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ABSTRACT

In this work, we demonstrate the epitaxial growth of a gallium-nitride (GaN) buffer structure qualified for 1200V applications on 200mm
engineered poly-AlN substrates with hard breakdown>1200 V. The manufacturability of a 1200V qualified buffer structure opens doors to
high voltage GaN-based power applications such as in electric cars. Key to achieving the high breakdown voltage is careful engineering of the
complex epitaxial material stack in combination with the use of 200mm engineered poly-AlN substrates. The CMOS-fab friendly engineered
poly-AlN substrates have a coefficient of thermal expansion (CTE) that closely matches the CTE of the GaN/AlGaN epitaxial layers, paving
the way for a thicker buffer structure on large diameter substrates, while maintaining the mechanical strength of the substrates and reaching
higher voltage operation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0097797

(Al)GaN buffer growth on Si is becoming standard technol-
ogy;1–4 however, the high voltage operation>1200 V requires either
native or engineered substrates as the mechanical strength of tradi-
tional 200mm Si wafers even with thickness larger than 1100lm does
not allow growing thicker stacks, which is critical to enable high volt-
age operation.5–7 This is mainly due to a large lattice and coefficient of
thermal expansion (CTE) mismatch between GaN and Si. Therefore,
the use of substrates with a CTE-matched core is one of the solutions
to enable high voltage operation. One such option is to use engineered
poly-AlN substrates mainly due to their CTE-matched core to GaN
and higher mechanical strength of the wafers.8 The engineered poly-
AlN substrates are commercially available from Qromis, Inc., also
known as QSTVR substrates.9 In this work, we will demonstrate 1200V
buffers on 200mm engineered poly-AlN substrates (QSTVR ) for p-GaN
gate based E-mode HEMT devices. Two different buffer schemes
based on intrinsic (carbon comes from Al and Ga precursors) and
extrinsic (dedicated source for carbon) C-doping will be presented.
The buffer scheme on QSTVR substrates is based on the reversed
stepped superlattice (RSSL) scheme, a proprietary concept that Imec
invented.10 The RSSL buffer scheme was chosen in the epitaxial

process development instead of a single superlattice (SL) buffer
scheme, because the RSSL buffer scheme features a much larger flexi-
bility in stress engineering and, hence, becomes a more promising can-
didate for the growth of thick buffer structures on the engineered
substrates of large size, which show different mechanical behaviors
than regular Si substrates.

Furthermore, it must be noted that strong strain partition effect
exists for (Al)GaN growth on engineered substrates such as SOI and
QSTVR .11 The strain partition effect occurs when most of the strain is
accommodated in a compliant substrate [i.e., the top Si (111) device
layer in the case of SOI and QSTVR in Fig. 2], which is usually thinner
than the stack thickness itself. This strong strain partition leads to
built-up of high curvature during the growth. One approach to limit
the in situ curvature built-up is to use thicker complaint substrates.
However, this will not be sufficient enough, and the strain partition
effect will remain the limiting factor preventing the growth of thicker
buffers for high voltage applications. Conventional buffer schemes
using stepped SL (i.e., Eq. Al-1% > Eq. Al-2% in Fig. 1, for more
details on the stepped SL scheme, readers are referred to Ref. 12) are
based on continuous built-up of compressive stress, which leads to
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high curvature on the QSTVR substrates during growth. Therefore, the
growth of thicker buffers on QSTVR substrates requires introduction of
tensile stress in order to limit the in situ curvature built-up. This can
be achieved through introduction of alternative compressive and ten-
sile stress (i.e., Eq. Al-1% < Eq. Al-2% in Fig. 1). Following this, the
reversed SL can also be stacked in order to optimize the ex situ wafer
bow. However, in this study, we have only used the single reversed SL
approach, which already allows us to grow buffer structures as thick as
7lm with very low bow values as discussed later. Using the RSSL
approach, no wafer breakage has been observed during epitaxial

growth in our metalorganic chemical vapor deposition chamber or
while device processing.

