMANCE OF VARIOUS GNN-BASED MODELS AFTER APPLYING OUR PROPOSED MODEL (NODESEL) WITH VARIOUS K VALUES USING THE

UTRECHT PM10 (N = 8292) DATA SET.

GNN Model #Relevant Nodes RMSE MAE Fidelity Contrastivity Sparsity

AVGAE [2], [18]

K = 1000 0.587 0.225 83.948 0.000618 0.802
K = 2000 0.527 0.343 77.995 0.000328 0.634
K = 3000 0.451 0.273 82.538 0.000228 0.466
K = 4000 0.371 0.287 125.970 0.000185 0.349
K = 5000 0.481 0.342 77.310 0.000151 0.199
K = 6000 0.343 0.248 83.551 0.000137 0.116
K = 7000 0.582 0.481 7.198 0.000123 0.039

K = N = 8292 0.539 0.449 N/A N/A N/A

RGCNN [51]

K = 1000 0.824 0.639 29.766 0.000661 0.742
K = 2000 0.810 0.613 59.201 0.000582 0.606
K = 3000 0.787 0.584 77.530 0.000464 0.524
K = 4000 0.769 0.565 88.453 0.000306 0.433
K = 5000 0.792 0.572 102.934 0.000171 0.295
K = 6000 0.753 0.567 104.033 0.000162 0.190
K = 7000 0.775 0.566 100.909 0.000110 0.044

K = N = 8292 0.745 0.560 N/A N/A N/A

ChebyNet [4]

K = 1000 1.102 0.894 78.026 0.000615 0.801
K = 2000 1.172 0.863 81.953 0.000332 0.629
K = 3000 0.976 0.865 84.250 0.000192 0.491
K = 4000 0.840 0.693 111.403 0.000177 0.359
K = 5000 0.897 0.704 101.728 0.000129 0.205
K = 6000 0.893 0.693 100.934 0.000120 0.113
K = 7000 0.888 0.666 100.982 0.000103 0.039

K = N = 8292 0.801 0.637 N/A N/A N/A

TABLE IV
RESULTS ON THE EVALUATION METRICS FOR BOTH DATA SETS USING THE
S SET OF LESS RELEVANT NODES WITH THE BEST K VALUE FOUND IN

TABLES II AND III FOR ANTWERP AND UTRECHT DATA SETS,
RESPECTIVELY. NO2 REFERS TO THE ANTWERP NO2 DATA SET WITH

N = 4954 AND K = 2000. PM10 REFERS TO THE UTRECHT PM10 DATA
SET WITH N = 8292 AND K = 4000.

RMSE MAE Fidelity Contrastivity Sparsity
NO2 69.489 64.3366 14.249 0.000112 0.469

PM10 2.991 2.130 12.762 0.000177 0.652

and method (ii) is somehow equivalent to the aggregation
GNN procedure of [57], [58]. Specifically, [57] presents two
architectures that first select the n-hop jump neighbourhood
per node and then, explain the model decision by using a
feature selection procedure or a diffusion process.

Similarly to GNNExplainer, our model leverages spatial
(i.e., locations) and label (i.e., pollutant level) correlations.
However, NodeSel obtains a non-binary mask, which allows
us to compare the relevancy score (including node similitude
knowledge) amongst different nodes. We compare the perfor-
mance in terms of the different evaluation metrics presented
in Section V-B using both data sets.

In Section V-C, we were able to obtain the best K value
for each data set. In addition, we showed that, independent
of the underlying GNN-based model, the value of K remains
unchanged for a certain data set. Given the K set of K most
relevant nodes found by NodeSel for a certain node and time,
notice that S = V \K depicts the set of less relevant nodes in
the network. We now conjecture that, for a certain node and
time, the K set contains the sufficient information to obtain a
high quality prediction. Consequently, the S set of less relevant
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TABLE V
COMPARISON OF DIFFERENT EXPLANATION METHODS AND NODE EMBEDDINGS FOR VARIOUS GNN-BASED MODELS, USING THE ANTWERP NO2

DATA SET AND K = 2000.

