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Abstract: Indoor path loss models characterize the attenuation of signals between a transmitting
and receiving antenna for a certain frequency and type of environment. Their use ranges from
network coverage planning to joint communication and sensing applications such as localization and
crowd counting. The need for this proposed geodesic path model comes forth from attempts at path
loss-based localization on ships, for which the traditional models do not yield satisfactory path loss
predictions. In this work, we present a novel pathfinding-based path loss model, requiring only a
simple binary floor map and transmitter locations as input. The approximated propagation path is
determined using geodesics, which are constrained shortest distances within path-connected spaces.
However, finding geodesic paths from one distinct path-connected space to another is done through
a systematic process of choosing space connector points and concatenating parts of the geodesic
path. We developed an accompanying tool and present its algorithm which automatically extracts
model parameters such as the number of wall crossings on the direct path as well as on the geodesic
path, path distance, and direction changes on the corners along the propagation path. Moreover, we
validate our model against path loss measurements conducted in two distinct indoor environments
using DASH-7 sensor networks operating at 868 MHz. The results are then compared to traditional
floor-map-based models. Mean absolute errors as low as 4.79 dB and a standard deviation of the
model error of 3.63 dB is achieved in a ship environment, almost half the values of the next best
traditional model. Improvements in an office environment are more modest with a mean absolute
error of 6.16 dB and a standard deviation of 4.55 dB.

Keywords: radio channel; path loss; signal strength; receivers; transmitters; wireless communication;
computational modeling; path planning; electromagnetic propagation; loss measurement; propagation loss

1. Introduction

Radio channel models characterize radio propagation for a certain frequency and type of
environment and are valuable for the design of wireless communication systems. Path loss
(PL) models characterize signal attenuation between a transmitting (TX) and receiving (RX)
antenna and allow signal strength prediction and coverage calculations during the network
planning phase [1], but can also be used for sensing [2] and localization [3] applications.

1.1. Related Work

In the past decade, a lot of research has focused on creating path loss models for
indoor environments.

A recent and comprehensive survey on specifically indoor propagation models channel
models is provided in [4]. The distance losses of the empirical or site-specific models
discussed in this survey paper either use the direct path [5,6]. Geometric information about
the environment is used in [6,7], but not without the use of explicit knowledge on the type
of walls.
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In [8], propagation measurements are presented in a corridor and office environment
for frequencies ranging from 8 GHz to 11 GHz. In [9], models are created based on
measurements up to 22 GHz in a corridor environment, for different angles of arrival and
different antenna heights. Parameters are added to the close-in free space reference distance
model and the floating-intercept model to better serve the ability to tune parameters.
At such high frequencies, wall penetrations are not often taken into consideration. In [10],
the linearity of attenuation due to obstructions or lossy media is discussed, based on
measurements at 858 MHz and 1.935 GHz. The authors implicitly account for wall losses,
under the assumption that the average wall loss in a particular environment is known,
but instead of explicitly incorporating the number of walls crossing between transmitting
(TX) and receiving (RX) antennas, an additional parameter is used, defined based on general
information about the environment. An indoor path loss model for wireless local area
networks accounting for wall attenuation is presented in [11]. The authors derive their
model from the Average Wall Model. Instead of using the average wall attenuation within
the environment, however, their model considers the different types of walls on the direct
path between TX and RX and then averages the attenuation based on the wall crossed.
This approach requires the wall types on a floor map and does not estimate non-direct
propagation paths.

In [12], indoor path loss measurements in a residential living room at 60 GHz are
presented. Radio propagation in office environments is well studied [8,13–20]. On the
other hand, only limited literature is available for path loss models on board of naval
vessels [21–23]. Previously, geodesic paths were used for ear-to-ear propagation in the
2.4 GHz frequency band by the authors of [24]. The distances considered in this work are
at least two orders of magnitude smaller and are intended to consider geodesics without
interruptions in path-connected space.

Aforementioned models and methods make no distinction in path-connectedness
of the TX and RX antennas. Models and algorithms that are based on path finding are
presented in [25–27]. The methodologies herein are based on finding the dominant path
between a transmitter and a receiver. This dominant path is defined as the least attenuation
accumulating path from transmitter to receiver. In order to do this, every possible path
must be considered. The paths are considered consecutive connections between concave
corners and center points of walls on a floor map. The connector points are used in a tree
to search for a single path.

In this research, we present a novel path loss model for predicting signal strength
based on a 2-dimensional binary floor map (representing walls and empty space, but not
their types). The PL modeling approach is validated using experimental PL measurements
in the cabin environment of a freight ship and in an office environment.