All epitaxial stacks discussed in the following were grown on
200mm QSTVR substrates using a state-of-the-art planetary AIXTRON
G5þ C reactorV

R

. Three different stack concepts as shown in Fig. 2
were investigated. From here on, these stack concepts are referred to
as stack A and stack B (both with intrinsic C-doping) and stack C
(with extrinsic C-doping). All stacks are based on the RSSL scheme.
The main difference between stack A and stack B is in the buffer
region. Aside from the different Al% in the SL region, stack B has

FIG. 2. HEMT stacks based on intrinsic (stack A and stack B) and extrinsic (stack C) C-doping developed in this study. Buffer thicknesses of stack A and stack B vary from
5.3–7.4 to 4.8–6.1lm, respectively. Stack C has a thickness of �6.8lm.

FIG. 1. Conceptual representation of stepped SL and reversed stepped SL. The equivalent Al% in the SL is calculated using the formula shown in the figure. tAlN and tAlGaN
are thicknesses of AlN and AlxGaN in the SL pair. x is Al%.
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bottom C-doped GaN and AlGaN interlayers. The motivation for the
use of bottom interlayers will be discussed later. Stack C is based on
external C-doping in the SL and GaN:C. There are different routes by
which a higher VBD can be achieved for GaN-based epitaxial stacks:
(a) by increasing Al% in the SL region, as the critical electric field of
AlN (12MV/cm) is greater than that of GaN (3.4MV/cm),13 (b) opti-
mizing C-levels mainly in the SL and GaN:C by using either an exter-
nal C-doping source such as ethylene (C2H4) or by adjusting process
parameters (which impacts the crystal quality), and (c) by increasing
the buffer thickness to reduce the critical field at the AlN/Si inter-
face.13,14 Routes (a) and (b) have been optimized prior to this study.
Route (c) will be assessed in this study beside the different stack con-
cepts. Therefore, stack A and stack B were grown with different thick-
nesses of the stress management layers to reach the target VBD of at
least 1200V. It must be noted that low post-epi bow values were
achieved even for thicker buffer (�7lm) stacks by tuning the individ-
ual layer thicknesses of the stress management layers [Fig. 3(a)]. No
slip lines and deep cracks were observed through the wafer during
CAMTEK (an optical method to inspect inner cracks and slip lines in
epitaxial layers) inspections as shown in Fig. 3(b). The surface rough-
ness extracted from AFM measurements for the 6.8lm thick stack C

is as low as 1.5nm [Fig. 3(c)]. Figure 4 shows TEM inspections on all
stacks. It is evident that the high threading dislocation density is pre-
sent at an AlN/Si device layer interface and runs through the whole
stack. Similar behavior has been observed for GaN on Si growth.
Defect control has not been focus of this study as it is known on the
contrary that large density of these defects might actually help to
reduce the dispersion for intentionally C-doped buffers.15 The crystal-
line quality of the AlN nucleation and (Al)GaN buffer is benchmarked
using HR-XRD measurements in Table I. Important to note is that
test structures to measure VBD and buffer dispersion were fabricated
on the newly developed stacks according to the process flow described
in Ref. 7.

Low vertical buffer leakage (to have a good ON/OFF current ratio
for the transistors) and low buffer dispersion (for good dynamic per-
formance of the device) are two crucial parameters for power device
applications.16–18 The buffer leakage is evaluated for intrinsically C-
doped stack A and stack B with different thicknesses as shown in Fig.
5. The measurement setup for vertical buffer leakage currents in for-
ward (FWD) and reverse (REV) bias is shown in the inset of Fig. 5(d).
Figures 5(a) and 5(d) show the comparison of buffer leakage current
for 5.3 and 7.2lm thick stack A at 25 and 150 �C, respectively. The

FIG. 3. (a) Wafer bow on stack A, stack B, and stack C with various thicknesses, (b) CAMTEK edge inspection (the square pattern on the wafer is due to stitching of measure-
ment shots), and (c) AFM inspection on �6.8 lm thick stack C.

