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Abstract
Traditional reconstruction protocols in atom probe tomography frequently feature image
distortions for multiphase materials, due to inaccurate geometric assumptions regarding
specimen evolution. In this work, the authors’ outline a new reconstruction protocol capable of
correcting for many of these distortions. This new method uses predictions from a previously
developed physical model for specimen field evaporation. The application of this new
model-driven approach to both an experimental semiconductor multilayer system and a fin
field-effect transistor device (finFET) is considered. In both systems, a significant reduction in
multiphase image distortions when using this new algorithm is clearly demonstrated. By being
able to quantitatively compare model predictions with experiment, such a method could also be
applied to testing and validating new developments in field evaporation theory.

Supplementary material for this article is available online

Keywords: atom probe tomography, semiconductor imaging, level set method, field evaporation,
data reconstruction, optimisation, correlative microscopy

(Some figures may appear in colour only in the online journal)

1. Introduction

Atom probe tomography (APT) is a materials characterisa-
tion technique that aims to form a 3D image at a near atomic
resolution within a material subvolume. By combining ana-
lysis data from a two-dimensional position-sensitive detector
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with a mass spectrometer, individual ion types and original
positions can be estimated via an algorithmic process known
as reconstruction. These algorithms assume a simple model
for specimen evolution during APT analysis. The most com-
mon reconstruction protocols are mathematical projection-
based models [1–5]. These projection-based models assume
a specimen apex that remains hemispherical throughout APT
analyses, and that the charged optics of evaporated ions’
are well described by some mathematical projection between
the hemispherical apex and planar detector. These protocols’
have the advantage of simple geometric assumptions, requir-
ing limited prior information, whilst performing well for a
wide variety of material systems. However, for multiphase
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specimens, the apex shape and trajectory assumptionsmade by
projection-based models frequently break down, introducing
phase-specific distortions into their reconstructions. Physic-
ally correcting these distortions will require improved mod-
els for multiphase specimen evaporation that are sufficiently
‘quick’ to drive a reconstruction protocol.

In our previous works [6, 7], a simulation framework was
developed allowing for rapid simulation of specimen evap-
oration in three-dimensions (3D). Whilst this new model
lacks the accuracy of the current state-of-the-art atomic-
scale models [8–10], its underlying continuum assumption
enables practical simulation times, making it feasible to recon-
struct experimental APT analyses using this continuummodel.
This reconstruction capability was demonstrated through
a proof-of-concept model-driven reconstruction algorithm,
which when applied to a fin field-effect transistor (FinFET)
successfully corrected for phase-specific distortions within the
structure’s central fin [7].

Whilst this reconstruction scheme can correct for mul-
tiphase distortions introduced by projection-based protocols,
the approach has the downside of requiring a higher degree of
prior information in order to define the more physically accur-
ate and detailed evaporation model. This includes knowledge
of the initial specimen surface and internal phase geometries,
the governing physical evaporation laws, and any material-
specific evaporation parameters. Assuming that the model’s
initial specimen surface and phase geometries can be suffi-
ciently constrained through electron microscopy [7, 11, 12],
this still leaves a potentially large number of free model para-
meters that must be tuned. These parameters include the align-
ment of the simulated specimen with respect to the detector,
as well as the parameters governing the evaporationmechanics
of particular model phases.

This work sets out a new approach for constraining these
alignment and phase-specific evaporation parameters directly
from the experimental APT data, automatically optimising
the final image quality of the model-driven reconstruction. In
addition, a method is also proposed for partially relaxing the
constraints imposed by the assumed model’s charged optics
through a parameterised transformation known as a diffeo-
morphism. By determining a diffeomorphism that reduces the
difference between predicted and experimental detector dens-
ities, the effects of any physical and numerical errors intro-
duced by the model’s assumptions within the final reconstruc-
tion can be reduced.

2. Model-driven reconstruction workflow

The overall workflow that will be undertaken when perform-
ing this new model-driven reconstruction protocol is shown
in figure 1. Here, all the different core algorithm components
are highlighted. The model initialisation step (purple) involves
defining the initial specimen structure (geometry) from prior
experimental data such as electron tomography, as well as ini-
tial guesses for model parameters. In this work, such para-
meters will include the phase evaporation fields and speci-
men alignment with respect to the detector. The simulated

evaporation of this model and calculation of its charged optics
(yellow) will then be performed, closely matching the model
in our previous study [7]. Next model calibration (green) will
be performed by comparing the similarity of the model’s pre-
dictions back to the experimental data. By feeding this similar-
ity measurement back into the model parameter initialisation,
the evaporation model can be optimised to best match exper-
iment. Finally, an optional postprocessing step (red) can fur-
ther relax the charged optics constraints imposed by the evap-
oration model’s assumptions. The result is a final calibrated
reconstruction that has been optimised to best match our initial
knowledge of the specimen structure and evaporation physics.

3. Theory and implementation

In order to drive this new reconstruction protocol, both a phys-
ical model for field evaporation, as well as an approach for cal-
ibrating thismodel to experimental data is required. The theory
and methodology behind these will be covered in the follow-
ing section. Further details on the continuummodelling frame-
work, code implementation, and choice of parameters can be
found in our previous publications [6, 7].

3.1. The continuum evaporation model: a summary

This subsection summarises the continuum model previously
developed [7], which will drive the reconstruction protocol
outlined in this work. At a particular model time t, the speci-
men surface local evaporation rate (Re) can be well described
by the Arrhenius law in equation (1):

Re
(
s(t)
)
= Ae

− C
kBT(s(t))

(
1− ∥E(s(t))∥

F0(s(t))

)
(1)

FR = max
s(t)∈Γ(t)

(
q(s(t))
F0(s(t))

)
= 1 (2)

Here s(t) ∈ Γ(t) is a point on the specimen surface (Γ(t)),
∥E(s)∥ is the local surface electric field strength, F0(s) is the
local material-dependent evaporation field, T(s) is the surface
temperature, and kB is the Boltzmann constant, and C and A
are model constants. At present, the model assumes individual
phases are of a uniform evaporation field. Here the C term has
been assumed constant, and assigned a typical value of 1.3
eV [13]. In this work, the temperature T has also been assumed
constant over the surface (T = 50 K). It should be noted that
these assumptions (in particular that of a constant temperature
field) will likely have some effect on the generated reconstruc-
tions shown later in this study. A constant FR = 1 field reduc-
tion factor has also been maintained. As A is a global constant,
its value does not effect the evolution of Γ itself, only the solu-
tion’s time parameterisation.

Throughout the simulation, the specimen surface (Γ) is
embedded as the zero contour within a three-dimensional
scalar field (ϕ), as given by equation (3). This field is initialised
to be a signed distance field.