1.2. Background

In this section, we provide an overview of the different PL modeling approaches that
are typically used and in terms of the required input, i.e., a floor map, best compared to our
proposed model. We provide an implementation of the floor-map-based models under the
constraint that floor maps do not make a distinction between wall types. It is often the case
in real environments that a binary floor map is readily available, but wall types are not.

1.2.1. One-Slope PL Model

The one-slope floating-intercept (FI) model from (1) describes a linear relation between
the logarithmic distance and PL, with PL0 the PL in dB at reference distance d0 = 1 m, n the
PL exponent and dd the Euclidean distance in meter between the TX and RX antennas.

PLFI(dd) = PL0 + n · 10 log10

(
dd
d0

)
(1)

The model parameters PL0 and n depend on the frequency and environment, and are
fitted based on measurement data.
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1.2.2. Floor-map-based Path Loss Prediction

Several approaches exist to predict PL based on the floor map of the environment,
taking into account attenuation due to objects obstructing the Line-of-Sight path, as well as
floor and wall penetration.

The average wall model (AWM) from (2), also known as the Keenan-Motley model is
a simplified model that only adds floor and wall attenuation to the free space PL model
without distinguishing between different wall types, and without accounting for non-
linearity of floor losses. In (2), Lw represents the average value for attenuation due to a
wall crossing, and kw is the number of walls crossed on the direct line between TX and RX.

PLAWM = PL0 + n 10 log10
dd
d0

+ Lw kw (2)

The COST 231 multi-wall model from (3) uses a free space PL model to which losses
due to wall and floor intersections are added [28]. In this equation, dd is the Euclidean
distance between the antennas, f is the frequency in Hz, c = 3× 108 m/s is the speed of
light, Lc is a regression parameter representing a constant loss, typically close to zero, kwi
is the number of walls of type i that are penetrated, Lwi is the loss coefficient for wall
type i, and I is the number of wall types, kf is the number of penetrated floors with floor
attenuation Lf, and b is an empirical parameter to adapt to the non-linearity of floor losses.

PLCOST = 20 log10

(
4πdd

f
c

)
+ Lc +

I

∑
i=1

kwiLwi + k

[
kf+2
k f +1−b

]

f Lf (3)

The recommendation P.1238-11 from the International Telecommunication Union (ITU)
presents both a site-general and ray-tracing-based site-specific model [29]. We will consider
the site-general model from (4), because it best compares to the model we propose in this
paper in terms of the input requirements. While this site-general model does not consider
wall crossings, it implies the wall losses by making a distinction between coefficients for
Line-of-Sight (LOS) and non-Line-of-Sight (NLOS) scenarios. This means that the model
also requires a floor map. In this equation, dd is the Euclidean distance between the
antennas, f is the operating frequency in GHz, α is the path loss exponent, β is an offset
value, similar to PL0 in the one-slope PL model, γ is a coefficient related to the increasing
transmission loss with frequency f.

PLITU = 10 α log10(dd) + β + 10 γ log10(f) (4)

1.2.3. Ray Tracing Based Models

In ray tracing algorithms, rays are launched for different azimuth and elevation
angles, and interactions with the environment are determined. The drawback is the high
computational complexity, as well as the requirement of having an accurate description of
the environment [30,31].

1.2.4. Pathfinding Based Models

The indoor dominant path prediction (IDP) model provides ray tracing accuracy at
a significantly lower complexity. IDP searches for only a single path, i.e., the dominant
path, which contributes to the most received power at the receiver antenna RX. The IDP
model justifies the use of a single path between TX and RX because more than 95% of the
contributed power is contained in 2–3 rays [25,26]. To find the dominant path, without the
computational intensity of ray tracing, IDP initially limits the number of ‘passages’ that a
radio wave can supposedly go through when TX and RX are not in LOS. It does so by relying
on a graph that connects distinct rooms by connector points in the center of shared walls.
We refer to rooms as path-connected spaces in the remainder of this paper. Non-convex
path-connected spaces are connected similarly by placing connector points in the concave
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corners. In doing so, the model considers an exhaustive list of all possible paths from TX
to RX. A pre-defined heuristic then decides on the least loss-inducing path. Parameters
along this path are then used to determine wall losses, diffraction losses, reflection loss,
waveguiding, and distance losses. While the original IDP model used a neural network
to find the path losses, the authors of [27] provide a thoroughly documented version of
IDP with an intuitive model equation instead of a neural network. Even though IDP is
conceptually similar to our proposed model, it requires detailed information such as the
type of walls on the floor map to populate crucial reflection, diffraction, and waveguiding
parameters. For this reason, we will not include IDP in the comparison and limit the
comparison to floor-map-based models which can be used without wall type information.

