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Abstract Lack of motivation and low adherence rates are critical concerns of long-
term rehabilitation programmes, such as cardiac rehabilitation. Socially assistive robots
are known to be effective in improving motivation in therapy. However, over longer
durations, generic and repetitive behaviours by the robot often result in a decrease in
motivation and engagement, which can be overcome by personalising the interaction,
such as recognising users, addressing them with their name, and providing feedback
on their progress and adherence. We carried out a real-world clinical study, lasting
2.5 years with 43 patients to evaluate the effects of using a robot and personalisation
in cardiac rehabilitation. Due to dropouts and other factors, 26 patients completed the
programme. The results derived from these patients suggest that robots facilitate mo-
tivation and adherence, enable prompt detection of critical conditions by clinicians,
and improve the cardiovascular functioning of the patients. Personalisation is further
beneficial when providing high-intensity training, eliciting and maintaining engage-
ment (as measured through gaze and social interactions) and motivation throughout
the programme. However, relying on full autonomy for personalisation in a real-
world environment resulted in sensor and user recognition failures, which caused
negative user perceptions and lowered the perceived utility of the robot. Nonetheless,
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Fig. 1 Setup of the sensor system (image on the left), tablet interface (at the middle), and the social
robot (on the right), for the cardiac rehabilitation programme at the Fundación Cardioinfantil-Instituto de
Cardiologı́a (Bogotá, Colombia).

personalisation was positively perceived, suggesting that potential drawbacks need to
be weighed against the various benefits of the personalised interaction.
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1 Introduction

Cardiovascular diseases –disorders of the heart and blood vessels– are the most promi-
nent cause of global deaths, leading to 17.7 million deaths each year
(World Health Organization, 2011). Cardiac rehabilitation (CR) is a long-term pro-
gramme following a cardiovascular episode, which aims to accelerate recovery and
reduce the risk of recurrent cardiovascular events. CR is generally composed of three
phases (Kraus and Keteyian, 2007): (I) the Inpatient phase, involving a medical pro-
cedure within the 48 hours after the cardiac event, (II) the Outpatient phase, typically
18 weeks (with sessions twice per week) of exercise and education programmes to
improve the health of the patient, (III) the Maintenance phase, lasting 9 months (with
one or two sessions per week) to reinforce the learned behaviour. This programme
is demanding both in time and physical effort and consequently results in low adher-
ence rates (with drop-out ranging between 15 to 50%) (Maclean and Pound, 2000;
Carlson et al., 2000; Siegert and Taylor, 2004; Bethell et al., 2009; Scane et al., 2012).
However, adherence to the programme is vital to achieving a complete recovery and
reducing the risk of suffering recurrent events (Jolly et al., 2007; Suaya et al., 2009;
Hammill et al., 2010).

Social assistive robotics (SAR) aims to provide monitoring and assistance in
physical to cognitive activities, and social interaction during therapy, which improves
patient motivation, task performance and clinical progress (Feil-Seifer and Matarić,
2005; Ahmad et al., 2017). However, over a long period of time, repetitive behaviours
of the robot may decrease patient interest (Süssenbach et al., 2014; Kidd and Breazeal,



2008), which could reduce the frequency of use and interaction with the robot (Fer-
naeus et al., 2010). Personalisation, through tailoring the robot’s behaviour to each
patient, creates an opportunity to break this monotony and helps maintain motivation
and facilitates trust over long-term interactions (Castellano et al., 2008; Leite et al.,
2013; Irfan et al., 2019).

This work is concerned with the question on what the impact is of personalisa-
tion in socially assistive robotics for long-term cardiac rehabilitation? We designed
and conducted a real-world clinical study at the Fundación Cardioinfantil-Instituto de
Cardiologı́a (Bogotá, Colombia) to evaluate the performance and perceptions of the
patients throughout the outpatient phase (II) of CR (Lara et al., 2017; Casas et al.,
2018). This long-term study explored three conditions: (a) conventional CR in which
the patient is monitored using a suite of sensors, (b) SAR using a NAO robot (Soft-
Bank Robotics Europe, Fig. 1) to continuously monitor and provide generic feedback
to patients during exercise on the treadmill, based on sensory information, or (c) SAR
using a NAO robot with personalised features to recognise users (Irfan et al., 2018b,
2021), recall the patients’ previous session progress, track their adherence, and give
personalised feedback. The results obtained during the first two conditions (Casas
et al., 2019; Céspedes et al., 2021) highlighted the benefits of a social robot in com-
parison to the conventional CR programme in improving adherence, motivation and
physical activity performance. However, the studies suggested a need for enhancing
the sociability and social presence of the robot to further improve motivation and ad-
herence. We suggest that personalisation of the interaction is key to achieving this.
In this paper, we present the complete real-world study that lasted 2.5 years, draw-
ing upon results from 26 patients that completed the programme out of 43 patients
recruited, focusing on the benefits and challenges of personalisation in long-term in-
teractions in the real world. This paper evaluates the physiological progress of the pa-
tients (i.e., training and recovery heart rate, exertion level, cervical posture), exercise
intensity parameters of the sessions (i.e., speed and inclination of the treadmill), inter-
actions with the robot, perceptions of the patients, and adherence to the programme
for the personalised robot condition in comparison to the other two conditions. This
is the first comprehensive study that explores the effects of personalisation in socially
assistive robots for cardiac rehabilitation.

2 Background

Social assistive robotics (SAR) shares with assistive robotics (AR) not only the goal
of providing assistance to patients, but also to support the user by offering social in-
teraction, through emotional, cognitive, and social cues to encourage development,
learning, or therapy (Feil-Seifer and Matarić, 2005; Okamura et al., 2010; Breazeal,
2011; Matarić and Scassellati, 2016). Because SAR aims to deploy robots in real-
world therapy with users who have limited robotics expertise –such as doctors, nurses
and patients– the robot needs to perform tasks with a high degree of autonomy. The
robots need to provide verbal and non-verbal communication to engage in a natu-
ral interaction with the patient (Duffy et al., 1999; Feil-Seifer and Matarić, 2005;
Tapus et al., 2007). Other features necessary for real-world deployment of SAR ap-



plications include automated perception of the user’s behaviour, quantitative diag-
nosis and assessment, mobility, sensor-based automated health data acquisition and
context-appropriate assistance through user interfaces (Okamura et al., 2010; Prescott
and Caleb-Solly, 2017; Johanson et al., 2020). SAR based applications have been
developed in a range of clinical areas (e.g., cognitive and developmental disorders,
care for elderly, and rehabilitation), all of which share common goals, such as pro-
viding physical, cognitive and social support, monitoring and feedback, increasing
user motivation, engagement and adherence, and improving task performance and
progress (Leite et al., 2013; Ahmad et al., 2017).

However, most research in SAR has been carried out under laboratory conditions,
using short-term interventions that often rely on tele-operation (Leite et al., 2013;
Lane et al., 2016; Vandemeulebroucke et al., 2018). This restricts their relevance
to long-term therapies in real-world applications and does not address the novelty ef-
fect (Gockley et al., 2005) or the challenges faces in the adoption of technology (Riek,
2017; Coninx et al., 2015). For instance, the only prior study with a socially assistive
robot in cardiac rehabilitation (for spirometry exercises in inpatient phase I) (Kang
et al., 2005) is evaluated under laboratory conditions for one session with a low num-
ber (5) of healthy participants, without analysing the physiological progress of the
patients. Thus, despite the positive feedback of the participants, these results cannot
be generalised to long-term rehabilitation. Nonetheless, real-world studies in other
rehabilitation applications showed the benefit of robots over long-term interactions.
For instance, a robot was used to support long-term post-stroke rehabilitation, which
lasted 5 to 7 weeks (Feingold Polak and Tzedek, 2020). Preliminary results (based
on 4 patients) indicated that SAR helps to engage, motivate and support upper limb
rehabilitation. Another study in cognitive rehabilitation (Feng et al., 2020) developed
a combined platform using augmented reality and an animal-like robot to engage
dementia patients within multi-sensory stimulation sessions over four weeks, which
was found to elicit positive emotions, increase social bonding and restore communi-
cation. Broadbent et al. (2018) evaluated the usefulness of a home-based social robot
as a supporting tool in patients with the chronic obstructive pulmonary disease based
on a 4-months study, which highlighted the capability of SAR to increase adherence
to medication and exercise.

However, long-term interactions can cause a considerable decrease in user in-
terest and motivation compared to the initial interaction (Kidd and Breazeal, 2008;
Süssenbach et al., 2014; de Graaf et al., 2016). Thus, a number of studies focused on
seeking strategies to promote long-term interactions in real-world environments. For
instance, the Autom Robot (Kidd and Breazeal, 2007, 2008) was developed with the
aim to address obesity and assist those who are willing to lose or maintain weight.
To achieve and maintain these goals in long-term interactions, several key features
were used, such as eye contact, hand, head and arms gestures, speech recognition and
synthesis, and tracking user progress. The study was conducted with 45 subjects over
six weeks at the participants’ homes, and the Working Alliance Inventory (Horvath
and Greenberg, 1989) (WAI) questionnaire was used to evaluate the interaction. The
results showed that the participants assisted by the social robot used the system for
longer periods than those who use other methods (i.e. tablet and paper logging of
data), had a stronger alliance with the proposed system and a higher interest in know-



ing calorie consumption and exercise performed (Kidd and Breazeal, 2008), which
supports the importance of embodiment in SAR. Other studies have shown that em-
bodiment can increase compliance (Bainbridge et al., 2008), likeability (Fasola and
Matarić, 2013; Li, 2015), social engagement (Lee et al., 2006; Wainer et al., 2006;
Vasco et al., 2019), adherence (Bickmore and Picard, 2005a; Kidd and Breazeal,
2007) and task performance (Vasco et al., 2019; Deng et al., 2019), which are essen-
tial in, especially long-term, therapy.

Moreover, a variety of long-term studies on the adaptive and reactive seal-shaped
robot PARO showed the positive impact on elder care, such as reducing negative emo-
tions and behavioural symptoms of elderly residents, improving their social bonds
and engagement, and promoting positive mood and quality of care experience (Hung
et al., 2019). Adaptation and personalisation strategies (e.g., addressing the patient
with their name, tracking their progress, and consequently adapting feedback or ther-
apy tasks) were found to play an important role in long-term therapy (Rossi et al.,
2017) to elicit and maintain user engagement over extended durations (Tapus et al.,
2009; Blanson Henkemans et al., 2013; Scassellati et al., 2018; Winkle et al., 2018;
Clabaugh et al., 2019; Richardson et al., 2018; Cao et al., 2019), improve task per-
formance (Tapus et al., 2008; Tapus, 2009; Matarić et al., 2009; Hemminahaus and
Kopp, 2017; Andriella et al., 2020), increase perceived familiarity and sociability (Sabelli
et al., 2011; Fasola and Matarić, 2013), and perceived competence and trust (Schnei-
der and Kummert, 2021). Moreover, previous studies in other domains showed the
benefits of recalling user’s personal attributes (e.g., name, gender, age) (Kanda et al.,
2004; Gockley et al., 2005; Mutlu et al., 2006; Kanda et al., 2007, 2010; Sabelli et al.,
2011; Fasola and Mataric, 2012; Belpaeme et al., 2013; Leite et al., 2014; Kennedy
et al., 2015; Churamani et al., 2017; Campos et al., 2018; Zheng et al., 2019; Irfan
et al., 2020b), preferences (Ho et al., 2010; Belpaeme et al., 2013; Churamani et al.,
2017; Zheng et al., 2019; Irfan et al., 2020b), behaviour patterns (Glas et al., 2017;
Zheng et al., 2019), and shared history (Ho et al., 2010; Belpaeme et al., 2013; Mat-
sumoto et al., 2012; Leite et al., 2014, 2017; Campos et al., 2018; Zheng et al., 2019;
Ahmad et al., 2019) for improving user experience in long-term interactions.