Γ(t) = {x | ϕ(x, t) = 0}. (3)
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Figure 1. Outline for the proposed complete reconstruction workflow. The coloured regions break down the workflow into various blocks.
Arrows imply the flow of data.

Figure 2. Diagram showing how a specimen containing a void (its surface given by the black curve) is embedded as the zero contour in the
scalar field ϕ(x). This visualisation was generated using our 2D model [6].

The embedded specimen surface (figure 2(a)) is then
evaporated by evolving ϕ(x, t) under the level set equation
(equation (4)):

∂ϕ(x, t)
∂t

− ν(x, t)∥∇ϕ(x, t)∥= 0, (4)

here ν(x, t) is the velocity extension field. For a particular time
t, this velocity field is calculated by extending the surface evap-
oration rate defined at the surface interface (Γ) throughout the
level set simulation domain (Ω) according to equation (5):

ν(x, t) =−Re(sm(t)) where sm(t) = argmin
s(t)∈Γ(t)

∥x− s(t)∥.

(5)

To prevent significant drift ofϕ from a signed distance field,
the reinitialisation scheme described by Sussman et al [14] is
performed every 50 iterations by solving equation (4).

Like our previous study [7], electric fields are approximated
under electrostatics via a boundary element method (BEM),

with the specimen assumed to behave as a conductor under
the high electric fields present. Under the conductor approx-
imation, the electric field in the problem domain surrounding
the specimen is given by Laplace’s equation in equation (6). At
the surface of a conductor, the field magnitude equals the sur-
face normal field flux, i.e. q(s) = E(s) ·n(s) = ∥E(s)∥. Thus,
q(s) can be used directly to calculate the evaporation rate in
equation (1):

∇2u(x) = 0 x ∈ X−(t)

u(s) = V(t) s ∈ Γ(t), (6)

here X−(t) is the electrostatic problem domain outside of the
specimen (the vacuum). Following discretisation, the speci-
men surface can be represented by k triangular surface pan-
els (Γj ⊂ Γ), where Γ =

⋃k
j=1Γj. Each panel Γj is then given

an associated constant potential (uj) and normal flux (qj).
Following this boundary discretisation scheme, the surface
electrostatics can be calculated through a direct boundary

3
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element method by solving the system of linear equations
given in equation (7):

k∑
j

Fijuj =
k∑
j

Gijqj ∀i ∈ {1,2, . . . ,k} (7)

Gij =
1
4π

ˆ
Γj

1
∥xi − y∥

d2y (8)

Fij =
1
4π

ˆ
Γj

(xi − y) · n̂j
∥xi − y∥3

d2y, (9)

here n̂j is the normal vector and xi is the centre node for sur-
face panel Γj. Once the electrostatics on the specimen surface
have been solved, with each Γj now having a determined uj
and qj, the electric field (E(z)) can be calculated at any point in
space outside of the specimen by solving the following bound-
ary integral equations:

El =
∂u(z)
∂xl

=

ˆ
Γ

∂2G(z,y)
∂n ∂zl

u(y)dΓ(y)

−
ˆ
Γ

∂G(z,y)
∂zl

∂u(y)
∂n

dΓ(y), (10)

∀z ∈ X−, y ∈ Γ and l ∈ {1,2,3} where E= (E1,E2,E3)

z= (z1,z2,z3)

The calculation of equation (10) is further accelerated via
a panel clustering scheme [7]. Finally, ion trajectories from
an initial point on the specimen surface (z0 ∈ Γ) can be cal-
culated by integrating the system of first-order equations in
equation (11): 

dv
dt
dz
dt

=

nem 0

0 1

 ·

[
E(z)

v

]
, (11)

here m is the ion’s mass, E(z) is the electric field solved
via equation (10), ne is its charge, and v is its instantaneous
velocity. It should be noted that assuming an initial velocity
of zero, the trajectory taken by an ion is independent of its
mass m.

The output is a sequence of specimen surface meshes
{Γ0, . . . ,Γt,Γt+1, . . . ,Γf}, extracted at each model iteration of
equation (4) from ϕ(x). Coupled with electrostatic charged
optics calculations, it is these model results that will constrain
and guide the reconstruction protocol. However, in order to
calibrate the parameters of this physics model to an experi-
ment, a new methodology is required. The steps required for
performing such a calibration will be outlined in the following
sections.

3.2. Instrument transfer function

Up until now, this previously developed physics model has
accounted only for the electrostatic field solution resulting

from the specimen geometry. While a local electrode can be
readily included into the electrostatic solution [15], directly
incorporating a biased detector, APT instrument chamber, or
a more distant counter electrode poses a significantly greater
challenge due to the problem domain’s large length-scale dif-
ferences. These range from the nanometre-scale close to the
emitter apex, to ion flight paths covering fractions of a meter.

For the current implementation of the electrostatic solver, a
full APT instrument simulation proved impractical. In prac-
tice, these additional instrument components introduce fur-
ther field lensing and compression of ion trajectories towards
the detector, increasing the experiment field-of-view (FOV).
Therefore, a correcting function must be applied to calculated
trajectories in order to compensate for this.

In this work a linear projection law, similar to that in [16],
has been assumed to describe ion trajectories on passing a cer-
tain distance from the specimen (see figure 3). This projection
is performed once ion trajectories have been explicitly calcu-
lated via equation (11) up to a set cutoff distance d from the
specimen surface. This law introduces an additional compres-
sion parameter (κ) that will later be tuned to best match the
particular APT experiment being simulated or reconstructed.
A suitable value for this cutoff d= 5 Rapex, was determined
by investigating the effect of specimen surface protrusions
and concavities on the surrounding electric field with distance
from the surface (see section I in the supplementary material).

3.3. The trajectory mapping

Previous studies have introduced the concept of defining a
trajectory mapping [6, 7, 17, 18]. At an instant in time, this
mapping describes how initial launch positions on the spe-
cimen surface correspond to final impact positions on the
detector (e.g. Γ→ R2). Critically, by considering the stabil-
ity of equation (11) under changes to an ion’s initial launch
position, it is possible to show that this mapping is continu-
ous (a proof for which is outlined in [15]). This allows for an
estimation of the trajectory mapping to be constructed from
the interpolation of ion trajectories uniformly sampled over
the specimen surface.

Assuming that no changes in specimen surface topology
occur (e.g. the evaporation of voids [19, 20]), this trajectory
data can be interpolated between model surface iterations (e.g.
Γt and Γt+γ), enabling a time-dependent trajectory mapping
(T : S→ D) to be constructed between the original material
sample space (S= R3), and the detector space (D= R2 ×N).
Under this definition, for a particular ion with initial launch
coordinates xl and final detector coordinates xd, the true tra-
jectory mapping yields T (xl) = xd. The process of data recon-
struction then falls down to deriving an estimate for the inverse
of this mappingR−1 ≈ T −1.