1.3. Contributions

In this paper, we propose a path loss model and parameter estimation algorithm for
path loss predictions. The proposed model only requires the input of a binary floor map,
without the need for detailed wall type information. As opposed to the models in the
previous sections, the proposed model is based on the combination of the direct path and
the shortest geodesic path [32] between a transmitter and receiver. Instead of the euclidean
distance, the distance along the points of the geodesic path is used. While the Euclidean
distance of the direct link is not used as the distance metric, the number of wall crossings on
the direct link is still used as a parameter. We find that in the proposed model, the impact of
walls crossed on the direct link has a logarithmic relationship with the path loss, while the
walls crossed on the geodesic paths (thus between distinct path-connected spaces) show
a linear relationship with path loss. Using only the geodesic path, without performing
ray-tracing, interaction losses are represented by the direction changes along the path.
The model is implemented in a tool that automatically extracts the parameters of the
model to estimate path loss based on a 2-dimensional floor map and predefined transmitter
locations. The implementation is validated against path loss measurements using DASH-
7 transceivers operating at 868 MHz in two different environments, i.e., the metallic
environment of a ship and an office environment. This validation is then compared to three
conventional floor-map-based path loss models. We evaluate the most commonly used
floor-map-based models by tuning the coefficients to our measurement environments in
our PL model tool. Given that the models compared range from site-general to site-specific
and from zero to three tunable coefficients, the goal of the evaluation comparison is not
to gauge a head-to-head performance difference, but rather to provide a set of broad, yet
commonly used model performances in conjunction with our PL model tool. The compared
results are however intended to contribute to an informed trade-off decision when selecting
a PL model.

2. Methods
2.1. Path Loss Model

The proposed model in this paper is based on the approximated propagation paths of
the radio signal. Many floor-map-based path loss prediction models either consider the
direct path (AWM, COST 231, ITU-R P.1238) or choose a single most likely propagation path
of the signal, discarding the direct path altogether (IDP). In the latter case, all the attenuation
is implied to be a result of the approximated propagation path and the losses incurred
along it. From our measurements, we find that even when considering an approximated
propagation path, it is still useful to consider wall losses on the direct path with regard to the
prediction of path losses. In our model, we make a distinction between walls crossed on the
direct path and walls crossed on the propagation path. The former has a logarithmic relation
to the path loss and the latter a linear one. We find and report on the importance of making a
distinction between propagation paths crossing walls that divide path-disconnected spaces
and those that cross walls that merely reside in the same path-connected space. We propose
the geodesic path loss model (GPM) from (5). In this model, we use geodesics or shortest
distances constrained by walls to determine the shortest paths within path-connected
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spaces. In the remainder of the paper, we specify the approximated propagation path as
the geodesic paths. Finding geodesic paths can only be done in path-connected spaces,
as such, we apply a systematic methodology to cross distinct path-connected spaces and
concatenate multiple geodesic paths into one resulting propagation path. The extraction
of GPM parameters is detailed in Algorithm 1. The coefficients and parameters of the
model are as follows. PL0 is the reference path loss in dB at distance d0, n the path loss
exponent, dP the path distance in meter of the (concatenated) geodesic path. Lwd and
Lwp are the coefficients for the average wall losses on the direct path and geodesic path
respectively. kwd and kwp are the number of walls crossed on the direct path and geodesic
path respectively. Lα is the coefficient for the interaction loss expressed as the sum of
direction changes αi along the path.

PLGPM = PL0

︸ ︷︷ ︸
Loss at 1 m

+





10 n log10

(
dP
d0

)
if LOS,

10 n log10

(
dP
d0

)

︸ ︷︷ ︸
Distance loss

+Lwd10 log10
(
kwd − kwp

)
+ Lwpkwp

︸ ︷︷ ︸
Wall losses

+Lα ∑
i

sin2
(αi

2

)

︸ ︷︷ ︸
Interaction losses

otherwise.
(5)

The subtraction kwd− kwp in the logarithmic term serves to avoid the double counting
of path-disconnected wall crossings kwp. If kwd = kwp, then the logarithmic term is removed.

