Abstract—High endurance of 10\textsuperscript{11} cycles is demonstrated in \textasciitilde9–10-nm stoichiometric Hafnium Zirconate (HZO) metal–ferroelectric–metal (MFM) capacitors deposited using Cl precursors with La and Y dopants. La doping is shown to offer higher remanent polarization than Y. Investigation of doped layers with asymmetric polarization versus electric field (P–E) measurements and unipolar fatigue cycles suggests that in the pristine state, the HZO is comprised of ferroelectric domains with internal built-in electric field-induced pinned coercive field (\(E_c\)). Doping is shown to increase the pinning effect and two distinct groups of ferroelectric domains emerge, which is antialigned at zero applied electric field (\(E\)). The antiferroelectric-like (pinched P–E loop) behavior is therefore attributed to internal built-in E-induced pinning of the domains during growth and/or annealing steps. The initial wake-up is attributed to gradual depinning of the domains with bipolar electric pulses. Suppression of monoclinic phase was observed in doped layers that undergo wake-up. The extended endurance also comes at a cost of pinched polarization versus electric field (P–E) loops in the pristine state as well as a prolonged wake-up effect [12]. There are several reports where HZO is most popularly grown with metal-organic precursors [1]–[5], which are inherently susceptible to unintentional C incorporation into the grown films [15], which is known to influence its ferroelectric response. In this work, we explore Y and La doping in the HZO films grown with Cl-based precursors to avoid unintentional carbon doping typically found in films deposited using metal-organic precursors and likely responsible for leakage and earlier breakdown. Furthermore, pinched P–E loop behavior is investigated through asymmetric P–E measurements and wake-up is investigated through unipolar and bipolar fatigue measurements.

Index Terms—Antiferroelectric like HZO, HZO metal–ferroelectric–metal (MFM) capacitors, La and Y doped HZO, wake-up.

I. INTRODUCTION

Hf- AND Zr-based mixed binary oxides have attracted the attention of several research groups [1]–[5] due to compatibility with CMOS processing and growth techniques such as atomic layer deposition (ALD). Hafnium Zirconate (HZO) is being explored for both ferroelectric field effect transistor (FEFET) [6]–[8] and ferroelectric random access memory (FERAM) [4], [9], [10] applications. Ferroelectricity in HZO has been demonstrated with Si [11], Al [11], as well as La [12]–[14] dopants. In the undoped form, the coercive field of HZO layers is within \textasciitilde0.9–1.2-MV/cm range, which drops with addition of dopants in the layers to 0.5–0.7 MV/cm [12]. Doping, therefore, allows reduction in the field of operation thereby extending endurance by several orders of magnitudes. The extended endurance also comes at a cost of pinched polarization versus electric field (P–E) loops in the pristine state as well as a prolonged wake-up effect [12]. There are several reports where HZO is most popularly grown with metal-organic precursors [1]–[5], [8], which are inherently susceptible to unintentional C incorporation into the grown films [15], which is known to influence its ferroelectric response.

II. EXPERIMENT

TiN/HZO/TiN metal–ferroelectric–metal (MFM) capacitors were fabricated on 300-mm p\textsuperscript{++} Si (100) wafers with different concentrations of Y and La dopants. First, the bottom (10 nm) metal (TiN) electrode was deposited using ALD at 450 °C. Next, 95 ± 5 Å HZO was deposited at 300 °C using HfCl\textsubscript{4} and ZrCl\textsubscript{4} as precursors and H\textsubscript{2}O as oxidant. Doping with La and Y uses La(EntCp)\textsubscript{3}(\textit{iPr}-AMD) and Y(PrCp)\textsubscript{3} precursors and H\textsubscript{2}O oxidant and the binary La\textsubscript{2}O\textsubscript{3} and Y\textsubscript{2}O\textsubscript{3} were deposited at 250 °C and 270 °C, respectively, in adjacent reactors. The pulse times are of the order of a few seconds, while the purge times are two times larger, as typically used in ALD processes. All depositions were made in situ by alternatively shuffling the 300-mm wafers between the reactors where HZO depositions are performed. The areal density (atoms/cm\textsuperscript{2}) of La, Y, Hf, and Zr was evaluated by the Rutherford backscattering spectroscopy (RBS). Y concentration was measured...
in HfO2 films as Zr and Y cannot be separated by RBS measurements. The concentration of dopant was evaluated at \(\sim 0.5\%\) (1 cy Y dopant), 1% (2 cy Y dopant), and 1.5% (3 cy Y dopant) and 1.7% (3 cy La dopant) with an error of \(\sim \pm 0.15\%\) for both dopants. The concentration of Cl was found to be 2.7% \(\pm 1.18\%\) on a reference 95 Å La doped HZO sample deposited on a Si substrate to eliminate signal of Cl coming from the bottom TiN electrode. The top metal (TiN) electrode was deposited in two steps. First, 10-nm TiN was deposited with 2-nm Si cap followed by annealing in N\(_2\) ambient at 550 °C. Next, the Si cap was removed and the 20-nm TiN layer was deposited by the same process as before. The deposited layers were further characterized by grazing incidence X-ray diffraction (GIXRD). The top TiN electrode was patterned by reactive ion etching process to form MFM capacitors with an area of 4800 \(\mu\)m\(^2\).