In our previous work (Lara et al., 2017; Casas et al., 2018), we described a SAR
interface for a long-term cardiac rehabilitation programme. The interface consists of
two main modules: (i) the sensor module, in charge of measuring the patients’ car-
diovascular and spatiotemporal gait parameters through a set of sensors, and (ii) a
robot module, which consists of a social robot that monitors and provides imme-
diate feedback and motivation to patients to increase their engagement in CR pro-
grammes. The interface was validated with laboratory (Lara et al., 2017) and clinical
case studies (Casas et al., 2018; Casas et al., 2018a,b, 2019, 2020). The outcomes
of these studies showed that the interface is robust and offers additional monitoring
during therapy, and that using a robot improved motivation, trust and adherence in
the CR programme. In addition, the clinicians’ perception and attitudes towards the
robot improved after the demonstration of its potential benefits (Casas et al., 2019).
Subsequently, we developed additional features, such as user recognition, adherence
tracking and personalised immediate and progress feedback. A case study of a patient
assisted by that robot (Irfan et al., 2020a) showed that personalisation helps maintain
positive perceptions and social interactions throughout the long-term programme, and



facilitates patient motivation and adherence. Finally, we analysed the overall benefits
of the non-personalised socially assistive robot in comparison to conventional cardiac
rehabilitation (Céspedes et al., 2021). The results showed that the patients assisted by
the robot had a higher adherence, improved faster on their cardiovascular functioning,
and showed better physical activity performance. Moreover, the clinicians acknowl-
edged the motivational benefits of the robot for the patients, and the added value of
continuous monitoring in cardiac rehabilitation. This work draws on these conclu-
sions, and analyses whether personalisation can improve the benefits of the socially
assistive robot, and the perception of the patients.

3 Conventional Cardiac Rehabilitation

Each exercise session in the outpatient phase (II) of CR typically lasts about an hour
at the Fundación Cardioinfantil-Instituto de Cardiologı́a clinic, and is generally con-
ducted twice per week for 18 weeks. Each session starts by measuring patients’ initial
parameters, such as the initial resting heart rate, weight and blood pressure, followed
by a warm-up consisting of low-paced walking and low-intensity stretching exercises
in a group. Afterwards, the patients attend the training session based on physical
exercises using a treadmill, lasting 15 to 20 minutes. The intensity of the training
session is determined by the speed and inclination of the treadmill, which are cho-
sen by the physiatrist at the start of each session. These parameters progressively
increase throughout the CR programme depending on the patient’s CR performance
and progress (Simms et al., 2007). Furthermore, during training, the healthcare staff
(i.e., physiatrists, occupational therapists, physical therapists, and nurses) manually
measures the patients’ heart rate (HR), and requests a self-reported exertion level us-
ing the Borg scale (Borg, 1998) every 5 to 7 minutes, as shown in Fig. 2, to adjust the
intensity if necessary. After training, patients step off the treadmill to perform low-
intensity exercises for 10 to 15 minutes, referred to as cooldown, in order to gradually
decrease their HR. During this step, the resting HR and blood pressure are measured.

The CR sessions are conducted within a large group (e.g., 20 patients), thus, it
is challenging for clinicians to provide continuous and individual monitoring of the
patients (Turk-Adawi et al., 2019) due to the lack of a telemetry in the CR unit, es-
pecially during high-intensity exercises in training which can result in critical heart
rates. Moreover, clinical studies suggest that providing individual support and su-
pervision during exercise can improve a patient’s motivation within the CR pro-
gramme (Shahsavari et al., 2012). That is why, we designed a SAR system to provide
continuous monitoring and feedback during training to facilitate prompt intervention
from the healthcare staff, in addition to improving patients’ motivation and adherence
to the programme, as described in the next section.

4 Personalised Patient-Robot Interface

As previously described, cardiac rehabilitation is a long-term programme, where ad-
herence is critical to ensure a complete recovery. However, repetitive and rigorous



exercises may cause a decrease in patient motivation, and consequently, dropouts
from the programme. Thus, based on prior research in other areas of SAR and reha-
bilitation, we developed a personalised patient-robot interface to provide continuous
monitoring and individualised support to patients during exercise for improving their
motivation and engagement in the programme. All behaviours and responses of the
robot were created in collaboration with medical specialists to avoid incorrect med-
ical assessments and prevent negative perceptions of the programme, and with the
aim to resemble the behaviours of the clinicians towards the patients. The interface,
as presented in Fig. 3, consists of a sensor interface to measure the patient’s per-
formance, the socially assistive robot to provide immediate feedback and motivation
based on sensor values, and personalisation features to track the patient’s progress
throughout the CR programme and provide a tailored experience to the patients.

Fig. 2 Conventional cardiac rehabilitation session during training exercises at the Fundación
Cardioinfantil-Instituto de Cardiologı́a.

Healthcare
Staff

Fig. 3 The architecture of the personalised patient-robot interface for cardiac rehabilitation programme.



4.1 Sensor Interface

The patient-robot interface integrates a set of sensors to measure the patients’ physio-
logical progress regarding their cardiovascular functioning and exercise performance.
Cardiovascular parameters (i.e., training and resting HR) of the patient were mea-
sured by a heart rate monitor (Zephyr HxM, Medtronic, New Zealand). Gait spa-
tiotemporal parameters (i.e., cadence, step length, speed) were measured with a laser
range finder (Hokuyo-URG 04LX-UG01, Hokuyo, Japan), shortly LRF. The tread-
mill inclination was measured using an Inertial Measurement Unit (MPU9150, In-
vensense, USA), shortly IMU. Finally, to visualise the data registered, receive self-
reported data from the patient and control the sessions’ flow, a graphical user interface
(GUI) was developed. A tablet (SurfacePro, Microsoft, USA) was used to display the
GUI and the tablet camera was used to measure the cervical posture of the patient
using a head gaze detection algorithm (Lemaignan et al., 2016) and take images for
user recognition during the sessions.

4.2 Socially Assistive Robot

We use a NAO (SoftBank Robotics Europe, France) robot, as shown in Fig. 1, which
is the most commonly used platform for human-robot interaction (HRI) research (Lam-
bert et al., 2020). The robot was located at the same place (in front of the patient) dur-
ing the study, for the conditions that include the robot. The robot’s goal is to support
and monitor the patient throughout the training (Fig. 4). At the start of the interac-
tion, the robot will greet the patient and describe the intensity of the session (treadmill
inclination and speed). During the session, the robot will periodically provide a ran-
domly selected verbal encouragement to facilitate motivation from three pre-scripted
responses for the first five minutes (e.g., “Let’s start well today!”), 13 responses until
mid-session (e.g., “Let’s go! You can do it!”), and eight responses until the cooldown
period (e.g., “Only a few minutes left!”). Furthermore, similarly to the medical staff
in conventional therapy, the robot requests the patient to report their exertion level
on a Borg scale every seven minutes, using a randomly selected phrase from 10 re-

Motivation Borg Scale
Request

Warning

Alert

Every
5 min

Every
7 min

Looking 
down

MonitoringPosture 
Correction

Heart rate > alert
or user triggered

Heart rate > warning

Feeling
unwell

Critical Borg scale +
critical heart rate

Fig. 4 Finite State Machine presenting the different behaviours of the robot during the monitoring phase.



sponses. Additionally, the robot monitors the patient to ensure that their physiological
parameters remain in a healthy range. For example, if the patient’s cervical posture is
incorrect (i.e., when the patient is looking down instead of straight ahead), the robot
reminds the patient to look straight ahead through a randomly selected feedback from
six responses. If the patient’s HR is above a warning threshold set by the therapists
at the start of the session, the robot asks the patient whether they feel fine or need
assistance from the medical staff. If the HR is above a critical threshold, as calculated
by the medical staff using the Karvonen formula (She et al., 2014), or the patient
requests it, the robot directly alerts the medical staff verbally (e.g., “Your heart rate
is too high, I am calling for help. Doctor, could you please come here?”), waving its
hand. The warning behaviours have a cooldown period of three minutes to prevent
overloading the patient if a warning state is maintained. More details about the robot
behaviours can be found in Casas et al. (2018); Casas et al. (2020).

4.3 Personalisation

As discussed in Section 2, several studies showed the importance of personalisation
for socially assistive robotics in facilitating perceived familiarity and sociability, in
addition to improving user performance and engagement within long-term interac-
tions. Personalisation in long-term interactions should not only focus on the inherent
differences, such as a person’s name, it should also focus on the long-term changes,
such as their therapy progress, and incrementally learn and adapt to the user for main-
taining user engagement over the duration of the interaction (Tapus et al., 2007).
Moreover, as discussed in the introduction, low adherence is a big concern of the CR
programmes. To address these needs, we developed personalisation features focus-
ing on users’ personal attributes (i.e., appearance and name) and behaviour patterns
(i.e., adherence and rehabilitation progress) by (i) recognising users autonomously,
(ii) personalising the verbal (motivational and sensory) feedback of the social robot
by occasionally (every 2 to 4 minutes) using their name, (iii) tracking their progress
between sessions, and (iv) keeping referring to their attendance to improve their moti-
vation in the programme and facilitate adherence. These personalisation features were
developed based on the suggestions of the medical specialists, and they correlate with
therapists’ approaches in improving the motivation, engagement and compliance of
the patient, through feedback, positive reinforcement, reminders and prompts (Win-
kle et al., 2018). The personalised features of the robot were validated in a pilot study
under laboratory conditions before deployment in the clinic.

4.3.1 Multi-modal User Recognition

In a real-world environment such as a hospital, it is necessary to have a robust system
that can autonomously recognise and learn new users that require minimum efforts
from the patients and the doctors (Reig et al., 2021). Moreover, user recognition al-
lows more natural interaction with the robot. Thus, we applied Multi-modal Incre-
mental Bayesian Network (MMIBN) with online learning (Irfan et al., 2018b, 2021),
which is the first method for sequential and incremental learning of users that does
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not require any preliminary training for user recognition. It combines face recogni-
tion with soft biometrics, which are ancillary physical or behavioural characteristics,
such as gender, age, height and time of interaction, that can be used to improve the
recognition performance (Jain et al., 2004; Dantcheva et al., 2016). The structure of
user recognition can be seen in Fig. 5.

An image is taken from the tablet camera and transferred to the robot to ob-
tain the face recognition similarity scores, and gender, age and height estimations
through the NAOqi1 proprietary software of the robot. Time of interaction is a suit-
able ancillary behavioural characteristic, because patients in the CR programme have
set appointments twice a week on certain days and times. The biometric data are
combined using MMIBN. If the quality of the estimation (i.e., the difference between
the highest and the second-highest probability scores, multiplied by the number of
known users) is above a certain threshold, then the identity that corresponds to the
highest probability score is returned; otherwise, the user is believed to be a new pa-
tient. Explicit confirmation of the identity is obtained after each recognition (e.g.,
“Hello PATIENT NAME, it is nice to see you again! Could you confirm that it is you
please?”) through the tablet interface, in order to avoid any errors in personalisation
of the session, and to improve the user recognition through online learning. Online
learning of biometric data helps adapt to the changes of user appearances (e.g., differ-
ent hair styles, and glasses) and the interaction patterns (e.g., time of interaction). If
the user enters an identity that is not in the system for the confirmation (i.e., the user
is new), ground truth values (i.e., name, age, and height) are requested from the tablet
interface to apply incremental learning on MMIBN and face recognition database.
Overall, the system is able to recognise and learn new users without the need for
intrusive methods or external devices, such as QR codes or access cards, to offer a
more natural interaction, and it is suitable for non-expert users. Moreover, MMIBN
was found to significantly outperform NAOqi face recognition and a state-of-the-art

1 http://doc.aldebaran.com/2-4



open world recognition method (Rudd et al., 2018) on a long-term (4 weeks) HRI
study in the real world with 14 participants (93.2% identification rate) and on a large
artificial multi-modal dataset with 200 users (65.7% identification rate) (Irfan et al.,
2018b, 2021).