For the implementation in this work, when constructing this
inverse mapping (R−1), a bijective assumption has to be cur-
rently assumed. Ions are launched from the corner points of
the triangular surface panels, their trajectories calculated up
to the detector (under the transfer function in section 3.2),
and their final impact positions on the detector recorded. The

4
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Figure 3. The geometric setup for the linear transfer projection. Ion trajectories are calculated up to a distance (d) from the specimen
surface (terminating at the cutoff distance p0), with a final velocity vector of v0. Beyond this, a linear law projection is performed (see boxed
equation) up to the detector plane (the green point) to account for any instrument trajectory compression.

inverse mapping at model surface states where trajectories are
calculated can then be constructed by interpolating these ini-
tial ion launch positions with respect to their final detected
positions onto a uniform detector grid (see figure 4). This
is performed through triangulation of the final detected pos-
itions, followed by barycentric interpolation. The result is
a stack of detector grids that each define the state of the
inverse mapping at a different point during the simulation. By
assigning detector space depth coordinates to each of these
detector grids through a calibration method to be described in
section 3.4.5, these detector grids can then be interpolated over
the entire detector space domain to estimate R−1. Note that
this mapping only considers the initial and final ion coordin-
ates, with specific trajectory details during ion flight not expli-
citly required to perform reconstruction. Ion launch velocities
are also assumed to be zero. Following this inverse mapping’s
estimation, detected ions can be uniquely positioned in the
reconstruction.

3.4. Charged optics

In order to compare the evaporation model and calculated tra-
jectory mapping with experiment, synthetic ion detection data
must be calculated. Whilst it has been previously shown how
comparable data can be generated randomly via aMonte Carlo
sampling approach [7], a significantly more efficient method
is outlined here that considers the predicted evaporating ion
flux from each panel, and its transformation onto the detector
under the derived mapping. This more efficient method is one
of the key steps required to make model parameter optimisa-
tion computationally tractable.

3.4.1. Model state subsampling. Due to the continuity
properties of ion trajectories outlined in section 3.3, ions
will not be launched at every model surface iteration,
but instead for only a subset of these. In this study, the

Figure 4. The construction of the temporal inverse mapping
R−1

α (τ) is shown at a particular detector grid position. The panel
this point falls within is highlighted at each model instance. Finally,
by interpolation, the corresponding specimen surface position can
be derived throughout time (red line).

charged optics will be calculated for the model states at
every γ= 5 iterations, giving the subset of surface meshes
{Γ0, . . . ,Γγ·(n−1),Γγ·n, . . . ,Γγ·pf}. Using this subsampled set
of states significantly reduces the number of trajectory cal-
culations required, and avoids calculations where only small
changes to the modelled specimen surface have occurred.

5
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Figure 5. Diagram showing the projection of a surface panel onto
the detector. Trajectory crossover results in the projected panel
inverting (flipping).

For the following optics calculations, the volume of loc-
ally evaporated material between these surface states will be
required. In this work, we approximate the local volume of
evaporated material (ωΓγ·n

i
) over a surface panel Γγ·n

i between

the surface states Γγ·n and Γγ·(n−1) via equation (12):

ωΓγ·n
i

= min
s ′∈Γγ·(n−1)

∥xi− s ′∥, (12)

with the subset of model states defined for which charge optics
calculations will be performed, and the local volume of evap-
orated material from surface panels determined, various prop-
erties of the charged optics and simulated data detection can
now be calculated.

3.4.2. Local magnification. Previous studies have intro-
duced the concept of APT specimen magnification and local
magnification [21–25]. Here, the authors propose formalising
this concept of local surface magnification through the local
Jacobian (J) of the trajectory mapping. In particular, a useful
signed scalar magnification definition can be obtained from
the local Jacobian determinant in equation (13). Here, a neg-
ative sign for ∥J∥ implies that the projected panel has flipped
under the trajectory mapping (figure 5). Due to the continuity
of the trajectory mapping (see section 3.3), the projection of
this negative region onto the detector indicates the region in
which spatial trajectory overlap is occurring:

∥J∥=

∣∣∣∣∣∣∣∣∣
∂dx
∂xt

∂dx
∂yt

∂dy
∂xt

∂dy
∂yt

∣∣∣∣∣∣∣∣∣ . (13)

In order to calculate this magnification for a particular
panel Γj with corner points (a,b,c), projected points onto the
detector (u,v, t), and an outer normal n̂, a local coordinate sys-
tem tangential to this panel (see figure 6) is defined through the
Gram–Schmidt process via equation (14):

Figure 6. Diagram showing the local tangential coordinate system
(x̂t, ŷt) on a surface panel with normal n̂, with respect to a global
coordinate system (x̂, ŷ, ẑ).

n̂=
(b− a)× (c− a)

∥(b− a)× (c− a)∥

x̂t =
x̂− (x̂ · n̂)n̂

∥x̂− (x̂ · n̂)n∥

ŷt =
ŷ− (ŷ · n̂)n̂− (ŷ · x̂t)x̂t

∥ŷ− (ŷ · n̂)n̂− (ŷ · x̂t)x̂t∥
, (14)

here x̂= (1,0,0) and ŷ= (0,1,0) are unit vectors spanning the
lateral plane in the global coordinate system. By generating
the local panel coordinate systems with respect to this global
system, the specific calculated matrix elements of J can also
be directly compared between surface panels.

The local Jacobian matrix for a panel can then be calculated
via equations (15) and (16) [26]:

b ′
x = (b− a) · x̂t c ′x = (c− a) · x̂t
b ′
y = (b− a) · ŷt c ′y = (c− a) · ŷt (15)

JT =
1
2A

(
b ′
y − c ′y c ′y −b ′

y

c ′x − b ′
x −c ′x b ′

x

)
·

ux uy
vx vy
tx ty

 , (16)

here b ′ = (b ′
x,b

′
y), c ′ = (c ′x,c

′
y), u= (ux,uy), v= (vx,vy),

t= (tx, ty), and A is the original panel area on the specimen
surface.

Using this definition, we can now calculate ∥J∥ over the
specimen surface, and also consider its projection under the
trajectory mapping onto the detector. An example of this is
shown for a surface concavity in figure 7. Figure 7(a) shows
the local magnification over the surface (showing the surface
region with panel flipping in blue), whilst figure 7(b) shows
the projection of these magnification values onto the detector.

6
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Figure 7. (a) Local panel magnification on the specimen surface featuring a concavity. Blue points indicate a local image inversion.
(b) Corresponding image of local stabilities following projection onto the detector. Spatial mixing of positive (yellow) and negative (blue)
projected panel stabilities indicates that trajectory overlap is occurring within the grey shaded region.