A visual representation of the parameters described is shown in Figure 1.
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Figure 1. The blue line is the concatenated
geodesic path P from TX to RX. Along it, the
blue and red diamonds represent the points at
which walls are crossed along the geodesic path
and direct path L respectively. The number of
walls crossings are enumerated by kwd and kwp.
The direction changes along the path P are
indicated by αi, i ∈ {0, ..., corner count}. The
distinct path-connected spaces are indicated by
Cj, j ∈ {1, ..., J}

2.2. Model implementation 180

Algorithm 1 presents the algorithm for our tool, used to determine PL parameters. 181

Figure 1. The blue line is the concatenated geodesic path P from TX to RX. Along it, the blue and red
diamonds represent the points at which walls are crossed along the geodesic path and direct path L
respectively. The number of walls crossings are enumerated by kwd and kwp. The direction changes
along the path P are indicated by αi, i ∈ {0, . . . , corner count}. The distinct path-connected spaces
are indicated by Cj, j ∈ {1, . . . , J}.
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Algorithm 1: Tool to determine geodesic paths and other PL model parameters

Data: Floor map F ⊂ Z2, as a set of couples (2-tuple coordinates) pi ← (xi, yi). f is a binary mapping of F
into {0, 1} such that f (p) is either 0 (open space) or 1 (walls). The set of wall coordinates
W ← {p ∈ F| f (p) = 1}, antenna locations pTX and pRX ∈ (F−W).

Result: Shortest (concatenated) geodesic path P , path distance dP , direct distance dd, the number of walls on
the direct link kwd, the number of walls on the geodesic path kwp, an ordered list of direction changes
across the geodesic path ∀iαi (rad).

Functions:

[Dp,C]←− GeoTrans f orm(p, C) : Returns the geodesic transform Dp,C with seed point p in connected
space (mask) C, using a quasi-euclidean 8-connected kernel, for which each element of Dp,C represents
a coordinate in C and its distance to p.
[Pp,q,C, dP ]←− GeoPath(p, q, C) : Returns the geodesic shortest path from p to q in C by considering
the thinned, minimal distance coordinates between p and q, resulting from the sum of the two geodesic
transforms. Pp,q,C ←− D{D = min (Dp,C +Dq,C)}. The shortest path distance is then equal to the
value of any coordinate element in P . dP ←− P{1}
P ←− DouglasPeucker(P , ε) : Returns the coordinate couples sequence of path P , by recursively
decimating points which do not deviate more than tolerance ε from the current line segment under
evaluation. This tolerance value is set to the max radius of the first Fresnel zone.

1 begin
2 Let ∀jCj ⊆ (F−W) be the ordered set of unique subsets, each containing the coordinates of

path-connected spaces in F, labeled as j ∈ {1, 2, 3, ..., J}. For any given point p ∈ (F−W), its
corresponding connected space label is denoted as jp and its connected space subset as Cjp .

3 Let LTR ⊆ F denote the set points on the direct link line L ←− |pTX, pRX|.
4 dd ←− ||pTX, pRX||.
5 if LTR ∩W = ∅ then
6 |pTX, pRX| in LOS.
7 dP = dd

8 else
9 kwd ←− |label(LTR ∩W)|. Assigning set cardinality after labeling connected components avoids

overestimating the number of walls crossed due to stretches of connected wall components.
10 if jpTX = jpRX then
11 L is not a LOS link, but both transceivers are in the same connected space, thus the link is

considered as a path-connected NLOS link (NLOSPC).
12 pTX and pRX are not in LOS, but they are objects in the same path-connected space Cj such that

CpTX = CpRX .
13 [P , dP ]←− GeoPath(pTX, pRX, Cj).

14 else
15 L is not a LOS link and both transceivers are in a different distinct connected space, thus the link is

considered as a path-disconnected NLOS link (NLOSPD).
16 The shortest geodesic paths through the least number of neighboring spaces N ⊆ J are searched.

In case of multiple possible sets of neighboring spaces, the subset of CN is chosen according to
min(|centroid(CN),L|). Within these CN , the connector points pc ∈ N are then used to find
intermediate geodesic paths PN , which are then concatenated to result in the final P and dP .

17 P ←− concat(PN)

18 dP ←− ∑
|N|
n=1 dn

19 kw p←− |PN | − 1

20 P ←− DouglasPeucker(P , ε)
21 αi ←− di f f (atan2(∇Pi,y,∇Pi,x)), ∀i ∈ {1, ..., |∇P|}
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2.2. Model Implementation

Algorithm 1 presents the algorithm for our tool, used to determine PL parameters.

2.3. Experiment Sites and Setup

The proposed GPM is a site-specific model, just like the AWM and the COST 231
model. For these three models, the coefficients and terms need to be tuned or chosen on a
per-environment basis. The ITU-R model is the only site-general model in the comparison
and requires no tuning of coefficients. The coefficients are chosen based on the type of
environment the path loss prediction is performed for.