4.3.2 Progress Tracking

CR aims to improve cardiovascular functioning and recovery of the patients through-
out the long-term programme. The session’s intensity (as determined by the treadmill
speed and inclination) progressively increases, but can be scaled back based on the
patient’s progress determined by a variety of physiological factors, such as the re-
covery and training heart rate and exertion level, and whether these parameters stay
within healthy levels. Thus, it is challenging to determine the progress of the patient
from session to session. Correspondingly, the medical specialists suggested session-
based feedback for progress, i.e., comparing the current session to the previous ses-
sion of the patient using the alerts for critical heart rate and exertion level, and the
cervical posture corrections, such that the patient can track whether they are respond-
ing well to the rehabilitation on a session per session basis, which is expected to
improve their motivation.

In order to prepare and motivate the patient for the session, the relative session
intensity is indicated by the personalised robot at the beginning of each session after
the announcement of session intensity parameters, such as “Today, we are starting
with a speed of 2.1 miles per hour with an inclination of 0.8 degrees, which will be
more intense than the last time.”. The relative intensity is defined by the clinicians at
Fundación Cardioinfantil-Instituto de Cardiologı́a, to be higher (i.e., more intense) if
the treadmill speed or inclination is higher than that of the previous session, and lower
(i.e., less intense) if both of these parameters are lower. Subsequently, the previous
session progress is mentioned followed by a motivational phrase, such as “In the
previous session, you experienced difficulty with your heart rate. I am sure it will be
all fine this time!” or “I am sure that it will be as good as last time!”. At the end of
the session, the performance of the patient is compared to the previous session. To
avoid demotivating the patient, the relative session intensity is also noted only if it is
higher. For instance, “We had a lower number of difficulties in this session than the
previous one, even though the session intensity was higher. Let’s keep up the good
work, PATIENT NAME!”, or “We had a higher number of difficulties this session
than the previous one. Next time will be better, PATIENT NAME!”.

4.3.3 Adherence Tracking

Patients are prescribed two sessions per week for the outpatient phase of CR for
a total of 18 weeks (4.5 months). However, the medical records in the Fundación
Cardioinfantil-Instituto de Cardiologı́a clinic2 show that patients take 5.7 months on
average to finish the outpatient phase. The long duration of the programme also de-
creases the willingness to continue, resulting in dropouts, as mentioned in the intro-
duction. Hence, in order to encourage patients to come to their appointed sessions

2 Obtained from 14 CR patients that are not part of the study.



and improve adherence, we tracked the patient’s attendance per week. Since the lack
of attendance can be either due to justifiable reasons, such as sickness or leaving
town, as well as negligence, the robot comments on the missed sessions (excluding
holidays) in a positive manner, such as “You didn’t come to the last (X) session(s). I
hope everything is all right!”. Moreover, to increase the sociability of the robot and
familiarity, we tracked weekends and the national holidays, with comments such as
“I hope you had a nice weekend/holiday!”.

5 Experimental Procedure

A longitudinal study was carried out at the Fundación Cardioinfantil-Instituto de Car-
diologı́a (Bogotá, Colombia) for 2.5 years to evaluate the impact of socially assistive
robots and personalisation in the outpatient phase (II) of cardiac rehabilitation, which
is designed to last 18 weeks (36 sessions) per patient.

5.1 Hypotheses and Predictions

In general, our study was designed to evaluate the benefits of using a socially as-
sistive robot for long-term cardiac rehabilitation with the aim to improve user moti-
vation and adherence to the programme. However, as previous research outlined in
Section 2 shows, user motivation and interest towards a generic robot can wane over
long-term interactions, which could be overcome by the personalisation of the inter-
action. Moreover, previous studies in SAR showed that personalisation leads to an
improvement in task performance and user perceptions (e.g., competence, trust, so-
ciability, familiarity). In addition, our previous work showed that using a social robot
improves adherence, physical activity performance and cardiovascular functioning in
comparison to conventional CR programme (Céspedes et al., 2021) and leads to a
significant increase in the patients’ perceptions of the robot (i.e., perceived trust, util-
ity, usefulness and ease of use) (Casas et al., 2019). Correspondingly, this work aims
to address the research question, what the impact is of personalisation in socially as-
sistive robotics for long-term cardiac rehabilitation? and the consequent hypotheses
and predictions:

H1 Personalisation will improve patient motivation and adherence to the CR pro-
gramme.

- Prediction P1a: A higher ratio of patients will complete the CR programme with
the personalised robot than the control or social robot.

- Prediction P1b: Patients will report higher intrinsic motivation to improve in their
sessions with the personalised robot than the other conditions.

H2 Personalisation will improve the cardiovascular performance of the patients.
- Prediction P2a: Patients will have a higher gain of normalised recovery heart rate

in the personalised condition than the other conditions.
- Prediction P2b: The personalised robot will lead to a lower number of alerts to

medical staff than the social robot.



H3 Interaction with the personalised robot will be maintained throughout the long-
term programme.

- Prediction P3a: Patients will comply with the robot’s posture correction requests
throughout the CR programme.

- Prediction P3b: There will be no significant decrease in the gazing behaviour to
the robot throughout the programme.

- Prediction P3c: Social interaction between the human and the robot will be main-
tained throughout the programme.

- Prediction P3d : Patients will maintain their bond with the robot (as measured by
the Working Alliance Inventory) throughout the programme.

H4 Personalisation will improve patients’ perceptions of the robot.
- Prediction P4a: The personalised robot will be rated as more useful than the other

conditions.
- Prediction P4b: Patients will enjoy the personalised features of the robot.

5.2 Conditions

Based on our research question, we designed three conditions for the study:

– Control: The patients perform conventional CR sessions (i.e., without a robot),
where they are supervised by the healthcare staff. In order to compare the phys-
iological progress between the groups, the sensor interface (as described in Sec-
tion 4.1) is used to measure the patients’ physiological parameters. Patients only
interact with the tablet to enter their Borg scale, when it is requested through the
tablet with an audible signal and a change of colour. While the health parame-
ters (i.e., heart rate, gait speed, cadence, step length, treadmill inclination and the
self-reported Borg scale value) are visible on the tablet interface for informing
the medical staff, patients do not receive any motivational or physiological verbal
feedback to emulate the conventional CR sessions.

– Social Robot: The patients perform the CR sessions assisted by the robot, as
described in Section 4.2, and the sensor interface.

– Personalised Robot: The patients perform the CR sessions assisted by the per-
sonalised robot, as described in Section 4.3, and the sensor interface.

The control and social robot conditions started in August 2017, and the person-
alised robot condition started in October 2019. The non-personalised (social) robot,
the personalised robot and the sensor interface operated fully autonomously. Nev-
ertheless, an experimenter was present during the CR sessions for all conditions, to
interfere only in the case of system failures.

5.3 Experimental Criteria

– Inclusion Criteria: The study targeted the patients starting the outpatient phase
(II) of the cardiac rehabilitation programme, which lasts 18 weeks with two ses-
sions per week. Patients who are over 25 years old with acute myocardial infarc-



tion, percutaneous coronary intervention, coronary artery bypass graft, valve re-
placement, ischemic heart disease and hypertension, and ejection fraction greater
than 40% were recruited. Moreover, the participants should be able to perform
treadmill exercises.

– Exclusion Criteria: The patient-robot interface may pose limitations on the pa-
tients with visual, auditive or cognitive impairments that may impede the ma-
nipulation and correct understanding of the system, hence, such patients were
excluded from the study based on their clinical records presented upon entrance
to the CR programme. The patients with a different cardiovascular pathology than
the aforementioned were also not considered for the study.

– Dropout and Incomplete Criteria: The initial duration of the CR programme
was considered to be 18 weeks, where patients would attend twice per week as
appointed. However, due to some of the patients missing their sessions, this initial
policy resulted in a shorter CR duration for the patients (23-33 sessions). Corre-
spondingly, the study policy was reviewed in 2018 to last 36 sessions, in order
to improve the programme offered to the patients. Thus, we define a drop-out
from the study to be the case when the patient does not attend three sessions
in a row without a justification. The patient, in that case, is dropped from the
study, but may continue the CR programme without the robot or tablet interface.
On the other hand, if the patient could not complete the programme due to a
critical health condition, funding (e.g., health insurance coverage) or COVID-19
outbreak, their CR programme is considered incomplete, since these reasons are
beyond their control.

5.4 Participants and Demographic Data

43 patients were recruited for the study: 15 patients for control and social robot con-
ditions, and 13 for the personalised robot. However, due to dropouts and incom-
plete therapies due to critical health conditions, funding or the COVID-19 outbreak
in March 2020, only 26 patients could complete the study. The demographic data of
the patients that actively participated in the rehabilitation and completed the outpa-
tient phase are presented in Table 1.

Of all patients present at a group-based CR session, only one patient was a par-
ticipant of the study. This decision was made to prevent patients in the CR condition
from meeting each other, which could potentially influence their perception of the
robot. However, this places additional restrictions on the scheduling, hence, only 3 to
5 patients enrolled in the study could attend a CR session per day.

5.5 Measures

To evaluate the impact of personalisation in SAR for long-term CR, we developed the
following measures based on the parameters taken during a conventional CR session
and our hypotheses.



Table 1 Demographic data of the patients that actively participated and completed the outpatient phase of
the CR programme within the study.

Control Social Robot Personalised
Robot

Participants 9 11 6
Gender 9 males 10 males,

1 female
6 males

Age (years), mean (SD) 56.6 (7.8) 55.7 (11.2) 60.3 (6.5)
Age range 44-70 43-80 56-69
Body Mass Index, mean (SD) 26.2 (2.6) 29.2 (3.9) 25.0 (2.1)
- Obese 54.5%
- Overweight 66.7% 36.4% 50%
- Healthy weight 33.3% 9.1% 50%

5.5.1 Physiological Progress

The patient’s physiological progress is assessed using the variables measured by the
sensor interface.

Cardiovascular parameters: These parameters reflect the patient’s cardiovascular
performance during the exercise performed in cardiac rehabilitation. Primarily, two
measurements are analysed : (i) Average heart rate during the training phase (THR),
and (ii) recovery heart rate (RHR), which represents the difference between the heart
rate one minute after ending the training phase of the exercise, and the THR. RHR
is normalised (RHRnormalised) with the patient’s initial resting heart rate measured at
the beginning of the session (IHR) to allow comparison between patients. Equation 1
shows the calculation for the RHR.

RHR = T HR−HRpost−training

RHRnormalised = RHR/IHR
(1)

Gait Spatiotemporal parameters: Measuring the gait parameters is important to track
the patient’s performance during the exercise. The main components of analysis dur-
ing the gait can be classified in distance (spatial) measurements and time (temporal
parameters). Within the CR programme, three of these variables are assessed: (i)
cadence, which represents the total number of full cycles taken within a given pe-
riod (Thompson, 2002), (ii) the step length that describes the distance between the
point of initial contact of one foot and the initial contact of the opposite foot (Thomp-
son, 2002), and (iii) the patient’s gait speed, which also represents the treadmill’s
speed and is used to measure exercise intensity.

Cervical Posture: Because the CR sessions are performed on a treadmill, a healthy
posture is essential to avoid dizziness, falls and achieve a correct gait performance (Mar-
tin and McConahay, 1972). Thus, we measure the cervical posture (i.e., head incli-
nation) using the camera of the tablet located in front of the patient through a head



gaze estimator (Lemaignan et al., 2016). The output data acquired using the estima-
tor correspond to a binary value (e.g., ‘looking straight ahead’, ‘not looking straight
ahead’), which was used for immediate feedback and was not recorded for analysis.