Figure 8. (a) The model surface that ions are launched off. (b) Gaussian-smoothed density hitmap simulation by an MC approach (95 681
ions launched in 19 min 10 s). (c) Density hitmap simulation via the flux method (calculated in 3.6 s).

The detector region in darker grey shows where panel flipping
is occurring, and where subsequently the inverse trajectory
mapping becomes multivalued due to the presence of traject-
ory crossover.

3.4.3. Detector density hitmap calculation. In our previous
work, we used a Monte-Carlo method to simulate the evapor-
ation events from the surface mesh. For a realistic ion count,
this approach is extremely time consuming. In this work, we
switch to a method which directly transfers the ionic flux from
the surface onto the detector via the Jacobian determinant.

Now that the local magnification has been determined for
each surface panel, the hit density (⟨ρd⟩B) averaged over some
detector region B can be estimated via the summing of panels’
evaporating ion fluxes in equation (17):

⟨ρd⟩B =
1
AB

Γn∑
i

ωΓn
i
·
∣∣∥J∥i∣∣−1 ·AR(Γn

i )∩B, (17)

here AB is the area of the averaging region on the detector, ωΓn
i

is the volume of locally evaporated material over panel Γni ,
and AR(Γn

i )∩B is the intersection area between the projection
of panel Γni and B. Computationally, this area is calculated by
determining its bounding polygon of the intersection through

the Cohen-Sutherland line clipping algorithm [27]. By eval-
uating equation (17) for each detector grid cell, the detector
density hitmap can be constructed at a particular model sur-
face state (figure 8).

This calculation of a detector density hitmap with ND grid
cells can also be described by the rectangular k×ND linear
system in equation (18). Here ωΓn

j
∈ ω is the k-length vector

of local panel evaporation volumes, and (⟨ρd⟩Bi)i ∈ ρ is the
ND-length vector of detector densities. It should be noted that
this matrix equation can be inverted, potentially allowing for
the back-projection of detector hitmap densities onto the speci-
men surface. In this case, a sufficiently high resolution detector
discretisation should be used to ensure the system is not under-
determined:

M ·ω = ρ where Mij =
1
ABi

∣∣∥J∥j∣∣−1 ·AR(Γj)∩Bi . (18)

Now that the detector density hitmaps can be determined
for particular model surface states, a representation of the pre-
dicted ion density throughout a simulation’s detector space
can be obtained. This information is critical for calibrating the
depth positioning of ions in the model-driven reconstruction
protocol to be outlined in section 3.5.

7
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Figure 9. (a) Nearest-neighbour interpolation of projected phases onto the detector grid. (b) Specimen surface showing local material phase
for a particular model state. (c) Its corresponding predicted local detector phase map.

3.4.4. Detector phase map calculation. As with the local
detector density, the local detector phase can also be determ-
ined. Knowledge of the local model phase throughout the sim-
ulated detector space will prove a critical metric for assessing
the similarity between a particular model and the experiment-
ally measured composition (see section 3.6.2).

A particular model phase can be assigned to each panel
through a point-in-polygon test of panel centres with the
internal phase meshes. The projection of these panel centres
under the trajectory mapping is then considered, with local
phase calculated via nearest-neighbour interpolation of these
panel centres over the discretised detector grid (illustrated in
figure 9(a). An example detector phase map for a particular
model state (figure 9(b)) is shown in figure 9(c).

3.4.5. Detector space interpolation. Now that the evapora-
tion rate can be efficiently calculated throughout the simula-
tion, for each model surface state from which trajectory calcu-
lation is performed, e.g.Γγ·l, a depth position in detector space
(zγ·ld ) can be assigned via equation (19):

zγ·ld =−η
l∑

n=0

∑N
i=1⟨ρ⟩

γ·n
Bi

νγ·nion

for n, l from

×{Γ0,Γγ·1, . . . ,Γγ·n, . . . ,Γγ·l, . . .Γγ·pf}, (19)

here η is the detection efficiency, and {Γ0,Γγ·1, . . . ,Γγ·n, . . . ,
Γγ·l, . . .Γγ·pf} is the subset of model states from which ion
projection was performed (assuming projection is performed
every γ surface iterations). The term νγ·nion is the ionic volume
associated with model iteration Γγ·n. The current protocol
assumes these ionic volumes to be independent of species type,
although future protocols could incorporate species-specific
variation. Instead, these ionic volumes are considered to vary
with model iteration due to the depth landmarking procedure,
initially discussed in [7] to match the depth positions of recon-
structedmicrostructure with their depth positions in themodel.
The details of the landmarking procedure will be further dis-
cussed in section 3.5.

Following assignment of these depth positions, there is now
a stack of detector hitmaps (either density or phase) positioned

at various detector space depths zγ·ld . These hitmaps can now be
spatially interpolated throughout the entire 3D detector space
volume to give a 3D voxel field defining the inverse trajectory
mapping (R−1), local density (Mρ), and local phase (Mp)
throughout the detector space.

3.5. The reconstruction protocol

Now that the inverse trajectory mapping can be constructed,
the model-driven reconstruction protocol can be outlined. For
a particular detected ion with specific detector coordinates
(xid,y

i
d) and evaporation sequence position (z

i
d), the ion can be

positioned in the reconstruction using the interpolated inverse
mapping, i.e. via (xir,y

i
r,z

i
r) =R−1(xid,y

i
d,z

i
d). By placing each

ion according to this function, the reconstruction can then be
constructed. Note that asR−1 is pre-calculated, this placement
of ions can be performed in parallel.

However, prior to this ion placement, the depth calibration
of model states must be performed through the depth land-
marking process described in section 3.4.5. This is required to
constrain the values of νγ·nion required by equation (19). Dur-
ing depth landmarking, iteration-specific values for νγ·nion are
determined to ensure that the ‘top’ and ‘bottom’ of a particular
microstructure within the generated reconstruction will align
in depth with its corresponding microstructure in the model
(see figure 10). This alignment prevents the propagation of
modelling errors from causing the model surface to drift in
depth away from the true experiment specimen shape over the
analysis time. This depth landmarking is performed in detector
space, by considering the model iteration (S) when a phase
either appears or disappears from a phase map (section 3.4.4),
and matching this particular iteration to the ion sequence posi-
tion (IS) when the corresponding phases appears or disappears
from the experiment hitmap. The ionic volume (vS→S+γ·l

ion ) to
use between two model iteration landmarks S and S+ γ · l to
ensure this microstructural alignment can then be determined
via equation (20):

vS→S+γ·l
ion = η

∑S+γ·l
n=S/γ+1

∑N
i ρ

γ·n
Bi

IS+γ·l− IS
. (20)
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Figure 10. Diagram outlining the landmarking procedure. Landmarked detector space depth positions are aligned to corresponding model
states by selecting appropriate ionic volumes (ν iion) for states between landmarks. Particular model states (simulation times) correspond to
constant depth slices of detector space.