The path loss measurements from two measurement campaigns are independently used
to validate the different PL models. The first measurement environment, shown in Figure 2a,
is the superstructure main cabin floor of a freight ship. The walls of this environment are all
made of either steel for the superstructure’s load-bearing walls or aluminum for doors and
thin compartmentalization walls. A second measurement environment, shown in Figure 2b,
is a regular office floor in a 10-story building. The building materials of this environment
range vastly from windowed walls to reinforced concrete. Typical materials such as timber
and plasterboard for compartment walls, different types of metal alloys for the elevator
shafts (near transceiver 17), and glass can be found in the environment. However, we
explicitly do not take this information into account for any of the implemented models,
as the assumption is that wall-type information is not available. Open doors are indicated
on these two-floor maps by an actual opening, while closed doors are indicated as wall
lines. Furthermore, we have not taken the thickness of the walls on the floor map into
account. Any wall crossing is counted as such, a single wall crossing, with no distinction in
wall types, even if the floor maps suggest differences in wall thickness.
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Figure 2. Floor map of the measurement environments and wireless sensor network deployment.
The ship environment is show in (a) and the office environment in (b).

To acquire the training and validation data from these environments, we held multiple
measurement campaigns. The transceiver locations are shown in Figure 2. The specific link
distinction between training and validation links are shown in Figure A2 of Appendix A
and the number of links per environment are provided in Table 1. The deployed wireless
sensor network (WSN) shown in Figure 2 is a highly connected DASH-7 WSN, operating at
868 MHz. The communication model, hardware, and network setup from the communication
perspective are detailed in a previous work in [33]. The deployed transceivers on tripods,
as well as the environment, are shown in Figure 3.

2.4. Model Parameter Algorithm Output

A small and random set of the resulting paths and parameters are shown in Figure 4.
This shows the geodesic paths through path-connected spaces (NLOSPC links), path-
disconnected spaces (NLOSPD links) as well as the corners and direction changes expressed
in degrees (for illustration). Corners are determined using the Douglas-Peucker algorithm [34].
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This algorithm requires a tolerance value, which we set at the maximum radius of the first
Fresnel zone. In Appendix A, Figure A1, we provide a floor map with all measurement
links drawn and represented as direct links. The algorithmically found geodesic paths are
overlaid on this map.

(a) (b) (c) (d)

Figure 3. This figure shows the measurement environments. The office environment is a typical
looking office, with a mix of unknown wall types of all sorts in (a), of which the location corresponds
to that of transceiver 22 in Figure 2b. The ship environment is highly metallic one. The air conditioning
room in (b) corresponds to the location of the transceivers 6 and 12 in Figure 2a. The location of
transceivers 3 and 9 in (c,d) can also be referred to in Figure 2a.

Table 1. Collected number of PL samples per link per measurements environment. A split is made
between distinct links used for training and evaluation.

Training Measurements Validation Measurements

Link Count Samples per Link Link Count Samples per Link

Ship 45 463 90 248

Office 63 121 210 89

−62° 47° 35°

−79°  34°

−30°

−34°

−45°
 90°

 34° −37°

5 10 15 20 25 30 35 40 45 50 55 60

20

15

10

5

Transceivers
LOS link (2)
NLOSPC (1)
NLOSPD (4)
Direct path links (7)

Figure 4. A visualization of the parameters produced by the algorithm, showing direction changes
along the geodesic paths expressed in degrees, wall crossings by the direct paths and wall crossings
by the geodesic paths. A randomly selected subset (approximately 3% of all links) is generated
for visualization.

2.5. Model Coefficients and Terms

Usually the path loss exponent n is either fitted to LOS measurements at a range
of distances or set to the free space path loss (FSPL) exponent of 2. We prefer the latter,
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but because certain environments have a lower PL exponent than 2, such as highly metallic
industrial environments or in this case a ship, both our own measurements as well as
findings in literature indicate a PL exponent lower than 2 [1,35–37]. As such, in our case,
we will use a PL exponent of n = 2 for the office environment and n = 1.15 for the
ship environment. The reference path loss PL0 is set as 31.2 dB, which is the FSPL at an
operating frequency of 868 MHz and 1 m distance from the TX antenna. The frequency
dependent reference path loss term can be translated to other sub-6 GHz frequency bands.
The frequency dependency thus stems from (6), but also from the corner selection process
in which the maximum radius of the first Fresnel zone is used as the tolerance value in the
iterative-end-point-fit algorithm.