Exercise Intensity parameters: To measure the exercise intensity, the following pa-
rameters were acquired and measured, in addition to the treadmill speed: (i) The
treadmill inclination, that was measured by an IMU (MPU9150) located on the tread-
mill’s floor (the values vary between 0 and 5 degrees angle), and (ii) the patient’s
perceived exertion, as measured using the self-reported Borg Scale (Borg, 1998). The
Borg Scale assesses in a subjective manner the exertion and intensity perceived by a
patient during the exercise (Aamot et al., 2014). At Fundación Cardioinfantil-Instituto
de Cardiologı́a, the Borg scale varies between 6 and 20 (6 corresponds to a very low
level of the perceived exertion, 20 corresponds to a very high level of exertion). The
clinicians consider values between 6 and 13 as a safe (healthy) perceived exertion
level.

Warnings and Alerts Count: As mentioned in Section 4.2, the social robot provides
different types of feedback. As an additional indicator of the patient’s physiological
progress, call medical staff alerts and high heart rate warnings during the session
were counted.

5.5.2 Long-term perception of the robot

The Unified Theory of Acceptance and the Use of Technology (UTAUT) (Venkatesh
et al., 2003) questionnaire and its extension the Almere model (Heerink et al., 2010)
are commonly used to evaluate key aspects of a socially assistive therapy through sev-
eral concepts, such as perceived utility, trust, and adaptivity. We previously adapted
UTAUT and the Almere model for a CR programme with a robot, and applied it to
8 patients that completed the social robot condition, and a baseline group of 20 pa-
tients in their early outpatient or maintenance phase, without any prior experience
with robots or our system (Casas et al., 2019). The baseline group served as a base-
line perception of the robot and our system, hence, we did not include the patients
from the control condition (the interface only condition) to avoid biasing the results
with their expectations and perceptions of the system. A debriefing was organised
for the baseline group about SAR, its potential benefits and the parameters measured
by the system, in addition to a video presentation of the social robot condition. The
results showed that the social robot improved the expectations and had a significant
increase in the patients’ perceived trust, utility, usefulness and ease of use. However,
the patients and clinicians highlighted that the robot needs to have more social skills,
such as personalised feedback, reminders and physical activity updates, to enhance
the interaction and improve compliance. At the time of the work, the study was not
completed and the personalised robot condition has not yet started. In this work,
we compare the perceptions of all the patients that completed the social robot con-
dition, and evaluate how personalisation changes these perceptions. Moreover, we
developed additional questions to evaluate the personalisation features, as shown in
Table 10 in Appendix A. The social and personalised robot conditions are compared



to the baseline group based on the same (non-personalised) questions, whereas the
personalisation questions are analysed separately.

Moreover, to evaluate whether personalisation helps build a relationship with the
robot and how this is affected over the long term, we applied the Working Alliance
Inventory (WAI) (Horvath and Greenberg, 1989) to the patients in the personalised
robot condition. WAI is a 36-item self-report instrument based on Bordin’s pantheo-
retical tripartite conceptualisation, i.e., Bond, Task and Goal. This questionnaire was
used in long-term social robotics studies to evaluate the perceived task performance
and sociability of a robot (Bickmore and Picard, 2005b; Hoffman and Breazeal, 2010;
Kidd and Breazeal, 2008). The Bond construct measures the degree of trust and fa-
miliarity between the robot and the patient (e.g., “My relationship with the robot is
very important to me”). The Task construct evaluates the degree to which the robot
and the patient agree on therapeutic tasks (e.g., “The things that the robot is request-
ing from me do not make sense”). The Goal construct aims to measure the degree to
which the robot and the patient agree on the goals of the CR programme (e.g., “The
robot perceives accurately what my goals are”). WAI uses negative (e.g., “I disagree
with the robot about what I ought to get out of therapy.”) and positive (e.g., “The
robot and I are in agreement on what is important for me to work on.”) formulations
to limit the bias in the results. We adapted WAI for cardiac rehabilitation to analyse
the long-term perception, as presented in Table 11 in Appendix A. WAI was applied
at the middle of the CR programme (18 sessions) and at the end of the programme
(36 sessions).

5.5.3 Video Analysis

One of the most common measurements used in SAR is the analysis of videos (Sa-
banovic and Simmons, 2006; Anzalone et al., 2015; Leite et al., 2012). Initially, video
recordings were not considered for the control or social robot conditions as we did
not expect to observe changes that would require video analysis, and due to the lack
of available resources. However, during these conditions, we observed a change of
behaviour towards the robot throughout the programme in the social robot condition,
which prompted the necessity to analyse the behaviour in detail. Correspondingly, the
consent forms were modified to include video recording for the personalised robot
condition, which started the other two conditions. The sessions were recorded with a
GoPro (GoPro, Inc., USA) camera installed in the CR service.

Gaze is an important factor in human-human interaction and human-robot inter-
action (Ruhland et al., 2015). Most of the work in HRI has focused on generating
meaningful robot gaze (Mutlu et al., 2009; Mwangi et al., 2018; Admoni and Scas-
sellati, 2017), however, other studies also explored the importance of human gaze in
HRI, how to measure it and interpret it (Broz et al., 2012; Lemaignan et al., 2016;
Oertel et al., 2020). We draw from these works to interpret human gaze in our study
and use it as a metric for engagement. Moreover, non-verbal emotional responses,
such as gestures and facial expressions, and verbal social interactions with the robot
are other methods for detecting engagement (Clave et al., 2016; Oertel et al., 2020).
In addition, analysing patients compliance can help determine the effectiveness of the
socially assistive robot in achieving good task performance and engagement in long-



term therapy (Matarić et al., 2007; McColl and Nejat, 2013; Fasola and Matarić,
2013). Correspondingly, the video analysis was made by two independent coders
based on the following interactions: (i) gaze of the patient to the robot, (ii) social
interaction of the patient’s verbal and non-verbal (e.g., positive or negative expres-
sions, gestures) responses to the robot, and talking about the robot to other patients,
(iii) medical staff interaction with the robot, such as the doctor touching the head of
the robot to suppress the call medical staff alert, or interacting with it verbally and
non-verbally beyond the requirements of the task, and (iv) patient compliance to the
cervical posture request. Prior to the analysis, a coding session was performed with
the coders to unify the measurement method. All the variables were coded as binary
(e.g., 1: gaze triggered or 0: no gaze behaviour) and comments were added to specify
the nature of the event (e.g., when a social interaction was triggered, the event was
coded, and a comment was used to describe the situation). We set a 11.8% overlap
(randomly selected 24 sessions corresponding to 8.95 hours) for the coding data to
verify the validation of the coding results, which is sufficient to establish inter-rater
reliability (O’Connor and Joffe, 2020).

5.6 Statistical Analysis

The patient’s performance in a session is affected by the exercise intensity, as well as
external factors, such as illness and tiredness prior to the session. Thus, to decrease
the intrasubject variability, the data is analysed within six stages (i.e., 6 sessions
per stage), as suggested by the medical staff at Fundación Cardioinfantil-Instituto
de Cardiologı́a.

5.6.1 Numerical Data

Our study is a two-way mixed design, that is, it contains repeated measures for differ-
ent groups. However, the data for physiological progress, cervical posture corrections
and the interactions with the robot are not normally distributed (Shapiro-Wilk test
gives p < .001 on residuals, and the visual inspection of the residuals show a large
diversion from linear reference lines). Moreover, the homogeneity of variances as-
sumption of ANOVA is violated (p< .05 in Levene’s test and Box’s M-test) in almost
all the cases, except for exertion levels and social interactions. Hence, ANOVA cannot
be applied. The non-parametric test that corresponds to a repeated-measures ANOVA
is a Friedman test, however, it requires a complete block design, whereas, the group
sizes are not equal (unbalanced data) due to the dropouts and the incomplete CR
programmes. In addition, due to the change in the experimental criteria, some of the
patients completed the CR programme earlier, and the sensor failures within some of
the sessions caused incomplete (missing) data. Thus, we apply Johansen’s (Johansen,
1980) general formulation of Welch (Welch, 1938)-James (James, 1951)’s statistic
with Approximate Degrees of Freedom (Villacorta, 2017; Welch, 1951; Keselman
et al., 2003), which is suitable for applying to repeated measures and two-way mixed
designs. We evaluate the differences between the stages and the conditions using
pairwise tests, with Hochberg correction for multiple comparisons and Least-Squares



Estimators (i.e., without trimming), which are default parameters of the implemen-
tation (Villacorta, 2017)3. In order to evaluate the consistency and the magnitude of
a particular phenomenon across different studies in the literature, effect sizes are re-
ported for pairwise tests based on Glass’s delta (Glass et al., 1981; Keselman et al.,
2003; Villacorta, 2017). This measure does not classify effect sizes, such as ‘small’,
‘medium’ and ‘large’, in contrast to Cohen (1988), because the practical importance
of an effect depends on the context of the applications, such as relative costs and ben-
efits, and a small effect size can make a substantial difference. A negative effect size
denotes a decrease in the mean between group 1 (e.g., social robot) and group 2 (e.g.,
personalised robot), whereas, a positive effect size denotes an increase. Inter-rater
reliability agreement on the video data is measured by Cohen’s kappa (κ) (Cohen,
1960) and interpreted according to McHugh (2012). Furthermore, the McNemar test,
which enables comparing two classification algorithms that are run only once (Di-
etterich, 1998), is applied to compare MMIBN to NAOqi face recognition. A more
detailed analysis of user recognition in comparison to a state-of-the-art open world
recognition algorithm (Rudd et al., 2018) is available in (Irfan et al., 2021).

5.6.2 Ordinal Data

Likert scales are ordinal, hence non-parametric tests should be applied to analyse
the questionnaires (Jamieson, 2004). Correspondingly, Wilcoxon signed-rank test is
applied on WAI results with Bonferroni correction, because the same test is applied
to the patients twice (i.e., at the middle of their CR programme and at the end).
Mann-Whitney U-test is applied for UTAUT for analysing the significant differences
between the conditions (i.e., independent samples).

6 Results

As previously stated, this work focuses on the impact of the personalisation of the
robot for the CR programme. Correspondingly, the results are analysed in that per-
spective, comparing the effects of the personalised robot to that of the social robot,
as well as to the conventional CR programme, through various measures described
earlier.

6.1 Adherence

While 43 patients participated in the study within the 2.5 year study duration, corre-
sponding to 1050 sessions, due to the reasons beyond the control of the patients –such
as funding, medical condition, and the outbreak of COVID-19– 8 patients could not
complete the CR programme, and an additional 9 patients dropped out of the pro-
gramme. The control condition was completed in January 2019, however, the social
and personalised robot conditions were halted due to the COVID-19 pandemic in
March 2020, hence 6 patients in the personalised robot condition and one patient

3 https://cran.r-project.org/web/packages/welchADF/index.html
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Fig. 6 The CR programme status of the users in the control, social robot and personalised robot condi-
tions: ‘complete’ refers to the completed cardiac rehabilitation programme as determined by the clinicians;
‘incomplete’ is when patients need to stop the programme due to reasons beyond their control (e.g., fund-
ing, medical condition, the outbreak of COVID-19), and ‘dropout’ refers to not attending 3 sessions in a
row without a justification.

in the social robot condition could not complete the programme. Thus, we do not
have conclusive evidence on adherence to validate our initial prediction (P1a) for the
personalised robot condition. However, the attended sessions per condition in Fig. 6
shows that the dropouts occur at earlier stages of the CR programme mostly in the
control condition, which could indicate a higher tendency to continue the programme
with the presence of a (social or personalised) robot.

While the intended duration of the CR programme is 18 weeks (4.5 months) with
sessions twice per week, patients who attend the conventional CR sessions take on
average 5.7 months to finish the outpatient phase of the programme, as previously
highlighted in Section 4.3.3. This duration is decreased in the control condition to
4.7 months, which could be due to being part of a study. Nonetheless, both the pa-
tients assisted by the social robot and the patients assisted by the personalised robot
finished their CR programme earlier within 4.6 months on average. Although the
difference between conditions is small, the findings suggest that SAR could encour-
age patients to attend more actively to the sessions. Patients performing in the social
robot and personalised robot conditions were closer to the intended duration, which
have multiple benefits, not only in their cardiovascular response, but also for their
rehabilitation process, such as reducing the risk of a new cardiovascular event, and
faster initiation of the maintenance phase (III) of the CR programme to acquire more
independence, and reinforce the results obtained during the outpatient phase (II).