Polarization versus electric field (\(P–E\)) loops and fatigue measurements were performed using TFA 3000 system. The bottom electrode was contacted through bottom of the highly p-type doped substrate. \(P–E\) loops were measured using a triangular waveform with a frequency of 10 kHz. Bipolar (or unipolar) trapezoidal pulses were applied for fatigue measurements with rise, fall, and flat time of 200 ns each. Both fatigue and \(P–E\) measurement pulses were applied to the bottom electrode from back side of the wafer, whereas measurements were performed from the top electrode. The electric field is calculated by dividing the applied bias by thickness of the layer.

**III. RESULTS AND DISCUSSION**

Fig. 1 shows the comparison of dc leakage (at \(E = 2.5\) MV/cm, \(\sim 35\) devices/wafer) through different MFM capacitors as a function of doping concentration. The leakage decreases with increase in number of dopant cycles (Cy). Moreover, La doping offers lower leakage than Y dopant for the same number of doping cycles.

GIXRD spectra [see Fig. 2(a)] show that films are well crystallized with the main diffraction peak around the value of 30.5°, which could indicate the presence of orthorhombic phase as \(\alpha(111)\). Moreover, the weak diffraction peak at \(\sim 28.5°\) characteristic to \(m(−111)\) monoclinic phase disappears when dopants are embedded in the HZO layer.

A comparison of the endurance behavior for different concentrations of Y and La dopants is shown in Fig. 3. The endurance improves when the number of dopant cycles increases from 0 to 3 cycles, which is also consistent with the leakage in the pristine state (see Fig. 1). As expected, the coercive field (\(E_c\)) field decreases with increase in the doping concentration. La doping is shown to offer higher \(2P_r\) and \(2E_c\) at the same number of doping cycles compared to Y. This can be attributed to larger ionic radius of La \(3^+\) (1.16 Å) offering higher distortion of the unit cell compared to a smaller (1.02 Å) Y \(3^+\) ion. Fig. 4 shows the \(I–E\) and \(P–E\) loops before and after \(10^{11}\) cycles. No impact of leakage on the measurement is observed after \(10^{11}\) cycles. In the pristine state, the current versus electric field (\(I–E\)) loop shows multiple peaks, which merges to form a single peak by \(10^{11}\) cycles.
The separation between current peaks in pristine state increases with increase in the dopant concentration, as shown in Fig. 5(a). At the same time, the $P$–$E$ loops are more and more pinched at $E = 0$ as doping concentration is increased. At 3 Cy doping, the $P$–$E$ loop appears to be like an antiferroelectric material.

Fig. 6 shows symmetric (+3 to $-3$ MV/cm) and asymmetric (+3 to $-1$ MV/cm and $-3$ to +1 MV/cm) $I$–$E$ and $P$–$E$ measurements performed on 3 Cy La doped HZO MFM capacitors. Asymmetric measurements show the existence of two groups of ferroelectric domains with shift in the coercive field. In other words, the coercive field of the two groups of domains is asymmetrically pinned. During symmetric $P$–$E$ measurements, at $E = 0$, both groups have opposite alignment of dipoles resulting in cancellation of net polarization. As a result, pinching is observed in the $P$–$E$ loops.

In order to establish that the two groups of domains are different and independent of each other, we perform bipolar and unipolar fatigue measurements. Fig. 7 shows the evolution of positive and negative $P_r$ as a function of unipolar and bipolar electric field cycles. Measurements were performed on 3 Cy La doped HZO MFM capacitors.

Fig. 8 shows a closer look at evolution of previously identified two groups of domains under application of symmetric bipolar and asymmetric (unipolar) fatigue cycles. Bipolar fatigue cycling results in an asymmetric wake-up and bipolar electric field cycling is necessary for faster and symmetric wake-up of the doped layers. Between 10$^5$ and 10$^9$ cycles, switching peaks merge to form a single peak and narrowing is observed. Beyond 10$^9$ cycles, further narrowing of the current peaks is seen. Two $E_c$ values can be extracted by subtraction of up and down coercive field and are plotted in Fig. 9(b). The $2E_c$ value of two groups of domains is similar at the beginning as well as toward the end of the fatigue cycling.

These experiments suggest the following.