PL0 = 20 log10(d0) + 20 log10(f) + 20 log10

(
4π

c

)
(6)

All other model-specific parameters, unless prescribed by the model itself, were
attained using multivariate nonlinear least squares. The GPM uses three coefficients to be
fitted and both the AWM and the COST 231 models only one. The ITU-R model is not a
site-specific model, but instead a site-general model, with predetermined coefficients and
terms based on the type of environment, making it the only model that doesn’t need any
coefficient fitting.

The number of unique measurement links between TX and RX is 117 for the ship
environment and 273 for the office environment, with a total number of respectively
39,012 and 17,046 path loss measurements across those links. A third is used for coefficient
tuning, presented in Table 2, while the remainder is used for model validation and error
analysis. Table 2 does not include the coefficients for ITU-R P.1238, because those are
pre-determined based on the type of environment and whether or not the current link
between TX and RX is in LOS [29].

Table 2. GPM, AWM and COST231 model coefficients for 868 MHz in a ship and office room
environment, fitted using a multivariate non-linear least squares algorithm. The bold values indicate
the coefficient estimates, accompanied by the lower limits (LL) and upper limits (UL) for the 95%
confidence intervals (CI).

GPM AWM COST231
Lwd Lwp Lα Lwd Lwd

Ship Estimate 0.5588 17.79 9.6895 4.8137 2.9484
95% CI [LL] 0.5357 17.5993 9.5737 3.9177 2.071
95% CI [UL] 0.5819 17.9806 9.8053 5.7096 3.8258

Office Estimate 2.2929 3.6716 4.5151 3.09 3.09
95% CI [LL] 2.2628 3.2456 4.3487 2.7307 2.7307
95% CI [UL] 2.323 4.0977 4.6814 3.4472 3.4472

3. Results

After obtaining the various model coefficients, tuned against a training sample set of
PL measurements, we evaluate the resulting predictions per model, per environment. First,
we present the statistical error analysis. Paired with the PL prediction on every point of
the maps, we can interpret and discuss the model behavior in conjunction with the error
results with respect to the measured validation links.

3.1. Prediction Errors

Figure 5 shows different perspectives on how well the predictions from the different
models fit. In Figure 5a,c, the PL is shown as a function of the direct distances.

For the model prediction comparisons for the ship environment in Figure 5a, we
can see that the GPM predictions follow the measurements fairly well irrespective of the
distance between TX and RX antenna, whereas the traditional floor-map-based models tend
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to have larger prediction errors for larger distances. The model prediction comparisons
of the office environment in Figure 5c on the other hand show that predictions across all
models tend to follow the measurements in a similar manner.

In Figure 5b,d, a scatter plot is shown. The x-axis corresponds to the measured PL on a
communication link, with its respective PL prediction on the y-axis. This is done for two PL
models, the GPM and AWM. The first bisector line represents a perfect prediction relation
between the measured PL (dB) on the x-axis and the predicted PL (dB) on the y-axis.

In the office environment, AWM and COST231 are essentially the same model, given
that, in this environment, the AWM uses FSPL PL0 and PL exponent n = 2. The ITU-R P.1238
model (site-general version), which uses predetermined coefficients, makes predictions
with very large errors of up to 41.72 dB as reported in Table 3.
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Figure 5. PL is outlined with respect to the direct path distance between TX and RX for all the
considered models in (a) for the ship environment and in (c) for the office environment. A comparison
between measured and predicted PL is made visible more explicitly in (b) for the ship environment
and in (d) for the office environment.

Table 3. Statistical error analysis summary for the GPM, AWM, COST 231 and ITU-R P.1238.

Model MAE (dB) σ|ε| (dB) |εmax| (dB) RMSE (dB) R2

Sh
ip

GPM 4.79 3.63 16.38 6.0 0.83
AWM 8.88 7.80 29.37 11.79 0.43
COST 231 9.19 7.17 27.07 11.64 0.41
ITU-R P.1238 8.79 7.83 33.65 11.75 0.38

O
ffi

ce

GPM 6.1637 4.55 20.783 7.66 0.77
AWM 7.93 5.61 28.19 9.69 0.74
COST 231 7.93 5.60 27.33 9.7 0.74
ITU-R P.1238 18.73 9.92 41.72 21.19 0.67
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Figure 6a,c show the empirical cumulative distribution functions (CDFs) for the
absolute errors of the path loss predictions of all considered models. Similarly, Figure 6b,d
show the CDFs, only now with the signed Errors, (PLPREDICTION − PLMEASUREMENT), such
that the negative side of the x-axis represent the underestimations from the models and the
positive side of the x-axis represents overestimations from the models.
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Figure 6. CDF plots of the PL estimation errors. The CDF of the absolute errors is shown in (a) for
the ship environment and in (c) for the office environment.The CDF of the signed errors is shown in
(b) for the ship environment and in (d) for the office environment.