6.2 Physiological Progress

As mentioned in the previous sections, the recovery heart rate (RHR) and the train-
ing heart rate (THR) are the most important physiological parameters of the CR
programme that determine a patient’s health progress. The increase in RHR sig-
nals an improvement of the patient’s cardiovascular functioning and healthy recov-
ery. As previously described in Section 5.5.1, we analyse the normalised RHR to
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Fig. 7 Normalised recovery heart rate (RHRnormalised) throughout the cardiac rehabilitation programme for
control, social robot and personalised robot conditions. Recovery heart rate is normalised with the initial
resting heart rate on each session. The mean RHRnormalised per stage is marked with X.

reduce the subjectivity of the measurements that change between the patients and
increase the homogeneity. Fig. 7 shows how this parameter changes throughout the
CR programme for the patients in all conditions. As was expected, the normalised
RHR is significantly different between the stages (TWJ(5,305) = 14.36, p < .001).
Table 2 shows the percentage of increments of the normalised recovery heart rate
and significance analysis between the initial stage and subsequent stages. The re-
sults show that the increments are generally greater and more rapid in the social
robot condition in comparison to other conditions, in contrast with our prediction
P2a. Nevertheless, the patients assisted by the personalised robot present signifi-
cant differences starting from stage 5, demonstrating an improvement of the RHR
and a successfully CR. The overall comparison between the conditions also exhibit
significant differences (TWJ(2,359) = 19.62, p < .001). In accordance with this re-
sult, the pairwise comparison between conditions present differences, (control-social
robot: p = .001,δ = 1.83, control-personalised robot: p = .02,δ = −1.29, and so-

Table 2 Welch-James ADF results (p-value and effect size in parentheses) of comparisons between stages
per condition for normalised recovery heart rate (RHRnormalised). Significant differences (p < .05) are
highlighted in bold. Consecutive stages and other pairwise comparisons do not exhibit any significant
differences.

Control Increment Social Increment Personalised Increment
% Robot % Robot %

Stage 1/ .27 (0.47) 49.35 .052 (0.53) 54.89 .51 (0.51) 71.08Stage 2
Stage 1/ .72 (0.37) 34.24 .002 (0.75) 82.43 .10 (0.72) 64.83Stage 3
Stage 1/ .11 (0.55) 48.55 ppp <<< .001 (0.99) 98.96 .10 (0.73) 55.01Stage 4
Stage 1/ .01 (0.75) 92.44 ppp <<< .001 (0.90) 96.93 .02 (0.84) 74.74Stage 5
Stage 1/ .85 (0.40) 68.24 ppp <<< .001 (1.13) 135.82 .005 (1.02) 109.98Stage 6



Table 3 Welch-James ADF results (p-value and effect size in parentheses) of comparisons between con-
ditions per stage for normalised recovery heart rate (RHRnormalised). Significant differences (p < .05) are
highlighted in bold. Consecutive stages and other pairwise comparisons do not exhibit any significant
differences.

Control - Control - Social Robot -
Social Robot Personalised Robot Personalised Robot

Stage 1 .48 (0.13) .25 (-0.36) .07 (-0.54)
Stage 2 .72 (0.06) .24 (-0.34) .09 (-0.46)
Stage 3 .05 (0.46) .99 (-0.003) .07 (-0.46)
Stage 4 .14 (0.32) .14 (-0.33) ppp <<< .001 (-0.81)
Stage 5 .63 (0.10) .13 (-0.42) .02 (-0.59)
Stage 6 .03 (0.64) .66 (0.12) .03 (-0.63)

cial-personalised robot: p < .001,δ =−3.47), elucidating an effect of the robot over
the conventional CR sessions and the personalisation features (when comparing the
robot-assisted sessions). As mentioned before, the patients of the social robot condi-
tion presented a greater increment, however, as it can be seen in Fig. 7, the distribution
is more symmetric (as depicted with a median that is in the centre of the distribution)
for the personalised robot condition, which is a positive finding signifying that the
patients tend to maintain a pattern in their RHR. In contrast, the comparison between
conditions per stage (Table 3) shows that most of the differences occurred between
the social robot and personalised robot, in particular for stages 4, 5 and 6. The cor-
responding reason could be due to the high-intensity training applied to the patients
in the personalised robot condition, as explained below, which might had an adverse
effect on the RHR.

Fig. 8a shows the progress of the THR throughout the programme for all condi-
tions. The comparison between the conditions does not present differences for the
THR, neither in an overall approach (TWJ(2,402) = 1.05, p = .35), nor for the com-
parison of conditions per stage (TWJ(10,275) = 1.03, p = .42). On the other hand, the
comparison between the stages shows significant differences (TWJ(5,290) = 9.2, p <
.001), in correlation with the expected behaviour during the cardiovascular rehabil-
itation programme. The subsequent stages present significant differences from the
initial stage (Table 4) for the conditions assisted by a robot, showing that the patients
assisted by the social and personalised robot improved their cardiovascular func-
tioning. In the case of the personalised robot, most of the stages present a greater
increment than the social robot condition. This outcome can be due to the physical
activity intensity determined by the treadmill speed (as measured by the gait speed
of the patient) and inclination, which was higher for the personalised robot (Fig. 8b
and c).

For the gait speed, the statistical analysis shows that there are differences between
the stages (TWJ(5,330) = 17.47, p < .001) corresponding to the expected increase in
the treadmill speed within the CR programme. However, the analysis performed for
stages within each condition (Table 5) shows that the gait speed for the personalised
robot only presents differences between stage 1 and 4 and stage 1 and 6, whereas
the differences are significant starting from stage 2 in the other conditions. This re-
sult can suggest that the treadmill speed for the personalised robot condition were
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Fig. 8 Physiological parameters of the patients in all conditions: (a) training heart rate (THR), (b) gait
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Table 4 Welch-James ADF results (p-value and effect size in parentheses) of comparisons between stages
per condition for training heart rate (THR). Significant differences (p < .05) are highlighted in bold.
Consecutive stages and other pairwise comparisons do not exhibit any significant differences.

Control Increment Social Increment Personalised Increment
% Robot % Robot %

Stage 1/ .97 (0.34) 6.10 .03 (0.55) 8.72 .008 (0.89) 7.78Stage 2
Stage 1/ .84 (0.39) 5.88 .002 (0.70) 11.47 ppp <<< .001 (1.28) 11.90Stage 3
Stage 1/ .97 (0.29) 4.04 .006 (0.64) 10.47 ppp <<< .001 (1.47) 12.06Stage 4
Stage 1/ .69 (0.42) 6.94 .01 (0.63) 10.71 ppp <<< .001 (1.23) 8.50Stage 5
Stage 1/ .97 (0.18) 4.50 .01 (0.77) 13.21 ppp <<< .001 (1.48) 15.43Stage 6

more homogeneous across time with slight differences in increments. The compar-
ison between the conditions show significant differences, for the overall perspec-
tive (TWJ(2,439) = 110.24, p < .001) and considering the stages (TWJ(10,298) =
2.39, p = .01). As it can be seen in the Fig. 8b, the gait speed was consistently higher
for the personalised robot condition, which is confirmed with the significant differ-
ences found between the conditions (control and personalised robot: TWJ(1,386) =
125.87, p< .001,δ = 6.33, social robot and personalised robot: TWJ(1,415)= 163.36,
p< .001,δ = 6.75). Similarly, the comparison between conditions per stage (Table 6)
shows that there are significant differences between the personalised robot with the
control and social robot conditions.

In the case of the treadmill inclination, there are no significant differences be-
tween the stages (TWJ(5,166) = 1.20, p = .31). We observed that during the study,
that the healthcare staff do not drastically change the inclination to minimise patient
exertion and assure a safe rehabilitation programme. However, the outcomes of the
Welch-James ADF test shows that there are significant differences between the condi-
tions overall (TWJ(2,280) = 156.51, p< .001) and when considering the ‘interaction’
between conditions and stages (TWJ(10,224)= 3.93, p< .001). This difference is due

Table 5 Welch-James ADF results (p-value and effect size in parentheses) of comparisons between stages
per condition for gait speed. Significant differences (p < .05) are highlighted in bold. Consecutive stages
and other pairwise comparisons do not exhibit any significant differences.

Control Increment Social Increment Personalised Increment
% Robot % Robot %

Stage 1/ .17 (0.48) 22.66 .12 (0.46) 16.18 .91 (0.36) 3.20Stage 2
Stage 1/ ppp <<< .001 (0.96) 44.06 .003 (0.66) 22.64 .15 (0.65) 6.66Stage 3
Stage 1/ .002 (0.79) 41.66 .02 (0.57) 22.98 .04 (0.82) 8.30Stage 4
Stage 1/ ppp <<< .001 (0.89) 42.56 .001 (0.78) 24.36 .91 (0.03) 3.23Stage 5
Stage 1/ ppp <<< .001 (1.20) 45.58 ppp <<< .001 (1.04) 41.49 .04 (0.83) 12.00Stage 6



Table 6 Welch-James ADF results (p-value and effect size in parentheses) of comparisons between condi-
tions per stage for gait speed. Significant differences (p < .05) are highlighted in bold. Consecutive stages
and other pairwise comparisons do not exhibit any significant differences.

Control - Control - Social Robot -
Social Robot Personalised Robot Personalised Robot

Stage 1 .69 (0.08) ppp <<< .001 (2.09) ppp <<< .001 (2.07)
Stage 2 .86 (0.03) ppp <<< .001 (1.45) ppp <<< .001 (1.39)
Stage 3 .15 (-0.27) ppp <<< .001 (0.88) ppp <<< .001(1.24)
Stage 4 .40 (-0.15) ppp <<< .001 (0.95) ppp <<< .001 (1.13)
Stage 5 .71 (-0.08) .12 (0.43) .03 (0.55)
Stage 6 .87 (0.04) .002 (0.94) .006 (0.75)

to the higher treadmill inclination applied in the personalised robot condition: con-
trol and personalised robot (TWJ(1,220) = 232.87, p < .001,δ = 9.67), social and
personalised robot (TWJ(1,192) = 303.04, p < .001,δ = 10.89), control and social
robot (TWJ(1,347) = 3.07, p = .08,δ = −0.90). These differences can be also seen
in Fig. 8c and Table 7 (the analysis between stages), where the inclination in the
personalised robot group is significantly different from the other conditions.

The differences in the gait speed and treadmill inclination indicate that high-
intensity training is applied for the personalised robot condition. This type of train-
ing did not have a negative effect on the training heart rate because the medical team
could intervene when the value reached a critical level based on the robot’s alerts.
High-intensity training might have resulted due to the following reasons: (i) clini-
cians trusted the continuous monitoring and capabilities of the robot more over time,
thus applying it in the personalised robot condition, which started two years after the
social robot condition, (ii) clinicians relied on the progress feedback of the person-
alised robot to adjust the session intensity, or (iii) the patients in the personalised
robot condition had a better cardiovascular functioning initially, hence further study
is necessary to confirm the findings and reveal the underlying reasons, which could
shed a more clear light on how personalisation affects cardiovascular performance
and explain why P2a was not validated in this study. Nonetheless, the interviews with
the clinicians (Céspedes et al., 2021) provide support for trust in continuous monitor-

Table 7 Welch-James ADF results (p-value and effect size in parentheses) of comparisons between con-
ditions per stage for treadmill inclination. Significant differences (p < .05) are highlighted in bold. Con-
secutive stages and other pairwise comparisons do not exhibit any significant differences.