FIG. 4. STEM inspections on (a) stack A, (b) stack B, and (c) stack C. The threading dislocations start at the AlN/Si interface and run through the whole stack.
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VBD scales with total stack thickness, reaching >1200 V for 7.2lm
stack A both in FWD as well as in the REV direction for a maximum
allowed buffer current limit of 1 lA/mm2 at 25 �C and 10 lA/mm2 at
150 �C (shaded region in cyan). However, the FWD and REV I–V
characteristics are asymmetric for stack A. This is particularly appar-
ent for elevated temperatures where there is a difference of >300 V
between FWD and REV biasing. For stack B in Figs. 5(b) and 5(e), a
similar trend in VBD scaling is observed as a function of thickness,
although maximum VBD for the thickest stack B (i.e., 6.1lm) is lim-
ited to �900V. This is mainly because the total stack thickness is
lower as compared to stack A with VBD>1200V. Increasing the total
stack thickness to 7lmwill allow to achieve VBD>1200V.

It is evident that the insertion of bottom C-GaN and AlGaN
interlayers in stack B allows us to achieve symmetric I–V characteris-
tics in FWD and REV directions compared to stack A. However, it is
known from GaN on Si experiments (not shown here) that the main
reason for such asymmetry is absolute C-concentration in the SL

region. For tuned (and uniform C-levels) across the wafers, there is
negligible difference in FWD and REV I–V characteristics as shown in
Figs. 5(c) and 5(f) for extrinsic C-doped stack C.

Note that the systematic failures have been observed in the
center region of the wafer (i.e., lower VBD compared to middle and
edge regions) for both stack A and stack B independent of the total
stack thickness. This is due to a non-uniform intrinsic C-doping
within the wafer as shown in Fig. 6(a) for the 7.2 lm stack A.
Optimizing this uniformity has not been the focus of this work. By
adjusting the local V/III ratio and flow distribution, an improve-
ment can be expected. The average C-level can be controlled by con-
ventional tuning, e.g., temperature and V/III ratio.19 Adjusting the
C-level by an intrinsic doping level requires unfavored process con-
ditions for crystal quality and limits the process parameter space
significantly. As a preferred choice, the C-level and uniformity can
be controlled by using an external C-doping source. This allows a
very wide process window and combines very high crystal quality
with C-density optimized for high breakdown and with little to no
buffer dispersion.20,21 We have chosen this route, as will be dis-
cussed for stack C.

To avoid the narrow process window of intrinsically doped stacks
and to optimize the C-level and crystal quality at the same time, it is
the preferred choice to use extrinsic C-doping in the SL and GaN:C
(i.e., stack C developed in this study). Mainly, extrinsic doping offers
the choice to combine high growth temperature with high C-levels at
high V/III ratio. The C-level and uniformity can be easily adjusted by
the precursor flow rate and the distribution via the fivefold injector of

TABLE I. HR-XRD benchmark for buffer structures.

Stack
AlN (002) Mean

(Std. Dev.) (arcsec)
GaN (002) Mean
(Std. Dev.) (arcsec)

GaN (102) Mean
(Std. Dev.) (arcsec)

A 694 (14) 536 (51) 1647 (46)
B 845 (78) 530 (36) 1538 (29)
C 853 (25) 731 (24) 1706 (46)

FIG. 5. Vertical buffer leakage measurements for intrinsic C-doped (a) and (d) stack A (5.3lm vs 7.2 lm), (b) and (e) stack B (4.8 vs 6.1 lm), and (c) and (f) stack C (6.8lm)
at 25 and 150 �C. The measurement setup is shown in the inset of Fig. 5(d).
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the G5þ C reactorV
R

. Figure 6(b) shows improved center to edge uni-
formity for stack C using extrinsic C-doping in SL and C-GaN.