Once calculated, these ionic volumes allow for the assign-
ment of depth positions for each model surface state,
which are applied when interpolating and constructing
R−1. Model-driven reconstruction can now be performed
between wherever landmarks in detector space have been
defined. However, other than ensuring depth alignment,
there is currently no guarantee that the model will accur-
ately reflect the dynamics of the experiment, and that the
predicted inverse trajectory mapping would improve mul-
tiphase distortions over themapping predicted by conventional
projection-based models. Ensuring the accuracy of the model
to experiment will require additional calibration of model
parameters.

3.6. Reconstruction calibration

Our previous work considered data reconstruction driven by
the physics model following a manual tuning of paramet-
ers [7]. Here, we outline how this parameter tuning proced-
ure can be automated, through measuring the spatial similarity
between the model predictions and experimental composition,

as well as how the model’s constraints can be partially relaxed
to correct for model error.

3.6.1. Parameter optimisation. In order to calibrate the
reconstruction, the parameters of the driving model must be
optimised under the MI metric (section 3.6.2). In this work,
these parameters include the evaporation fields for the vari-
ous model phases F0 = {F1

0, . . . ,F
p
0}, as well as the speci-

men rigid body alignment parameters, and the additional com-
pression parameter (κ) from the linear projection function
in section 3.2. A diagram illustrating a particular specimen
model’s rigid body alignment with respect to the detector is
shown in figure 11. In this work, the parameter ϕ is assumed
to be zero, reducing the size of the parameter space. This
constraint is supported by experiment showing this tilt is
frequently only a few degrees, assuming careful specimen
mounting in the holder [28]. This leaves the necessary tun-
ing of the model parametersP = F0 and alignment parameters
A= {→r ,θ,κ}.

The optimisation problem itself can be split up into two
stages, reducing the computational workload. This is due to

9
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Figure 11. The degrees of freedom in the model spatial alignment
with respect to the detector. This includes both translation (

→
r ) and

orientation (ϕ, θ).

only the tuning of F0 requiring the model to be rerun: a costly
operation. Therefore, the model only need be rerun for the
optimisation of phase evaporation fields. The alignment para-
meters can then be tuned via partial optimisation for fixed
P . At each parameter optimisation iteration, the similarity
in detector space between the predicted model phases and
APT experimental composition will be measured. This will
be performed through a metric based off Mutual Information
(MI) [29].

In this work, only regular and adaptive grid searches have
been used when performing the parameter tuning. This is
because while local optimisers could more efficiently find a
maximum in similarity [30, 31], there is no guarantee that this
maximum is global. Indeed, the presence of such local max-
imum has previously been encountered in studies involving
the quantitative calibration of traditional APT reconstruc-
tions [12]. In comparison, the results of grid searches can be
directly visualised and easily interpreted to determine whether
the true maximum has been identified within the explored
parameter region. However, there is nothing preventing this
optimisation from instead being performed using a method
such as Nelder–Mead [31].

3.6.2. Similarity measurement. In order to perform this
comparison, a quantitative measure of voxel field similar-
ity must be defined. In this work, the mutual information
(MI) metric is considered. Unlike the cross-correlation met-
ric previously considered for reconstruction calibration [11,
12], the MI metric considers the degree of spatial depend-
ence between the model and experimental data. Here, this
measurement is performed following voxelisation of both the
model and experimental data within detector space on a 3D

grid with dimensions (Vx,Vy,Vz). This yields a model mono-
channel image (Mp) corresponding to local phase, and an
experiment multichannel image (Ec) corresponding to the
local composition of C different ionic species indexed by
c. The model image Mp is generated via the methods out-
lined in sections 3.4.4 and 3.4.5. In order to measure this
mutual dependence, the joint 2D spatial histogram of image
voxel intensities (Hc(Mp,Ec)i,j), as well as the 1D histo-
grams of experiment composition (Hc(Ec)j) and model phases
(H(Mp)i) must first be determined. In these histograms, a bin
count of NMp is used along model phase axes equal to the
number of unique model phases. An appropriate value for the
experimental composition axes bin count (NcE ) has been estim-
ated via Sturges’ formula (NcE = 1+ log2(Vx ·Vy ·Vz)) [32].
The image similarity can then be quantified by the MI defini-
tion given in equation (21):

SMI(Mp,Ec) =
1

CV2
xV2

yV2
z

C∑
c

NMp∑
i

NcE∑
j

Hc(Mp,Ec)i,j

× log

(
Hc(Mp,Ec)i,j

H(Mp)i ·Hc(Ec)j

)
(21)

Using this definition, a value of zero implies complete
independence, i.e. no correlation, whilst larger values imply
increasingly greater correlation between local model phases
and experiment composition. As a greater similarity implies
a better model fit to the data, at least in the model’s abil-
ity to predict changes in local phase, the aim is to tune the
model’s free parameters to maximise this similarity measure
(SMI(Mp,Ec)).

3.7. Model relaxation

The final calibration method to be considered is a fine-
scale local model relaxation of the predicted trajectory map-
ping, aiming to better spatially match the predicted model
detector space density signals to those observed in experi-
ment through minor adjustment of the predicted model tra-
jectory data. This relaxation has been applied in an attempt
to minimise any residual distortions arising due to remaining
model inaccuracies, e.g. errors in the initially assumed speci-
men geometry, alignment, or evaporation physics. Unlike pre-
vious relaxation schemes applied in APT that attempted to
homogenise reconstruction densities [33, 34], this approach
is applied in detector space (D), maintaining the topological
structure of any predicted trajectory crossover regions within
the mapping.

In this work, the diffeomorphic density matching algorithm
described in [35, 36] is applied between the predicted model
detector space ion densities (sections 3.4.5 and 3.4.3), and
the experimental detector space ion hit densities (calculated
via Kernel Density Estimation [37]) through the ddmatch
tool [38]. This matching algorithm attempts to determine a
smooth and well-behaved function—a diffeomorphism—that
best transforms the model density image back onto the experi-
ment density image. These diffeomorphic mapping algorithms
are commonly applied in the field of computational anatomy
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Figure 12. (a) The model density detector map at an instance in time. (b) The experimental density detector map at the same instance
(matched together via depth calibration). (c) The determined alignment transformation. (d) The transformed model density detector map.
The low density pole has been partially accounted for. Alignment performed using the open-source code ddmatch [38].

in order to match a patient’s imaged organ structure back to
a model [35, 39, 40]. In our case, this algorithm will instead
match the evaporation model’s ion density predictions back
to the experimental APT image data by determining a local
matching transformation. This determined local transforma-
tion is then applied to the model’s trajectory mapping prior
to data reconstruction, with the magnitude of the required
local matching transformation providing information about
the local model error.