Control - Control - Social Robot -
Social Robot Personalised Robot Personalised Robot

Stage 1 .09 (0.33) ppp <<< .001 (2.43) ppp <<< .001 (2.01)
Stage 2 .28 (0.21) ppp <<< .001 (1.32) ppp <<< .001 (1.00)
Stage 3 .14 (-0.28) ppp <<< .001 (1.72) ppp <<< .001 (2.06)
Stage 4 .049 (-0.41) ppp <<< .001 (1.38) ppp <<< .001 (2.00)
Stage 5 .17 (-0.28) ppp <<< .001 (1.03) ppp <<< .001 (1.45)
Stage 6 .13 (-0.38) ppp <<< .001 (1.85) ppp <<< .001 (3.45)



ing, and correlates with their initial perspectives on applying high-intensity training
based on this feature (Casas et al., 2019).

There are significant differences for the Borg scale between the stages for all con-
ditions (TWJ(5,255) = 2.34, p = .04), which indicate that the exertion level changes
throughout the rehabilitation due to the physical activity intensity. However, Fig. 8d
shows that the sessions mostly remained within the safe exertion level (between 6
and 13) of the patients. On the other hand, the comparison between the conditions
(TWJ(2,377) = 0.18, p = .84) and the ‘interaction’ of the stage with the conditions
(TWJ(10,269) = 1.67, p = .09) did not exhibit significant differences. Nonetheless, a
significant difference was found in stage 5, between control and social robot condi-
tions (p = .01,δ =−0.59) and control and personalised robot (p = .04,δ =−0.53).
Furthermore, there are only significant differences for the control condition between
the initial stage and stage 4 (p = .004,δ = 0.73), and stage 5 (p < .001,δ = 1.12),
indicating that the control group perceived a higher level of exertion in these stages.
While these differences occurred only in the control group, the patients assisted by
the robot in both scenarios maintained a healthy exertion level throughout the CR pro-
gramme, despite having a higher intensity training in the personalised robot group.

The warning and critical heart rates detected by the robot shed a different light
on the story (Fig. 9). For instance, the high HR warning significantly differs between
stages (TWJ(5,227) = 4.79, p< .001) due to the physical intensity changes. However,
only the personalised robot condition presents significant differences between the
initial stage and the subsequent stages (except for stage 5). Comparison between the
robot conditions presents differences for the overall analysis (TWJ(1,408)= 5.53, p=
.02). However, there is only a significant difference in stage 1 (p = .003,δ =−0.71).
Similar to the high HR warning, the call medical staff alert significantly differs
between the stages (TWJ(5,119) = 3.38, p = .007), supporting that the heart rate
changes across the CR programme due to the physical activity intensity, and may
reach critical values. Our previous work showed that these critical alerts could be
crucial in promptly detecting any complications and facilitate fast intervention by the
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Fig. 9 Number of high heart rate warnings and critical heart rate (call medical staff ) alerts of the patients
throughout the CR programme. The results show that in contrast to the low perceived exertion levels (Borg
scale), warning and critical heart rate values may arise in the sessions throughout the programme. The
mean value per stage is marked with X.



medical staff for life-saving measures (Irfan et al., 2020a). In particular, the analysis
between the stages based on the condition shows significant differences mostly in the
social robot (between the initial stage and stages 3, 4 and 6) than the personalised
robot, where the significant differences were only observed between stages 2 and 3.
There were no significant differences between the conditions on the number of alerts
received (TWJ(1,132) = 0.20, p = .66), however, in stage 2 (p = .03,δ =−0.44) and
stage 6 (p = .01,δ = −0.70) the patients in the personalised robot condition had a
lower number of alerts, as can be observed in Fig. 9. The lower number of alerts de-
spite the higher intensity training could indicate a positive effect of personalisation
on increasing patients’ cardiovascular functioning, thus, validating P2b.

6.3 Interaction with the Robot

As previously highlighted, a correct cervical posture is important for the safety of the
patient during exercise on a treadmill, to prevent dizziness and falls. The comparison
between stages shows significant differences (TWJ(5,209)= 3.16, p= .009), correlat-
ing with the expected posture behaviour of the patients depending on the physical ac-
tivity intensity. On the other hand, no significant differences were found between the
stages per condition, in addition to a lack of interaction between stages and condition
(TWJ(5,209) = 1.16, p = .33). However, significant differences were found between
the social robot and personalised robot conditions (TWJ(1,421) = 58.24, p < .001),
as detailed in Table 8. Fig. 10 shows that the posture corrections were lower for
the patients assisted by the personalised robot. The underlying reason could be the
progress feedback given by the personalised robot to the user in an individualised
manner. For instance, two events are highly relevant to influence a patient’s cervical
posture: (i) the feedback provided at the end of the sessions could positively affect
the patient’s intrinsic motivation to improve their next sessions (which would vali-
date P1b), and (ii) including the patient’s name as part of the feedback could improve
the patient’s perception and reaction over this type of feedback. However, consid-
ering that the number of posture correction requests was lower for the patients in
the personalised robot condition starting from the first stage, the result may also be
due to the differing characteristics of the patients, hence, further study with a larger
population is necessary to confirm the effects.

Table 8 Welch-James ADF results (p-value and effect size in parentheses) for cervical posture correction
in the social robot and personalised robot conditions, and the patients’ compliance in the personalised
robot condition. Significant differences (p < .05) are highlighted in bold. Consecutive stages and other
pairwise comparisons do not exhibit any significant differences.

Social Robot - Personalised Robot

Stage 1 ppp <<< .001(-1.04)
Stage 2 .001 (-0.71)
Stage 3 .001 (-0.70)
Stage 4 .10 (-0.35)
Stage 5 ppp <<< .001 (-0.95)
Stage 6 .10 (-0.41)
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Fig. 10 The number of cervical posture correction requests by the social robot and the personalised robot
conditions. The results show that the corrections were significantly less in the personalised robot condition.
The mean value per stage is marked with X.

The patients in the personalised robot condition complied well with the requests
of the robot, i.e., no significant differences were observed between requests and pa-
tient posture corrections (TWJ(1,107) = 2.81, p = .10), as visible in Fig. 11, with a
moderate agreement between raters of the video analysis (Cohen’s κ = 0.665,z =
8.87, p < .001). While this compliance does not significantly differ with stage in
general (TWJ(5,71) = 0.87, p = .51), the in-depth analysis showed that the patients’
corrections significantly differed from the robot requests in the last stage of the CR
programme (p = .03,δ =−0.77), which indicate that the patients mostly maintained
their compliance throughout the long-term rehabilitation, validating P3a, only to de-
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Fig. 11 The number of cervical posture correction requests by the personalised robot and the correspond-
ing patients’ compliance to the requests. The results show that the patients complied well to the person-
alised robot throughout the CR programme, except on the final stage. The mean value per stage is marked
with X.
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Fig. 12 Gaze and social interaction of the patients with the robot over the duration of the CR programme.
While gaze decreased over time, social interaction was maintained throughout the long-term rehabilitation.
The mean value per stage is marked with X.

crease towards the end of the programme. The patients’ corrections are higher in
stage 3 (p = .004,δ = 1.28) and stage 4 (p = .03,δ = 1.16) in comparison to the
initial stage, which may have resulted from the physical intensity of the exercise.
During the sessions, the experimenters observed that the patients had more difficulty
in achieving a straight posture when the intensity increases were higher. We could not
analyse the compliance for the social robot condition, due to the lack of video data
or recorded gaze direction.

Fig. 12 shows the gaze and social interaction for the personalised robot scenario,
as obtained from the video analysis. There is a moderate agreement between raters
for gaze (Cohen’s κ = 0.712,z = 9.55, p < .001) and a minimal agreement for social
interactions (κ = 0.319,z = 3.54, p < .001), which could be due to the subtle cues
in facial expressions that may go unnoticed. While gaze generally decreased over
the duration of the CR programme (TWJ(5,26) = 4.43, p = .005), in contrast with
P3b, a significant difference only exists between stage 2 and 5 (p = .02,δ =−1.24).
Although we expected that gaze would be maintained over time due to the personal-
isation features, either a decrease in the novelty effect or an increase in the physical
activity intensity may have affected the gaze. The experimenters observed that as
the intensity is increasing during the sessions, focusing on the robot becomes more
challenging. On the other hand, social interaction was maintained throughout the
programme (TWJ(5,27) = 1.31, p = .29) validating P3c, and social interactions oc-
curred often in response to the personalised behaviours of the robot (such as progress
feedback or correct user recognition), which indicate that the personalisation features
help maintain the social interaction over the long-term rehabilitation.

The patients interacted with the personalised robot in a variety of ways, such as
talking to the robot, smiling at being recognised or giving a negative response for
an incorrect recognition, smiling after motivational feedback, or saying “Bye!” to
the robot on their last session. They also talked to other patients about the benefits
of the robot during the session. The video recordings showed that the medical staff



promptly responded to the robot’s requests for assistance, and also interacted with
the robot repeatedly in several sessions, such as playfully trying to capture its gaze,
thanking the robot, joking with it, or talking about its benefits to other medical staff,
which often elicited positive reactions (e.g., smile, laugh, nod) during the interaction
from the patients in the study and those around.

6.4 Perception of the Robot

Fig. 13 and Table 9 presents the Unified Theory of Acceptance and the Use of Tech-
nology (UTAUT) questionnaire results and the significant differences between the
conditions. The perceptions of the patients that completed the CR programme with
the social robot are significantly more positive than the expectations of the baseline
group, in terms of perceived usefulness, utility, ease of use, and trust, in agreement
with the preliminary results (Casas et al., 2019). On the one hand, the patients per-
ceived the personalised robot significantly safer and trusted it more than the baseline
group. On the other hand, the perceived utility of the personalised robot was signif-
icantly less than the social robot, in contrast with P4a. We believe this may be due
to the user recognition and recall problems that we experienced within the sessions,
which may have caused negative experiences (Hancock et al., 2011). Only 38% of
the known users were correctly recognised by user recognition, and 44% of the new
users were correctly detected. The poor performance was due to the failures arising
from face recognition, which identified most users as new, only correctly identifying
35% of known users, significantly less than the multi-modal user recognition model,
MMIBN (p = .01). Nonetheless, both the social robot and the personalised robot
conditions improved the expectations about the robot and the system. Moreover, the
responses to the questions developed for the personalised robot condition (Table 10)
showed that the patients highly enjoyed the personalisation features (perceived en-
joyment (PE): Mdn = 5 on a scale from 1 to 5), especially because the robot used
their name, recognised them and tracked their progress, validating P4b. Moreover, the
usefulness of the personalised robot, such as feeling engaged with the programme
and motivation to come to the sessions, was highly positive (perceived usefulness,
Mdn = 5), validating P1b. Usefulness and enjoyment are important factors for long-

Table 9 Mann-Whitney U-test results for the Unified Theory of Acceptance and the Use of Technology
(UTAUT) questionnaire (non-personalised questions) for the baseline group, the social robot and person-
alised robot conditions. The significant differences (p < .05) are highlighted in bold.

Construct Baseline Group -
Social Robot

Baseline Group -
Personalised Robot

Social Robot -
Personalised Robot

Perceived Usefulness (U) .002 .35 .07
Perceived Utility (PU) ppp <<< .001 .49 .04
Safety (S) .22 .02 .28
Ease of Use (EU) .03 .13 .70
Perceived Trust (PT) ppp <<< .001 .03 .17
Perceived Sociability (PS) .10 .26 .65
Social Presence (SP) .17 .34 .78
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Fig. 13 Unified Theory of Acceptance and the Use of Technology (UTAUT) questionnaire results for the
baseline group, the social robot and personalised robot conditions. The patients in the baseline group did
not have prior experience of the system, and completed the questionnaire after the debriefing and video
demonstrations of the social robot. The patients in the robot conditions completed the questionnaire after
their last session of the outpatient phase of the cardiac rehabilitation programme (i.e., after completing
the study). Significant differences are denoted with p < .05:*, p < .01:**, p < .001:***, as presented in
Table 9.

term acceptance of the robot (de Graaf et al., 2016). In addition, most patients felt
attached to the robot at the end of the programme (Mdn = 4.5).