Figures 5(c) and 5(f) show the comparison of the buffer leakage
current for a 6.8lm thick stack C at 25 and 150 �C, respectively. The
VBD is uniform throughout the wafer, demonstrating the clear advan-
tage of using an external C-doping source to control the C-level in SL
and GaN:C. VBD is >1200 V at 25 �C. At 150 �C, some of the struc-
tures start to fail around 1000–1100V. The root cause for these sudden
failures is not yet understood. For the moment, we can exclude extrin-
sic C-doping as the origin of these failure, as earlier experiments in
GaN-on-Si have shown improved device yield (see the supplementary
material for VBD comparison between GaN on Si and QSTVR buffers).
Further increasing the buffer thickness to 7.2lm as for stack C will
provide sufficient margin in VBD so that all structures within the wafer
reach the target voltage of 1200V at higher temperatures as well.

Next, the buffer dispersion using the two-dimensional electron
gas (2DEG) transmission line method (TLM) structure was evaluated.
First, the initial current between two Ohmic contacts is measured [Fig.
7(a)]. Second, a back-gating of either �900 or �1200V [Fig. 7(b)]
depending on the stack thickness is applied for 10 s on the substrate
electrode [Vsubs in Fig. 7(a) contacted from the surface using deep via
processing, covered with a thick Al-containing metal], followed by a
TLM current measurement. The initial and final current (after back-
gating stress) is converted to R0 and RTLM, respectively. Figures 8(a)

and 8(b) show the buffer dispersion (RTLM/R0) for the thickest stack A
(7.2lm) and stack B (6.1lm). It is evident that the buffer dispersion
is slightly on the higher side (within a range of 6 25%) for stack A,
similar to results for other buffer thicknesses. However, the buffer dis-
persion for 6.1lm stack B is extremely low within a range of 65%.
Furthermore, the extrinsically C-doped stack C shows advantages over
the intrinsic doping in stack A with a very narrow distribution for
buffer dispersion even at�1200V as shown in Fig. 8(c).

It must be noted that there is basically no difference between dis-
persion performance at 25 and 150 �C for individual stacks. However,
buffer dispersion is significantly improved while comparing stack A
and stack C, which are based on the same buffer scheme except that
SL and C-GaN are extrinsically doped. It has been reported in the liter-
ature that extrinsically C-doped GaN buffers have better dynamic
properties.22 This has been related to a more efficient transport of
trapped charge for extrinsically C-doped GaN. However, the findings
in Ref. 22 were limited to different C-doping methods in C-GaN only,
and the doping method in other stress relief layers was kept the same
(i.e., intrinsic). The impact of extrinsically C-doped SL layers on
charge transport requires further understanding as scope of the future
work. On the other hand, for intrinsic stacks, buffer dispersion is also
improved for stack B as compared to stack A. This could also be
due to insertion of bottom C-GaN as discussed for improved symme-
try of I-V characteristics. However, this requires further technology

FIG. 6. SIMS measurements showing Ga, Al, Si, O, and C profiles at the center and edge of the (a) 7.2lm stack A and (b) 6.8lm stack C.

FIG. 7. (a) Test structure and (b) test procedure to measure buffer dispersion. X varies from �650 to �1200 V depending on the stack thickness.
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computer aided design simulations to study the physical mechanisms
impacting the buffer dispersion and the I-V characteristics by insertion
of bottom C-GaN and AlGaN interlayer.

To summarize, buffer stacks targeting higher vertical buffer
breakdown were developed on commercially available poly-AlN
(QSTVR ) substrates. The target VBD>1200V was reached with 7.2lm
epitaxial intrinsically C-doped stack A. Stacks with intrinsic C-doping
suffer from non-uniform VBD. We demonstrated that by introducing
an external C source during epitaxial growth, the uniform and sym-
metric buffer leakage in forward and backward bias conditions is
reached with a buffer dispersion below 7%, both at 25 and 150 �C.
These extrinsically C-doped buffers of 6.8lm-thick can be used for
applications above 1000V. In the future work, a slight increase in the
total buffer thickness is planned in order to reach theþ1200V target.

See the supplementary material for more information on VBD

comparison between Si and QSTVR .
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