The application of the diffeomorphic density matching
algorithm implemented in ddmatch between a predictedmodel
and experimental density detector hitmap for a fin field-
effect transistor (finFET) semiconductor dataset is shown in

figure 12 (further discussed in section 4.2). It can be seen that
this algorithm derives a transformation (figure 12(c)) that bet-
ter aligns the original model predicted hitmap (figure 12(a)) to
the experimental hitmap (figure 12(b)). This relaxation of the
model transforms the predicted trajectory mapping such that
model detector densities (figure 12(d)) better match the exper-
imental data densities (figure 12(b)).

This model relaxation procedure can be applied as an
optional postprocessing step within the reconstruction work-
flow (see figure 1). It appears to be most impactful when
applied to materials systems exhibiting large changes in spa-
tial magnification (in particular where there is significant local
demagnification).
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4. Results and discussion

Through the workflow outlined in figure 1, the reconstruction
of experimental APT datasets using the defined evaporation
model can be performed. In the following section, the model-
driven reconstruction of two semiconductor structures will be
considered: a SiGe multilayer system (section 4.1), and a fin
field-effect transistor (finFET) device (section 4.2). Both of
these will be compared to their conventional point-projection
reconstructions under the Bas protocol [3].

For both these following reconstructions, a simulated flight
path of L= 0.102 m and detector radius of Rd = 0.038 m
has been used. This configuration matches the LAWATAP
instrument on which both these experimental datasets were
obtained.

4.1. Reconstruction of a multilayer system

The first material system considered is an SiGe multilayer sys-
tem. Experimental details for this system can be found within
section III of the supplementary material. Prior to analysis, the
specimen has been prepared via a gallium FIB. The 3D struc-
ture of the specimen surface and internal phases is known from
correlative electron tomography (ET), reconstructed via the
SIRT algorithm [41] from a tilt series taken in the HAADF-
STEM imaging mode prior to APT analysis (figure 13(a)).
From the 3D ET voxel field, isosurfaces have been manually
extracted for the specimen surface and phases (figure 13(b)).
These extracted isosurfaces have then been used to initialise
the specimen model (figure 13(c)). It is worth noting that a
drop in ET image contrast near the specimen surface preven-
ted an accurate definition of the internal phases in this region.
This required extrapolation of the internal layer phases up to
the specimen surface. Possible causes for this loss of contrast
include ET reconstruction artefacts or material amorphisation
due to Ga implantation.

Now that the specimen model geometry has been defined,
model-driven reconstruction can be considered. Simulations
were performed on a 48× 38× 133 level set grid, with cell
widths of 1.5 nm. Initially, depth calibration of the APT data
against the model must be performed. From the approach out-
lined in section 3.4.5, values for the ionic volumes are determ-
ined to use between these landmarks that ensure this align-
ment through manual placement of specific landmarks in the
experiment ion evaporation sequence (figure 14(b)). For the
model, these landmarks’ corresponding positions are automat-
ically extracted from when the Ge layers first appear within
the model predicted detector space (figure 14(a)), with the
local phase on the detector determined via the method in
section 3.4.4.

Finally, now that both the initialisation of the model and
detector space depth calibration has been performed, model-
driven reconstruction of the experimental data can be carried
out via the predicted model’s trajectory mapping (section 3.3).
However, the model parameters, including the phase evapora-
tion fields, trajectory compression, and alignment parameters
must be tuned to optimise the MI similarity metric outlined in
section 3.6.2. Here a regular grid search has been performed

over the unknown parameters within the FOV ({FSi0.3Ge0.7 ,

κ, θ,
→
r }), measuring the local phase-composition similarity

between the model and generated reconstruction via the MI
metric (see section 3.6.2). This model parameter tuning con-
sidered 12 different evaporation field values for Si0.3Ge0.7,
taking a total time of 4 h. The results from this parameter
tuning are visualised in figures 15(a)–(d). These show that an
optimum set of parameters can be identified, with the resulting
optimum model-driven reconstruction shown in figure 15(e).
By comparing with its point-projection reconstruction (per-
formed in shank mode with parameters estimated from the
ET data and known layer spacing dimensions), it can be seen
that given the optimised specimenmodel, the tilting distortions
observed in the phase layers have largely been successfully
corrected for within the model-driven reconstruction.

However, it should be noted that some internal distortions
of layers remain. These remaining distortions likely arise due
to the extracted layers from the ET data not being completely
flat to begin with (see section IV in the supplementary mater-
ial). Indeed, the final quality of the obtained model-driven
reconstruction can only be as good as the initial specimen
model. Significant challenges are faced by users, particularly
those aiming to define the specimen model using correlative
ET data, where any error in the initial geometry and land-
mark placement may greatly effect the achievable reconstruc-
tion quality.

The model-driven reconstruction’s normalised density
spread (the standard deviation divided by the mean) can also
be considered as a metric for reconstruction performance, as
real material densities are very frequently near homogeneous.
Here the density spread has been calculated from voxel dens-
ity values, obtained by spatially binning the ion data over a
80× 80× 80 grid. Here, voxels on the reconstruction edge
have been removed to avoid boundary effects. It was found that
the normalised density spread was minimised when the micro-
structural similarity between the model and experiment was
maximised (figure 15(a)), even though the local density has
not been considered by the MI microstructural optimisation.
The calculated normalised density spread for the optimum
model-driven reconstruction was 0.24, lower than the value
of 0.28 obtained for the calibrated conventional Bas recon-
struction. These results provide additional quantitative evid-
ence that the new automated calibration approach is indeed
improving reconstruction quality.

By defining an emitter model from ET data of the ini-
tial specimen shape prior to evaporation, the proposed model-
driven reconstruction has successfully corrected for mul-
tiphase tilting distortions within an experimental dataset for
this SiGe multilayer structure. However, here the considered
structure is largely cylindrically symmetric around the ana-
lysis (depth) axis. In the next example, the stability of the new
reconstruction protocol will be explored for an asymmetric
structure resembling a modern finFET device.

4.2. Reconstruction of a finFET device

While the new reconstruction algorithm successfully correc-
ted for the layer tilting distortions within the SiGe multilayer
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Figure 13. (a) Cross-section of the raw ET data (with background removed). (b) Contour extracted surface and phase meshes. Due to edge
contrast loss, phase meshes have been extended to intersect the specimen surface. (c) Initialised model with labelled effective evaporation
fields (two unknown). (d) Once these evaporation fields are defined, simulated evaporation of the structure can be performed.