The additional feedback (through open questions) of the patients in the person-
alised robot condition was similar to that of previous findings of the social robot con-
dition (Casas et al., 2019). All patients recommended the system for future patients,
and commented on its usefulness, personalisation and effects on user motivation, such
as:

– “The cardiac rehabilitation with the robot will help you to recover as quickly as
possible, and you will be able to progress by being linked to the robot.” - P6

– “I feel confident in doing the rehabilitation with the robot, because I know that it
is personalised and constantly monitoring my performance and progress.” - P6

– “I really like the idea of the robot, as he was constantly monitoring. Also, I think
the corrections the robot made are good, it keeps me focused on the therapy.” -
P5

– “It feels more comfortable being on a treadmill with the robot and because the
robot is more aware of the patient.” - P5

– “Working with the robot motivates me.” - P1, P6
– “Working with the robot makes me feel happy.” - P1



– “The robot interacts in a positive way with me, it helps me along with the medical
staff, and it is also a good tool for them. I would not change anything (about the
robot).” - P3

– “I would recommend the robot, it is a great help.” - P2

Nonetheless, the patients noted the need for improving the robustness of the user
recognition and sensors, and decreasing the repetitiveness of the robot phrases, which
was also mentioned in the previous study with the social robot (Casas et al., 2019). In
addition, one patient found the appearance and the sound of the robot to be childish.
Furthermore, because the progress feedback addressed the difficulties experienced in
the sessions, some of the patients had concerns that they were not recovering well.

Through the WAI questionnaire (Table 11), we can analyse how the patients’
overall perception of the robot changed over the long-term CR programme. Fig. 14
shows the patients’ responses at the middle of the programme and at the final session.
Wilcoxon signed-rank test shows that there is a significant improvement between
the perceived goal construct in the positive formulation (p = .003, V = 42) from the
middle of the CR programme to the final session. No significant differences are found
in the other constructs between the tests (p > .05). The positive formulation (on the
right of the scale) of Bond, Goal and Task show that the robot and the CR programme
were generally positively perceived, and the patients maintained their bond with the
robot over the duration of the programme, validating P3d . Furthermore, the patients
generally disagree with the negatively formulated questions (on the left of the scale),
such as “I feel uncomfortable with the robot.”, indicating that despite the negative
user experience due to sensor and recognition failures, patients perceived the robot
highly positively, which may support that personalisation mitigates the negative user
experience, similar to (Irfan et al., 2020b). Another possibility is that the benefits
patients felt from the intervention mitigated their negative feelings about the errors.
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Fig. 14 Working Alliance Inventory responses for the personalised robot condition, evaluated at the mid-
dle of the CR programme (18th session) and the final session. The results suggest that the patients’ pos-
itive perception of the robot was maintained throughout the programme. A significant improvement was
achieved for the perceived goal construct in positive formulation (p = .003, V = 42).



7 Discussion

7.1 Hypotheses and Predictions

Previous studies in SAR (in Section 2) highlighted the importance of encouraging
feedback and continuous monitoring during repetitive exercise for healthcare pro-
grammes to increase motivation and enhance task performance. Other research has
shown the value of personalisation for long-term HRI to improve users’ motivation,
task performance, engagement and perceptions. Correspondingly, this work aimed
to address how these previous findings translate to long-term cardiac rehabilitation
programmes, through the use of fully autonomous generic and personalised socially
assistive robots in a clinical environment with non-expert users, that is, the patients
and the clinicians.

Our study showed partial support for H1 (Personalisation will improve patient
motivation and adherence to the CR programme): adherence (P1a) could not be eval-
uated properly, but an increase in motivation for the programme (P1b) was validated.
H2 (Personalisation will improve the cardiovascular performance of the patients)
was also partially supported: while a lower gain of normalised recovery heart rate
was found with the personalised robot, thus, not validating P2a probably due to an im-
balance of participants initial health levels or the higher training intensity, the lower
number of alerts (P2b) was validated. H3 (Interaction with the personalised robot will
be maintained throughout the long-term programme) was mostly supported by our
study: except for an initial decrease in gaze (in contrast to P3b), patients complied
with the robot (P3a), and the social interaction (P3c) and bond (P3d) with the robot
were maintained throughout the long-term programme, validating these predictions.
Finally, H4 (Personalisation will improve patients’ perceptions of the robot) was par-
tially supported by our results: while the personalised robot was rated lower in utility
(in contrast to P4a) due to recognition and recall problems, personalised features were
acknowledged and enjoyed (validating P4b).

Overall, our long-term study showed that personalisation presents promises for
SAR in cardiac rehabilitation programmes. We draw on these findings and highlight
our key takes and suggestions based on the drawbacks and limitations, to benefit
future researchers exploring SAR for long-term interactions in the real world.

7.2 Benefits of Personalisation

The main challenges of cardiac rehabilitation are providing close monitoring of pa-
tients within the group sessions and assuring adherence to the long-term programme
to ensure that the patients recover fully and retain healthy habits. Our study showed
that robots motivate patients to continue the programme and finish the programme
earlier. Moreover, patients assisted by the personalised robot acknowledged that the
personalisation features, such as the progress feedback and adherence tracking, en-
courage them to come to the CR sessions.

The goal of the outpatient phase of the cardiac rehabilitation programmes is im-
proving cardiovascular functioning through structured exercises that progressively



increases in intensity to reduce the risk of suffering recurrent events and accelerating
recovery. Our results indicate that the patients assisted by a (generic or personalised)
robot achieved a significant improvement in their training and recovery heart rate
and, thus, cardiovascular functioning. Moreover, the clinicians trusted the continuous
monitoring aspects of the robots (Casas et al., 2019; Céspedes et al., 2021), which
may have reinforced applying high-intensity training throughout the CR programme
for the personalised robot, causing a greater increment in the patients’ training heart
rate. The high-intensity training did not increase the perceived exertion level, and the
patients experienced a lower frequency in reaching the critical heart rates in compar-
ison to the patients in the social robot condition, further supporting the improvement
in patients’ cardiovascular functioning. Nonetheless, the adoption of the technology
by the medical staff and their immediate intervention in critical cases played an im-
portant role in achieving this improvement (Irfan et al., 2020a).

Throughout the CR programme, the patients assisted by the personalised robot
maintained a better posture than the patients assisted by the social robot despite a
higher exercise intensity. Moreover, the patients mostly complied with the person-
alised robot’s requests throughout the long-term rehabilitation. These findings show
the importance of personalisation through addressing the person by their name and
progress feedback such that the patients are more motivated to maintain and improve
their good posture. Personalisation features also elicited gaze and social interaction
with the robot, such as smiling when the robot addressed them with their name or
upon correct user recognition, thanking the robot or talking to it after receiving per-
sonalised feedback. While gaze decreased after the initial session, which could be due
to the fading novelty effect or the increasing exercise intensity requiring the patients
to focus on the exercise, the social interaction with the personalised robot was main-
tained throughout the long-term programme, as intended. Future work can examine
the behaviours of the patients assisted by the social robot through video analysis to
compare the benefits of personalisation more thoroughly. However, the presence of
a camera and videotaping may lead to a change of behaviour when observed (Irfan
et al., 2018a), known as the Hawthorne effect (Roethlisberger et al., 1939), as well as
selection bias on willingness to participate in the experiment, which could have af-
fected the interaction of patients with the personalised robot, but this might have been
offset during the long-term programme. Recording the gaze direction and duration
through the tablet could be an alternative approach in detecting engagement (Oertel
et al., 2020) that could eliminate such confounds.

Both the social robot and the personalised robot met the expectations about the
system. The patients commended the use of both robots, and expressed feeling more
secure due to continuous monitoring and immediate feedback. In addition, since the
patients participated in group sessions, other patients that were not part of the study
were able to observe its benefits, and several of them declared interest in working
with a robot in their CR programme. Personalisation features were highly enjoyed by
the patients, and the progress and adherence feedback were reported to be useful by
the patients, suggesting improvement in motivation and increased adherence to the
programme, as initially aimed. While the patients felt initially sceptical towards the
robot’s role due to their lack of prior experience (as observed by the experimenters),
the clinicians noted that their trust in the measurements and its feedback increased



over time. These observations were supported by the WAI questionnaire results in
which the perceived goal was significantly improved over time. Moreover, patients
maintained their bond with the personalised robot and their perceptions over the du-
ration of the programme. These findings are in line with the clinicians’ perceptions
that the personalisation of the robot improves the quality of the interaction (Céspedes
et al., 2021).

Continuous monitoring and immediate feedback aspects of both robots were highly
appreciated by the patients and the clinicians in terms of the awareness of patient
performance within the session. Additionally, progress tracking throughout the pro-
gramme by the personalised robot helped inform both the medical staff and the pa-
tients, which increased the awareness of the medical staff further to detect compli-
cations (Irfan et al., 2020a; Céspedes et al., 2021), and provided knowledge of their
recovery to the patients, thereby, improving their perception of the CR programme
and their motivation. While all of these aspects could be provided without the pres-
ence of a robot, i.e., through verbal feedback from the tablet interface, previous stud-
ies showed the added benefits of embodiment in improving compliance, likeability,
social engagement, adherence and task performance, as discussed in Section 2. How-
ever, having a robot in a rehabilitation programme is not cost efficient, in terms of the
initial investment and maintenance requirements, thus, future work can investigate
whether the lack of a robot could reproduce the benefits found in this study.

7.3 Drawbacks of Personalisation and Suggestions for Future Work

Long-term studies are labour and time intensive, thus, it is challenging to recruit sub-
jects willing to participate, especially for a rehabilitation programme with a novel
system, as the patients may be sceptical towards the approach (Casas et al., 2019).
Moreover, dropouts and the incomplete rehabilitation experienced due to unforeseen
reasons such as funding, the outbreak of COVID-19, and other medical conditions,
caused a relatively limited number of patients with skewed characteristics (i.e., gen-
der, age and obesity) that may have affected the overall results. Furthermore, the
patients were progressively recruited over 2.5 years and the personalised robot con-
dition was started two years after the initial two conditions, which could have affected
the initial technological acceptance and perceptions of patients towards robots (Pino
et al., 2015). Nevertheless, our statistical analyses and the effect sizes indicate that
the patients assisted by the personalised robot improved their cardiovascular func-
tioning in terms of their training heart rate and endurance (evident by low exertion
levels and lower critical heart rate alerts) with the high-intensity training, along with
a better cervical posture, in comparison to the social robot. However, personalisation
was found to have drawbacks.

While the personalised robot led to a higher increment from the patients’ ini-
tial recovery heart rate than the conventional CR programme, which is one of the
primary parameters that reflect the patient’s cardiovascular performance, the social
robot presented a greater and more rapid improvement. However, this result could be
due to the higher intensity training applied to the patients assisted by the personalised



robot, hence, a further balanced (i.e., same level of exercise intensity) experiment is
necessary to confirm the findings.

Relying on full autonomy in a real-world environment brought about challenges
such as malfunctioning in the sensors and the robot, as well as connection problems
with the tablet interface, which may have caused negative perceptions of the robot,
in addition to missing data. Especially relying on a user recognition system for per-
sonalisation, decreased the perceived usefulness, utility and trust to the robot, and the
low reliability of the user recognition system was remarked by the patients. While
the multi-modal incremental Bayesian network (MMIBN) with online learning is the
only method that supports sequential and incremental recognition of previous and
new users without requiring pre-training for real-time HRI, user recognition can be
improved by using identifiers with lower noise, integrating additional non-intrusive
modalities (e.g., voice, facial marks, eye colour) or by using other online learning
methods. Another option is to remove user recognition, e.g., through requesting the
patient’s name from the tablet interface either from the patient or the clinician, how-
ever, the questionnaires and video analysis showed that the patients enjoyed being
recognised, and it could also decrease the naturalness of the interaction. Moreover,
the acquisition of more robust medical sensors is necessary to ensure the reliability
of the data. Nonetheless, the highly positive perceptions of the patients indicate that
negative user experiences can be overcome with the added benefits of the robot.