1) The doping results in pinning of the coercive field and distribution of the domains in two (or more) independently switching groups.

2) Each pinned group evolves with only one polarity of fatigue cycles and bipolar cycles evolve both groups of domains symmetrically. Each group has only two stable states (i.e., up and down polarization state) and the two groups can be switched independent of each other.

3) Similar $2E_c$ values before and after merging of the switching current peaks [see Fig. 9(b)] suggest that the two groups of domains have a similar phase composition before and after wake-up.

There have been several reports on investigation of pinched loop and wake-up behavior of HZO layers [16]–[23]. Phenomenologically, the pinched loop behavior can be modeled as a triple valley system in the Gibbs free energy versus polarization landscape [17]. At the microscopic level, the following mechanisms have been proposed: the presence of
accompanied by a depolarization field model to explain wake-field-induced reversible phase conversion from nonpolar to either antialigned pinned dipoles [22], [24] [25] or electric group of domains. (b) Extracted $2E_c$ for LHS and RHS groups of domains as a function of bipolar fatigue cycles. Square points correspond to RHS Fig. 9. (a) Evolution of coercive field of three-cycle La doped HZO film as a function of fatigue cycles. Square points correspond to RHS group of domains. (b) Extracted $2E_c$ for LHS and RHS groups of domains as a function of fatigue cycles. The $2E_c$ values are similar for both groups both before and after wake-up (i.e., after merging of current peaks with cycling) suggesting that the two groups are likely to be composed of the same ferroelectric phase with shifted coercive field. (c) $P_s$ and $2P_r$ as a function of fatigue cycles. Change in $P_s$ as a function of cycles is less, compared to $2P_r$.

Either antialigned pinned dipoles [22], [24] [25] or electric field-induced reversible phase conversion from nonpolar to polar phase [20], [26]–[28]. The second mechanism is also accompanied by a depolarization field model to explain wake-up behavior [29]–[31].

The electric field-induced reversible phase transition from nonpolar to polar phase has been widely investigated in experimental studies using the synchrotron XRD technique [20], piezo response force microscopy [26], and scanning transmission electron microscopy in annular brightfield mode (STEM-ABF) techniques [32]. Two models for pinched loop using depolarization field were discussed in [29]. The first model assumes the electric field-induced reversible phase transformation process where a hysteron with three states of polarization ($P = 0, +P_r,$ and $-P_r$) in combination with depolarization field created by paraelectric phases present in series with the ferroelectric phases. The wake-up effect is explained by reduction in the depolarization field due to gradual removal of charged defects or phase conversion of the paraelectric layer [29]–[31]. This model implies that each hysteron with three states contributes to all switching current peaks in the $I–E$ loop. Therefore, it creates $I–E$ loops with the same switching charge in each of the switching current peaks. Any asymmetry due to addition of defect or charge is expected to impact all transitions between three states of the hysteron. Furthermore, a permanent phase transition during fatigue cycling would also impact all four switching current peaks. Therefore, each three-state hysteron is expected to respond to both positive and negative electric field cycles. Our unipolar fatigue measurements show that only one pair of the current peak [either I and II or III and IV in Fig. 6(a)] responds to a given polarity of the fatigue field cycles. This implies that the hysteron that respond to positive electric field and those that respond to negative electric field are not the same. Therefore, a three-state hysteron model needs an additional investigation to understand the unipolar fatigue cycling behavior seen in our devices.

The second model evaluated in [29] assumes a ferroelectric layer (with two stable polarization states $+P_r$ and $-P_r$) in series with a paraelectric layer. The paraelectric layer can be a nonpolar phase, interfacial oxide layers at the electrode interfaces, or finite screening length in metal electrodes. In addition, an internal electric field was assumed that shifts the coercive field, thereby delaying nucleation of switching. The wake-up is attributed to either changes in the thickness of paraelectric layer or charge trapping and detrapping processes. Our experiments are consistent with this second model where the ferroelectric domains with two stable states are split into two groups. One group is subjected to positive internal field and another one is subjected to negative internal field. This model is also consistent with unipolar fatigue measurements, which only affects one group of domains independent of the other. Moreover, it also explains the same value of $2E_c$ extracted before and after wake-up.