Figure 14. (a) Local phase in the model predicted detector space within the Region Of Interest (ROI). Model landmarks are positioned
where Ge (blue) layers enter the FOV. (b) Binned histogram of ion depth positions in detector space, with experimental landmark positions
marking the initial evaporation of Ge layers.

dataset, the protocol’s stability and performance for non-
axisymmetric systems and concave specimen apex shapes has
yet to be tested. To investigate this, the protocol was applied
to reconstructing an APT dataset for a finFET device. In the
authors’ previous work [7], this same dataset was ‘naively’
reconstructed by assuming specific evaporation field values.
However, here model alignment, compression, and evapor-
ation field parameters will be automatically selected under
the new calibration procedure outlined in section 3.6. Exper-
imental details for the finFET dataset can be found within
section III of the supplementary material.

Applying the conventional Bas protocol to the finFET data-
set reveals a narrowing distortion and increased density within
the central fin region (see figures 16(c) and (d)). This nar-
rowing is not present within the correlative electron micro-
graphs (see figures 16(a) and (b)), implying that the narrowing
is likely an APT imaging artefact, due to the differing evap-
oration mechanics of the SiGe and SiO2 phases. This differ-
ing phase evaporation behaviour results in a specimen apex
shape deviating significantly from the assumed hemisphere of
the Bas protocol [3, 7, 34].

In order to drive the reconstruction protocol, we must first
define the specimen model. Unlike the multilayer system,
correlative ET data was unavailable for the finFET dataset.
Instead, the model’s specimen structure was estimated using
prior knowledge of the device geometry and correlative elec-
tron micrographs (figures 16(a) and (b)). Using this data, an
initial specimen geometry for the evaporation model could be
determined as shown in figure 16(h). Further details of the
finFET model’s initialisation can be found in our previous
work [7].

Once the initial model state has been defined, its evap-
oration can be simulated. For this an 84× 84× 134 simu-
lation grid was used, with cell widths of 3 nm. Like with
the multilayer system, suitable landmarks must be provided
to calibrate the model and experimental detector spaces.
The placement of landmarks in the experiment ion evapor-
ation sequence are shown in figure 17. Unlike our previ-
ous work [7], the corresponding landmark positions for the
model are automatically determined from when particular
model phases appear and disappear from the detector phase
maps.
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Figure 15. (a) Regular grid search over FSi0.3Ge0.7 in detector space under the MI metric. (b)–(d) Plots for the partial optimisations over the

instrument compression (κ), and rigid body alignment parameters (θ,
→
r ). (e) Comparison between point-projection reconstruction and

optimised model-driven reconstruction. The layer tilting distortions present in the Bas reconstruction have been successfully corrected for.

While approximate values are known for the evaporation
fields of Si and Ge [42], no such estimates exist for effect-
ive evaporation field values for the SiO2 and SiGe phases.
Here, both these unknown phase evaporation fields are tuned
via a regular grid search (shown in figure 18(a)), explor-
ing 64 different evaporation models and taking 42 h in total.
The specimen alignment, orientation and additional traject-
ory compression have also been tuned in parallel through

an adaptive grid search performed over three increasingly
fine grids (figures 18(b)–(d)). Unlike the multilayer system,
adaptive grid search proved necessary to achieve conver-
gence when performing specimen orientation and alignment
for such a non-axisymmetric structure. The calibration pro-
cedure successfully identified an optimum model for driving
data reconstruction (figure 19(a)), the corresponding paramet-
ers for which are labelled in figure 18.
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Figure 16. (a) DF-STEM imaging of specimen. (b) Denoised SEM image post-milling. (c) Bas reconstruction of APT data showing
species. (d) Local density within the Bas reconstruction. (e) Experimental phase map at maximum central fin demagnification.
(f) Corresponding model phase map. (g) Top-down view of specimen model showing central fin tilting. (h) Lateral view of FinFET
specimen model. As model initialisation remained unchanged from our previous study [7]. Reproduced from [7]. © The Author(s).
Published by IOP Publishing Ltd. CC BY 4.0.

While the generated model-driven reconstruction
(figure 19(a)) is certainly an improvement over the conven-
tional Bas reconstruction (figures 16(c) and (d)), it can be
seen that residual distortions remain at the vertical fin inter-
faces (see section V in the supplementary material). The pres-
ence of these residual distortions is not surprising given both
the assumptions made in setting up the model geometry and
evaporation physics. However, these distortions can be further
reduced by applying the model relaxation step in section 3.7
to the trajectory data of the identified optimum model, just
prior to the final data reconstruction. This step aims to calcu-
late a slight correcting transformation to the model trajectory
mapping, that when applied better aligns density features
in the model predictions and experimental data. The result-
ing effect on the finFET system’s reconstruction is shown
in figure 19(b). From this, it can be seen that the relaxation
step has successfully reduced the residual bending distortions
previously present at the central fin interfaces. The micro-
structure within the final relaxed reconstruction agrees well
with the phase positions within the initially assumed model.

By also considering the density histogram profiles for
the conventional Bas reconstruction, model-driven reconstruc-
tion, and relaxed model-driven reconstruction (figure 19(c)),
it can be seen that the density spread has been success-
fully reduced in the relaxed model-driven reconstruction
(orange) compared to the unrelaxed model-driven reconstruc-
tion (blue). Both the unrelaxed and relaxed model-driven
reconstructions exhibit unimodal distributions, as opposed
to the conventional Bas reconstruction (green) that has
a bimodal distribution. This implies that the multiphase
density distortions in the Bas reconstruction correspond-
ing to the two majority material phases present (SiGe and
SiO2) have largely been corrected for by the model-driven
protocol.

This reconstruction of the finFET device verifies that
our new model-driven APT reconstruction protocol can
successfully correct for multiphase distortions within non-
axisymmetric general specimen structures, even in cases
where trajectory distortions and local changes in magnifica-
tion are relatively extreme.
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Figure 17. (a) Histograms (200 bins) for major ionic species showing landmark positions in the experimental evaporation sequence. (b)–(d)
Model surface states at marked landmarks B-D. As vertical landmark positioning remained unchanged from our previous study [7].
Reproduced from [7]. © The Author(s). Published by IOP Publishing Ltd. CC BY 4.0.

5. Limitations and improvements

This study builds on our previous continuum modelling and
APT image prediction from [6, 7]. By applying the results
from this continuum model, a new model-driven reconstruc-
tion protocol has been demonstrated on a SiGe multilayer and
finFET device experimental APT dataset, successfully correct-
ing for multiphase distortions. Unlike previous reconstruction
attempts leveraging this continuummodel [7], model paramet-
ers have been automatically calibrated by optimising the simil-
arity between the final generated reconstruction, and our prior
knowledge of the specimen structure.