RMSE MAE Fidelity Contrastivity Sparsity

AVGAE [2], [18]

Random 17.227 11.650 44.528 0.000313 0.356
GraphLIME [14] 11.083 9.987 54.485 0.000421 0.551

GNNExplainer [15] 10.222 8.332 50.223 0.000245 0.395
NodeSel (Ours) 10.413 7.250 55.132 0.000335 0.395

RGCNN [51]

Random 16.923 10.273 15.685 0.000288 0.322
GraphLIME [14] 13.082 9.131 55.924 0.000345 0.388

GNNExplainer [15] 13.111 9.006 58.932 0.000351 0.394
NodeSel (Ours) 12.995 9.008 58.657 0.000359 0.401

ChebyNet [4]

Random 15.020 10.399 20.734 0.000388 0.299
GraphLIME [14] 11.628 8.770 54.004 0.000404 0.403

GNNExplainer [15] 11.694 8.803 54.963 0.000401 0.484
NodeSel (Ours) 11.632 8.735 54.890 0.000462 0.398

TABLE VI
COMPARISON OF DIFFERENT EXPLANATION METHODS AND NODE EMBEDDINGS FOR VARIOUS GNN-BASED MODELS, USING THE UTRECHT PM10

DATA SET WITH K = 4000.

RMSE MAE Fidelity Contrastivity Sparsity

AVGAE [2], [18]

Random 0.744 0.570 62.305 0.000165 0.269
GraphLIME [14] 0.385 0.339 75.584 0.000155 0.326

GNNExplainer [15] 0.371 0.300 110.621 0.000182 0.344
NodeSel (Ours) 0.371 0.287 125.970 0.000185 0.349

RGCNN [51]

Random 0.993 0.824 60.783 0.000191 0.304
GraphLIME [14] 0.841 0.577 77.042 0.000204 0.357

GNNExplainer [15] 0.806 0.591 89.065 0.000309 0.426
NodeSel (Ours) 0.769 0.565 88.453 0.000306 0.433

ChebyNet [4]

Random 0.930 0.834 57.063 0.000126 0.280
GraphLIME [14] 0.811 0.712 109.878 0.000173 0.351

GNNExplainer [15] 0.834 0.703 102.894 0.000198 0.355
NodeSel (Ours) 0.840 0.693 111.403 0.000177 0.359

nodes should produce a low quality prediction. To prove it, in
Table IV we show the evaluation metrics when running the
AVGAE model using the S set, composed of S = N − K
nodes. We compare these results with the numbers presented
in Table II for Antwerp NO2 and Table III for Utrecht PM10

data sets, with K = 2000 and K = 4000, respectively. It is
evident that the prediction accuracy is much lower if the S set
is used instead of the K set.

Secondly, we compare the proposed explanation model and
the three benchmark models. The performance is assessed
in terms of the different evaluation metrics presented in
Section V-B. The experimental results are reported in Table V
for the Antwerp data set and in Table VI for the Utrecht data
set. From Tables V and VI, we observe that random selection
is the worst performing model. This is an expected result since
employing the spatial- or feature-based correlations between
the data at hand should work better than a random selection.
GraphLIME [14] leads to a better estimation accuracy than
random selection. This model manages to capture properly
the spatial correlation in the air quality measurements with
respect to the geodesic distance. As a result, we believe that
GraphLIME [14] will perform poorly when the relevant nodes
are not in the closest neighbourhood while its performance will
improve in the opposite case. On the contrary, our NodeSel
model is able to learn from two sources of information, the
geodesic distance and the pollution levels, allowing NodeSel
to select which source of data is more relevant in each

case. In addition, it is evident that GNNExplainer [15] is
the second best-performing model. NodeSel achieves the best
overall performance in terms of RMSE, MAE, contrastivity
and fidelity in both data sets, with a few exceptions, such
as the RMSE and contrastivity scores in the Antwerp NO2

data set, where NodeSel is the second best-performing model.
In contrast to other models, NodeSel effectively captures the
spatial correlation and air pollution similarity in the data and
leverages the underlying graph structure of the street network.