Lastly, a summary of the statistical error analysis is provided in Table 3. A large
disparity between GPM and other floor-map-based models is apparent in the results from
the ship environment. The mean absolute error (MAE) is 4.79 dB for GPM, whereas that of
the next best prediction model for the ship environment (ITU-R P.1238) is almost double at
8.79 dB. The standard deviation of the error is only 3.63 dB for the GPM. Standard deviations
between 3 and 6 dB are excellent according to [38], and referred to in the works of [27].
Moreover, the coefficient of determination (R2) of the GPM is much better than that of the
others. While the GPM outperforms other models in the office environment, the observed
results are more comparable to each other. One exception is the ITU-R model, which
under-performs in comparison to the site-general models in this specific office environment.
While it is interesting to assess the performance of the ITU-R model, it remains a site-
general model in which the coefficients are not tuned to the specific environment, unlike
the other models. The GPM, AWM, and COST 231 models are trained, and their respective
coefficients are tuned from the same training set. Since these three are site-specific models,
the tuning is done separately for the ship and office environment, but equally within
each environment.
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3.2. PL Prediction Results

From the environment parameters and model coefficients, we predict the PL at every
location on the floor map from a given TX antenna for both the ship and office environment.
The presented prediction is limited to the GPM and AWM. The apparent differences
between these two models are instructive and relay the shortcomings of traditional floor-
map-based PL models, which we discuss in Section 4. Figure 7 provides an overview of
the simulations.
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Figure 7. Predicted GPM PL is presented in (a) for the ship environment and in (b) for the office
environment. For the purpose of comparison, the same is provided for the next best performing
traditional model, AWM, in (c) for the ship environment and (d) for the office environment. We can
see larger differences between GPM and AWM in the ship environment than in the office environment.
The AWM considers walls and distance as the only path loss causes, while the GPM takes diffraction
and differences in path-connectedness of wall crossings into account as well.

4. Discussion

Originating from the need for a more representative PL model for the localization
of transceivers in an indoor ship environment, we set out to find a pathfinding-based PL
model. The goal of this model is to alleviate the systematic errors induced by map-based
models that ignore propagation paths beyond the direct path, without requiring additional
information such as wall types or predetermined connector points between rooms and
around concave corners. The only input required for the model is a simple binary floor map,
without any additional details about wall types. Such detailed information is seldom readily
available, even when computer-aided design files are present. The model algorithm to find
the parameters is part of the model. The algorithm is based on finding shortest paths using
geodesics with a quasi-Euclidean kernel, the crossing between path-disconnected spaces
using heuristics, and lastly, the finding of angles on corners, which are first determined by
path point reduction using the Douglas–Peucker algorithm.

4.1. Experimental Validation

In Table 2, the GPM coefficients are presented along with the 95% confidence interval
bounds for both the ship and office environment. Unsurprisingly, we see that for the
ship environment, the impact of wall crossings between path-disconnected spaces has
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a very large impact, as indicated by Lwp|GPM. Conversely, the impact of wall crossings
across the direct path has a significantly lower impact, as indicated by Lwd. However,
the accumulated impact thereof is still sizable, because the number of walls crossed on the
direct path is approximately ten times the number of walls crossed on the geodesic path,
both for the ship and office environments. From that aspect, we can see that for the average
link with average parameter values, the impact of walls crossed on the direct path in the
office environment have a significantly larger impact on PL than the walls crossed on the
geodesic path.

4.2. Errors

The traditional floor-map-based models have difficulty predicting PL in the ship
environment as the distance between TX and RX antennas grows larger. This is again
due to improper valuation of the wall crossings. Surprising however is the comparable
performance of the ITU-R P.1238 model to the other traditional multi-wall models in this
environment. It does not consider walls, but rather only whether or not links are in LOS or
NLOS and uses model coefficients prescribed by the model itself. For the ship environment,
it is clear that a pathfinding model is a must. The GPM prediction errors show an MAE
of 4.79 dB, with a high coefficient of determination (R2) of 0.83, whereas the traditional
floor-map-based models perform comparably among each other with an average MAE of
8.95 dB and an R2 value of 0.41.