The numerical limitations of the current evaporation
model formulation and implementation were previously out-
lined in [6, 7]. These included the limited accuracy of
the electrostatic BEM solution close to the boundary, as
well as the model’s poor computational scalability at higher
simulation resolutions. Such issues could potentially be
resolved through higher-order collocation or Galerkin BEM
approaches [43, 44], fast marching velocity extension meth-
ods, narrow band or adaptive grid level set methods [45–47],
and additional BEM compression techniques [43, 48].

The current model does not fully include the instrument
chamber, specimen holder, and a complete specimen shank
within the electrostatic field solution. As a result, an addi-
tional image compression (section 3.2) has had to be applied
to calculated ion trajectories in order to achieve an image
compression comparable to that observed in experiment. It
is currently unclear to the authors the exact extent to which
this assumed trajectory transfer function is valid for general

heterogeneous structures. However, comparative simulations
of the fields surrounding heterogeneous and homogeneous
material apex shapes show that the electric fields increasingly
conformwith increasing distance from the surface (see section
I of the supplementary material). As mathematical projection
laws are known to well approximate the charged optics of
homogeneousmaterial apex shapes [4, 5], these results provide
some support for the study’s use of a projection-based traject-
ory transfer function.

It is also worth briefly commenting on the physical accur-
acy of the current evaporation model. Both the multilayer and
finFET datasets were obtained under the APT laser-assisted
evaporation mode. It is known from experiment that the pres-
ence of the laser can significantly effect the specimen apex
shape, e.g. anisotropic blunting of the apex [49]. Therefore,
whilst the tilting distortions in the SiGe multilayer system
have been successfully reduced by the assumedmodel through
specimen-detector spatial realignment (figure 11), the true
major cause of this tilting could be from laser apex blunting.
Further simulation results supporting this hypothesis can be
found in section II of the supplementary material. Future work
should explore validation of the model-driven approaches’
compositional accuracy through correlative techniques, such
as EDS.

Additionally, specimen faceting has been omitted from
the specimen models during data reconstruction due to
a current lack in understanding of the relevant evapor-
ation physics at a continuum-scale. Previously, a simple
non-physical model reproducing faceting was proposed
in [7]. This faceting is clearly present as low density
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Figure 18. (a) Visualisation of 8× 8 regular grid search over FSiO2 and FSiGe measuring microstructure similarity via mutual information
(MI) in detector space. (b) Partial MI maximisation of the image compression (κ) through an adaptive grid search. (c) Partial MI
maximisation of rotation around the analysis axis (θ) through an adaptive grid search. (d) Partial MI maximisation of the translation vector
(
→
r ) through an adaptive grid search.

poles in the experimental datasets (see figure 12), and
whilst the model relaxation step can partially correct for
these pole distortions, future continuum models should

aim to physically capture this demagnification occurring
at surface facets. The authors suspect that doing so will
likely require a multiscale modelling approach in order to
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Figure 19. (a) Front-facing orientation of parameter-constrained reconstruction showing local composition and density. (b) Same
orientation of reconstruction following interface alignment via the diffeomorphic density matching transformation. (c) Histogram for local
voxel densities (200 bins) for the different reconstructions. It can be seen that the diffeomorphism-aligned model-driven reconstruction
features a reduced density spread, particularly at the higher densities associated with vertical interfaces.

fully capture the atomic-scale evaporation ordering effects
responsible [23].

The current parameter optimisation procedure is performed
via either a regular grid search or adaptive grid search
approach. While alternative local optimisation methods would
converge in fewer model iterations [31], these could poten-
tially miss the global maximum in similarity [12]. For lar-
ger model parameter searches, a random search might outper-
form this grid search approach [50]. For more complex mod-
els than those considered, running parameter optimisations on
distributed computing clusters will almost certainly become
essential to achieve practical computation times. Computation
times could be further reduced through additional numerical
improvements to the driving model. For example, the adapt-
ive surface remeshing currently required by the driving model
is preventing the model from being fully parallelisable [7]. A
solution to this could be replacing the BEM with a meshfree
solver [51].

Whilst successfully correcting distortions in semiconductor
datasets, the protocol remains technically challenging and
additional progress is required before a widely applicable
model-driven reconstruction protocol is achieved. The current
workflow still requires significant user input, such as the initial
geometry, and some preprocessing, such as landmark place-
ment in the detector event sequence. The potential to further

reduce user input and automate the analysis through data-
driven approaches could prove critical for its wider adoption
within the APT community.

Finally, it should be noted that the continuum modelling
framework is largely independent from the assumed law gov-
erning material evaporation (equation (1)). Therefore, this
law can be readily swapped out for alternative forms without
requiring significant modifications to the model. By enabling
the simulation of structures that are directly comparable to
experimental data, this modelling framework could be used
to explore and test new forms for evaporation laws, and aid
in validating our current understanding of field evaporation
theory. In turn, more accurate prediction of model evapora-
tion and resulting specimen apex shape changes could reduce
residual errors within model-driven reconstructions.

6. Conclusions

In this study, a new model-driven reconstruction protocol has
been outlined, capable of correcting for multiphase distortions
within experimental APT data. Unknown model parameters
such as phase evaporation fields and specimen orientation
have been automatically tuned by maximising the similarity
between local composition in the generated reconstruction,
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and the prior knowledge of local phase in the original speci-
men structure. Through this new approach, distortions within
a semiconductor multilayer system and a finFET device have
been significantly reduced. An additional model relaxation
step, that applies a diffeomorphic density matching algorithm
developed for computational anatomy, was also applied to the
finFET dataset, further reducing multiphase distortions.

A new method was also outlined for efficiently predict-
ing detector density hitmaps, as well as predicting detector
regions where trajectory crossover is occurring. In the future,
such an approach could allow the partial correction of com-
position biases arising from this spatial crossover within
reconstructions.

The successful model-driven reconstruction of two differ-
ing semiconductor datasets clearly demonstrates this new pro-
tocol’s superiority over conventional projection-based proto-
cols for reducing APT image distortions in semiconductor
devices: material systems critical for modern society that are
widely and routinely analysed in both research and industry.
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Source code and experimental data

The source code for both the model and automated recon-
struction protocol is available at https://gitlab.com/fletchie/
casra-3d. Both the experimental finFET and SiGe multilayer
datasets (both APT and electron microscopy data) can be
obtained at [52]. All simulations have been performed on
Ubuntu 20.04 using system Python 3.8, with Python library

versions installed via apt and linked against OpenBLAS ver-
sion 0.3.8. All dependency library versions used are fully spe-
cified by the Ubuntu distribution, and can be checked at https://
packages.ubuntu.com/. Simulations were performed on the
same desktop (Ryzen 7 CPU system with 8 real cores running
at 3.4 GHz).

A new version of this code (CASRA++) is also under
development, with the aim to refactor the existing codebase
into a more user-friendly program. The latest version of this
program can be found at https://gitlab.com/fletchie/casra.
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