Patients and clinicians remarked that both robots were repetitive, thus, novel and
a larger variety of robot responses should be added to improve the sociability and
social presence of the robot, especially in long-term interactions. A future research
direction can be to adapt these responses based on the patient’s sensory values, and
adapt progress feedback to reflect the overall (or stage) progress instead of comparing
with the previous session, to keep the interactions engaging and interesting in the
long-term (Matarić and Scassellati, 2016).

While speech and emotion recognition can be integrated with the robot to improve
the naturalness and adaptivity of the interaction, these may not reliable in a noisy real-
world environment. For instance, Fundación Cardioinfantil-Instituto de Cardiologı́a
plays loud music to motivate the patients in their exercise, which could cause failures
in speech recognition. Thus, gesture recognition could be a better alternative. Emo-
tions can be misleading due to the patients’ exertion levels, hence, extracting fatigue
levels from cameras and wearable sensors could be more reliable and provide a com-
plementary measure to the Borg scale for detecting when to provide motivation and
additional alerts (Pinto et al., 2020).

The appearance and voice of the (NAO) robot were found to be childish by one
of the patients, which could have affected the underlying perceptions of the pa-
tients (Goetz et al., 2003; Pino et al., 2015). Future work can use other taller and
mobile platforms, such as a Pepper robot (SoftBank Robotics Europe, France), to
also address other patients in the group session. Moreover, other robotic platforms
with facial expressions, such as Nexi (MIT Media Lab, USA), can be used to im-
prove the sociability of the robot (Johanson et al., 2020).

While the architecture of our patient-robot interface and personalisation features
were designed in collaboration with medical specialists, this study showed the var-
ious additional features that can be changed (e.g., progress feedback structure) or



added to the system based on the needs of the patients, highlighting the importance
of co-design (or participatory design). Co-design is the process where users (stake-
holders) are involved in designing a product from the idea generation stage (Sanders
and Stappers, 2008). Involving patients and medical specialists in the design of a so-
cially assistive system not only allows adapting to their (changing) needs, but also
enabling them to understand the limitations of the system and actively contribute to
the design of their care (Bate and Robert, 2007; Šabanović, 2010).

8 Conclusion

This paper presented a personalised socially assistive robot for the outpatient phase of
a long-term cardiac rehabilitation programme. The aim of the socially assistive robot
is to improve motivation and adherence to the programme. Personalisation features,
such as recognising patients, addressing by their name, tracking their attendance and
providing progress feedback, were developed to improve and maintain motivation
over the long-term interaction. Three conditions were designed to evaluate the im-
pact of socially assistive robotics and personalisation on conventional cardiac reha-
bilitation, labelled as social robot, personalised robot and control, respectively. 43
patients were recruited for the study, however, due to the dropouts and the external
unforeseen reasons, such as funding, the outbreak of COVID-19, and other medical
conditions, 26 patients (9 for control, 11 for social robot, 6 for personalised robot)
actively participated and completed the outpatient phase of cardiac rehabilitation and
the study.

The social and personalised robots were found to improve cardiovascular func-
tioning in comparison to a conventional cardiac rehabilitation programme. Further-
more, the patients assisted by a robot completed their rehabilitation in a shorter du-
ration, suggesting benefits on adherence. Moreover, the perceptions of the patients
and the clinicians improved in comparison to expectations, and they were recom-
mended for future use by both groups. The continuous monitoring of the robot en-
abled prompt detection of critical conditions, which may have reinforced the trust of
the clinicians in the robot and thus, providing high-intensity training in the person-
alised robot condition. This resulted in a higher training heart rate without an adverse
effect on the endurance (low perceived exertion levels and critical heart rates), how-
ever, a lower and slower improvement in the recovery heart rate in comparison to the
patients assisted by a social robot. Moreover, relying on a fully autonomous robot for
personalisation in long-term rehabilitation brought along sensor and user recognition
failures, which decreased the perceived utility of the robot. On the other hand, person-
alised features often elicited gaze and social interaction, facilitated a bond with the
user, and were highly positively perceived and this perception was maintained in the
long-term, suggesting that various benefits of personalisation can overcome its draw-
backs, supporting the potential for improving the conventional cardiac rehabilitation
programmes and the long-term interaction with a socially assistive robot.
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A Questionnaires

Table 10 Additional questions developed for the Unified Theory of Acceptance and the Use of Technology
(UTAUT) questionnaire to evaluate the perceptions of the patients specific to the personalised robot con-
dition, in terms of perceived usefulness (U), perceived utility (PU), perceived enjoyment (PE), perceived
adaptivity (PA), perceived sociability (PS), social presence (SP) and attitude (A).

Construct Question

U

I feel encouraged to come to the sessions.
I feel engaged in the therapy.
I feel that the robot helped me progress in my therapy.
I feel encouraged about my therapy when the robot comments on my session performance.

PU
The robot recognises me correctly.
The robot remembers my previous sessions correctly.
The robot tracks my session performance correctly.

PE

I am pleased that the robot recognises me.
I am pleased that the robot uses my name.
I am pleased to hear about my therapy progress.
I am pleased that the robot remembers me.
I am pleased to work with the robot.

PA I feel that the robot personalises its interaction.

PS I feel that the robot knows me well.

SP I feel that the robot has a personality.
I feel compelled to come to the sessions because the robot comments on my absence.

A I feel attached to the robot.



Table 11 Adapted Working Alliance Inventory (WAI) that measures the long-term perception of the robot
within the personalised robot condition, with Bond, Task and Goal constructs.

Construct Formulation Question

Bond

Positive

The robot and I understand each other.
I believe the robot likes me.
I believe the robot is genuinely concerned for my welfare.
The robot and I respect each other.
I am confident in the robot’s ability to help me.
I feel that the robot appreciates me.
The robot and I trust one and other.
My relationship with the robot is very important to me.
I feel the robot cares about me even when I do things that the robot does
not understand me.

Negative
I feel uncomfortable with the robot.
I feel the robot is not totally honest about its feelings toward me.
I have the feeling that if I say or do the wrong things the robot will stop
working with me.

Task

Positive

The robot and I agree about the things I will need to do in the therapy to
help improve my situation.
What I am doing in the therapy gives me new ways of looking at my
problem.
I am clear on what my responsibilities are in therapy.
I feel that the things I do in therapy will help me to accomplish the
changes that I want.
I am clear as to what the robot wants me to do in these sessions.
The robot and I are in agreement on what is important for me to work
on.
I believe the way that the robot and I are working in my problem is
correct.

Negative

I find what I am doing in therapy confusing.
I believe the time robot and I are spending together is not spent
efficiently.
I find that the robot tasks during the therapy are unrelated to my
concerns.
I am frustrated by the things I am doing in therapy.
The things that robot is requesting from me do not make sense.

Goal

Positive

The robot perceives accurately what my goals are.
I wish that the robot could configure the therapy according the purpose
of our session.
The goals of these session are important to me.
The robot and I are working towards mutually agreed upon goals.
As a result of these session I am clearer as to how I might be able to
change.
The robot and I collaborate on setting goals for my therapy.
The robot and I established a good understanding of the kind of changes
that would be good for me.

Negative

I am worried about the outcome of these sessions.
I disagree with the robot about what I ought to get out of therapy.
The robot does not understand what I am trying to accomplish in
therapy.
The robot and I have different ideas on what my problems are.
I do not know what to expect as the result of my therapy.
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Heerink M, Kröse B, Evers V, Wielinga B (2010) Assessing acceptance of assistive social agent technology
by older adults: the almere model. Int J of Soc Robotics 2:361–375, DOI 10.1007/s12369-010-0068-5

Hemminahaus J, Kopp S (2017) Towards adaptive social behavior generation for assistive robots using re-
inforcement learning. In: 2017 12th ACM/IEEE International Conference on Human-Robot Interaction
(HRI, pp 332–340

Ho WC, Dautenhahn K, Lim MY, Casse KD (2010) Modelling human memory in robotic companions
for personalisation and long-term adaptation in hri. In: Samsonovich AV, Johannsdottir KR, Chella A,
Goertzel B (eds) BICA, IOS Press, Frontiers in Artificial Intelligence and Applications, vol 221, pp
64–71

Hoffman G, Breazeal C (2010) Effects of anticipatory perceptual simulation on practiced human-robot
tasks. Autonomous Robots 28(4):403–423, DOI 10.1007/s10514-009-9166-3

Horvath AO, Greenberg LS (1989) Development and validation of the working alliance inventory. Journal
of Counseling Psychology 36(2):223–233, DOI 10.1037/0022-0167.36.2.223

Hung L, Liu C, Woldum E, Au-Yeung A, Berndt A, Wallsworth C, Horne N, Gregorio M, Mann J, Chaud-
hury H (2019) The benefits of and barriers to using a social robot paro in care settings: a scoping review.
BMC Geriatrics 19(232), DOI 10.1186/s12877-019-1244-6

Irfan B, Kennedy J, Lemaignan S, Papadopoulos F, Senft E, Belpaeme T (2018a) Social psychology and
human-robot interaction: An uneasy marriage. In: Companion of the 2018 ACM/IEEE International
Conference on Human-Robot Interaction, ACM, pp 13–20, DOI 10.1145/3173386.3173389

Irfan B, Lyubova N, Garcia Ortiz M, Belpaeme T (2018b) Multi-modal open-set person identification in
hri. In: 2018 ACM/IEEE International Conference on Human-Robot Interaction Social Robots in the
Wild workshop

Irfan B, Ramachandran A, Spaulding S, Glas DF, Leite I, Koay KL (2019) Personalization in long-term
human-robot interaction. In: 2019 14th ACM/IEEE International Conference on Human-Robot Inter-
action (HRI), IEEE, pp 685–686, DOI 10.1109/HRI.2019.8673076
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Šabanović S (2010) Robots in society, society in robots. Int J of Soc Robotics 2:439–450, DOI 10.1007/
s12369-010-0066-7

Wainer J, Feil-seifer DJ, Shell DA, Mataric MJ (2006) The role of physical embodiment in human-robot
interaction. In: ROMAN 2006 - The 15th IEEE International Symposium on Robot and Human Inter-
active Communication, pp 117–122, DOI 10.1109/ROMAN.2006.314404

Welch BL (1938) The significance of the difference between two means when the population variances are
unequal. Biometrika 29(3/4):350–362, DOI 10.2307/2332010

Welch BL (1951) On the comparison of several mean values: An alternative approach. Biometrika
38(3/4):330–336, DOI 10.2307/2332579

Winkle K, Caleb-Solly P, Turton A, Bremner P (2018) Social robots for engagement in rehabilitative
therapies: Design implications from a study with therapists. In: Proceedings of the 2018 ACM/IEEE
International Conference on Human-Robot Interaction, Association for Computing Machinery, New
York, NY, USA, HRI ’18, pp 289–297, DOI 10.1145/3171221.3171273

World Health Organization (2011) World Report on Disability, vol 91. The World Bank
Zheng X, Glas DF, Minato T, Ishiguro H (2019) Four memory categories to support socially- appropri-

ate conversations in long-term hri. In: 2019 ACM/IEEE International Conference on Human-Robot
Interaction Personalization in Long-Term Human-Robot Interaction (PLOT-HRI19) workshop, Daegu,
South Korea

Bahar Irfan is a Research and Development Associate at Evinoks Service Equipment Industry and
Commerce Inc. (Turkey), working on the development of customisable software for industrial robots and
smart buffets. Prior to that, she was a Research and Development Lab Associate at Disney Research Los
Angeles (USA) in 2019, where she worked on dynamic emotional language adaptation in multiparty in-
teractions. She received her PhD from the University of Plymouth (UK) and SoftBank Robotics Europe
(France) as an Early-Stage Researcher in the Marie Skłodowska-Curie ITN project APRIL, focusing on
multi-modal personalisation in long-term human-robot interaction within rehabilitation and customer ser-
vice. She holds an MSc in computer engineering and a BSc in mechanical engineering from Boğaziçi
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