E. Visualisations

In this section we provide visual examples of the effective-
ness of our explanation approach. We randomly select a set
of node and time pairs from the test set, which will serve as
samples for this purpose. Examples of resultant visualisations
are presented in Figures 5 and 6 using the Antwerp data set,
and Figures 7 and 8 using the Utrecht data set. For a certain
time instant and given a node to be explained, we show the
set of most relevant nodes K as found by NodeSel (recall
that K = 2000 when employing the Antwerp data set and
K = 4000 when employing the Utrecht data set). Specifically,
we show the location of nodes in K and colour them by the
relevancy score observed in β. The node to-be-explained is
highlighted with a red arrow.

In both scenarios, we observe that the closest nodes in terms
of the geodesic distance are of high relevancy for a node’s
prediction. Visually, nodes that are in the same or neighbouring
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Relevance score

1.00.0001

Fig. 5. Explanation of a node (pointed out by red arrow) of the city of
Antwerp at time t = 11am.

Relevance score

1.00.0001

Fig. 6. Explanation of a node (pointed out by the red arrow) of the city of
Antwerp at time t = 10am.

streets are coloured in purple or dark blue. As such, in terms
of how pollution flows, it is evident that nodes in close-by
streets are more likely to affect the predicted concentration
in the node we wish to explain. Yet, a group of nodes that
are further away (e.g., red-coloured top nodes in Fig. 5) also
appear as important in the topological-relevancy vector β,
probably due to the fact that these nodes have similar pollution
levels. We conjecture that is because these long-distance nodes
have similar characteristics in terms of surrounding areas, e.g.,
closeness to green areas, industries or the river. For instance,
in Fig. 8, we observe that the red-colored nodes are similar
to the node we wish to explain in terms of closeness to the
city center (e.g., both of them are far from the city center).
Similarly, in Fig. 6, the node we wish to explain and the red-
colored nodes are similar in terms of distance to high traffic
roads or to the river. We conclude that our model is able to
capture the most relevant nodes in terms of geodesic distance.
In addition, it is capable to collect numerous nodes which are
further away but might share similar characteristics with the
original node to be explained.

Relevance score

1.00.0001

Fig. 7. Explanation of a node (pointed out by red arrow) of the city of Utrecht
at time t = 6am.

Relevance score

1.00.0001

Fig. 8. Explanation of a node (pointed out by the red arrow) of the city of
Utrecht at time t = 4pm.

VI. CONCLUSION AND FUTURE WORK

We introduced a novel post-hoc explanation technique for
GNN-based models, which is able to capture the most relevant
locations for a certain graph node. By capturing the non-linear
dependencies between predictions and the graph structure as
seen from each node’s perspective, the model is able to infer a
vector which highlights the relevancy factor from such node to
every other graph node. Although simple, the introduced tech-
nique upgrades the commonly used methods of either sampling
the local neighbourhood via n-hop jumps or employing the
complete set of nodes in the graph. As shown by experimental
results, the proposed model delivers high-quality explanations,
outperforming state-of-the-art explanation methods for deep
learning on graphs. Additionally, we have proposed a novel
definition for the node representation, referred to as topolog-
ical node embedding, which intuitively captures the topology
of the graph node surroundings as a measure of importance
in the network. Jointly, we obtain a post-hoc explanation
technique that can be easily integrated in any GNN-based
model. The technique was experimentally assessed in the task
of air quality estimation from mobile measurements using two
air quality data sets. The model presented in this article can
be extended to any GNN model that operates with graph-
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structured data. Future work aims at increasing the external
non-graph-based input knowledge, for instance, including node
individual features. Additionally, future research will aim at
extrapolating the AVGAE model and the explanation method
NodeSel to a time-aware domain where the dynamic aspect
of the data is considered. For instance, leveraging recurrent
neural networks such as graph recurrent NNs (GRNNs) during
the prediction step or leveraging the dynamic evolution of the
set of relevant nodes during the explanation step. Finally, we
expect to generalise the model to other application domains.
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