Other mechanisms include an irreversible phase conversion from nonferroelectric to ferroelectric phases [33], [34] or 90° reorientation of dipoles [28], [35]. In [33], global impedance spectroscopy technique together with high-angle annular dark-field (HAADF)-STEM was used to investigate wake-up in HfO$_2$ films. The wake-up was attributed to phase transition from monoclinic to orthorhombic phase in bulk of the films as well as changes in or diminishment of tetragonal phase from electro interfacial regions. In [34], the Raman spectroscopy technique was used to determine the phase composition of the layers. Such an irreversible phase conversion from nonpolar (monoclinic, cubic, or tetragonal phases) to polar (orthorhombic) phase manifests as an increase in the ferroelectric switching charge and thereby a similar increase in the saturation value of the polarization ($P_s$), which is also observed in [33] and [35]. Fig. 9(c) shows that the change in saturation polarization ($P_s$) is much lower compared to change in $P_r$. This suggests that the change in the total number of ferroelectric domains contributing to switching response is much smaller than the observed increase in $P_r$. Therefore, the contribution of these mechanisms to wake-up is likely to be lower in the early part of wake-up, which is characterized by shift and merging of current peaks rather than increase in the magnitude or width of the current peak. A similar observation can be made in Fig. 6 where the change in $P_r$ as a function of doping is much smaller than the change in $P_r$.

The precise origin of domain pinning effect (shift in coercive field) is unclear. Such a shift in the coercive field has
been attributed to internal built-in electric field induced by the presence of charged defects and/or O vacancies [22], [24], [29]. In [22], three types of domains were observed in undoped HZO film using PFM measurements: 1) domains aligned to the applied electric field; 2) static (pinned or nonswitching) domains; and 3) anomalous domains with polarization aligned against the applied electric field. Here, the wake-up was attributed to the transformation of domains rather than phase transformation. The domain pinning and anomalous polarization reversal was attributed to the internal bias field created by oxygen vacancies. Electric field cycling was suggested to reduce the local density of oxygen vacancies, thereby reducing the internal bias field.

Looking at the dependence of the depinning process on direction of the electric field, the pinning centers are likely to be located near the top and bottom electrode interfaces. Fig. 10 shows a simplistic illustration of an MFM capacitor with two groups of domains with pinning centers located either at the top or bottom electrode interfaces. If pinning centers are charged, then the depinning process will involve discharging by trapping/detrapping electrons to and from the nearest metal electrode. The pinning effect can also be influenced by parameters that influence the number and distribution of O vacancies as well as defects. These parameters include electrodes, composition of the layer (stoichiometry of HZO, intentional dopants, as well as unintentional impurities), deposition, as well as annealing conditions. Subjecting the layers to fatigue cycles is suggested to result in redistribution of O vacancies, thereby gradual removal of built-in field that manifests as a shift in the coercive field.

The 3 Cy La doped HZO MFM capacitors were subjected to bipolar fatigue cycles with increase in the pulsewidth from 200 ns to 5 µs. Fig. 11 shows an impact of duration and amplitude of bipolar fatigue cycles on wake-up (2\(P_r\)) as a function of cycles and time. Fig. 11(b) shows that the initial \(P_r\) (up to 0.1 s) is independent of the frequency of the pulses, suggesting that this wake-up is mainly dominated by depinning of the domains. Above 0.1 s, \(2P_r\) increases with increase in the duration of fatigue pulses suggesting the presence of additional wake-up mechanism such as phase conversion of nonferroelectric to ferroelectric phases [19], [20], [23].

Prolonged wake-up due to domain pinning effect can be addressed by precycling the devices at a higher electric field as shown in Fig. 12 where a capacitor was precycled at 3.2 MV/cm for \(10^6\) bipolar fatigue cycles. Later, this capacitor shows stable \(2P_r\) when operated at 2.5 MV/cm until \(10^{11}\) cycles without any degradation in performance. Figs. 11 and 12 suggest that prolonged wake-up due to domain pinning can be potentially addressed by a global- or block-level precycling scheme at a cost of increased on-chip and/or off-chip circuitry. Moreover, such global one-time wake-up of an entire memory chip can be achieved within a time span of few seconds.

IV. SUMMARY AND CONCLUSION

High endurance (\(10^{11}\) cycles) La and Y doped ferroelectric HZO layers were demonstrated with Cl-based precursors. La doping is shown to offer higher remnant polarization than Y. Suppression of monoclinic phase was observed in doped layers that survive \(10^{11}\) cycles. Investigation of doped layers with asymmetric polarization versus electric field (\(P-E\)) measurements and unipolar fatigue measurements suggests that in the pristine state, the HZO is comprised of two groups of ferroelectric domains with internal built-in electric field-induced
pinned coercive field ($E_c$). Pinning is shown to increase the dipolar effect and two distinct groups of ferroelectric domains emerge, which are antialigned at zero applied electric field ($E$). The antiferroelectric-like (pinched $P-E$ loop) behavior is therefore attributed to internal built-in electric field-induced antialiigned pinning of the domains during growth and/or annealing steps. The initial wake-up effect is attributed to gradual depinning of the domains with bipolar electric pulses. The initial wake-up is shown to be dependent on total duration and magnitude of bipolar electric pulses. Precessing at higher $E$ field is demonstrated for early wake-up and subsequent stable operation at a lower field until 10^3 cycles.

REFERENCES