The large under- and over-estimations in the ship environment from models such
as AWM and COST231 stem directly from not being able to find a path. Especially in an
environment with such a low PL exponent and at the same time, metal walls that attenuate
significantly if TX and RX are not in the same path-connected space and a wall that divides
path-disconnected spaces must be crossed. The significance of path-connectedness becomes
apparent in the differences in wall loss coefficients from the GPM. This is however not
something the AWM, COST231, or ITU-R P.1238 (site-general version) models can account
for. For these traditional floor-map-based models, it’s near impossible to deal with the more
prominent interaction losses as opposed to the very small distance losses. We would like
to note that the availability of wall types would not solve this problem for the traditional
floor-map-based models, because the wall types in the ship environment are all similar to
each other. The important consideration of path-connectedness upon wall crossings is a
necessary one, given an environment characterized by a low PL exponent.

However, in the office environment, we see that the average wall models perform
significantly better than in the ship environment, although not better than the GPM.
The GPM predictions show an MAE of 6.16 dB and an R2 value of 0.77. AWM and
COST231 predictions have an MAE of 7.93 dB and an R2 value of 0.74. The ITU-R P.1238
(site-general version) model has the largest prediction errors and the model would need a
PL prediction offset value far from zero. We would like to note however that the ITU-R
P.1238 (site-general version) model does not consider walls, but rather applies different
terms and coefficients based on environment type and whether or not the TX and RX
antenna are in LOS.

5. Conclusions

In this research, we presented a novel path loss model and tool for predicting path
loss. The model only requires the input of a simple binary 2-dimensional floor map,
without the need for additional wall type information. The model is based on the use of
shortest constrained distance, or geodesics, to find paths within path-connected spaces.
Crossing walls to path-disconnected spaces is done systematically based on a heuristic.
We presented an algorithm that automatically determines the parameters used in the
model. Furthermore, the model was validated using path loss data from a considerably
large measurement campaign in two vastly different environments, one being the main
cabin floor in the superstructure of a ship and the other in an ordinary office environment.
The path loss prediction results of the proposed Geodesic Path Model are mean absolute
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errors as low as 4.79 dB and a standard deviation of the error of 3.63 dB in the ship
environment and a mean absolute error of 6.16 dB and standard deviation of 4.55 dB
in the office environment. The most significant improvements are observed in the ship
environment, an environment characterized by its low path loss exponent (1.15, as opposed
to 2 for free space). We also find the importance of making a distinction between the
crossing of walls that divide path-disconnected spaces as opposed to the crossing of walls
that reside in the same path-connected space.

Future Work

Validating our Geodesic Path Model with in-field measurements, not only allows
us to have a better input for our active device-based localization efforts, but it opens the
gate to other sensing objectives such as our device-free crowd or people sensing efforts.
If determined propagation paths are reliable to a certain degree, then time-variable PL
changes along those paths can facilitate the detection of people counts and presence
in complex environments, whereas radio-frequency based device-free people counting
traditionally requires a mostly unobstructed line-of-sight between TX and RX antennas.

We are interested in the reliability of the model in higher frequencies such as the
millimeter-wave bands. At higher frequencies, the reflected signals become more diffuse
and diffraction losses increase as well. In order to compensate for the incurred losses,
directional antennas are used. This specific working of antenna directionality will need to
be implemented in the path loss parameter determination tool.
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algorithm in Algorithm 1 to the direct paths indicated as the gray lines.

18

1920
21

22 23

24 25 26 27

0

1

2

3

45

6

7

8

9

5 10 15 20 25 30

20

15

10

5 Transceivers

Training links (45)

18

19

20

21

22

23

24

25

26

27

28

29

 0

 1

 2  3  4

 5

 6  7  8

 9

10

11

12

13

14

1516

17

5 10 15 20 25 30 35 40 45 50 55 60

20

15

10

5

Transceivers

Training links (63)

(a) (b)

18

1920
21

22 23

24 25 26 27

0

1

2

3

45

6

7

8

9

5 10 15 20 25 30

20

15

10

5 Transceivers

Evaluation links (90)

18

19

20

21

22

23

24

25

26

27

28

29

 0

 1

 2  3  4

 5

 6  7  8

 9

10

11

12

13

14

1516

17

18

19

20

21

22

23

24

25

26

27

28

29

 0

 1

 2  3  4

 5

 6  7  8

 9

10

11

12

13

14

1516

17

5 10 15 20 25 30 35 40 45 50 55 60

20

15

10

5

Transceivers

Evaluation links (210)

(c) (d)

Figure A2. The training links for the ship environment and office environment is shown in
(a,b) respectively. Floor map of the measurement environments and wireless sensor network
deployment. The evaluation links for the ship environment and office environment is shown in
(c,d) respectively.
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