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increase of the genetic value. We demonstrate through 
simulation studies that the adaptive scoping method is 
able to maximize the genetic gain for a wide range of 
time frames and that it outperforms the original scop-
ing method, both in the short and in the long term.
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Introduction

From an economic point of view, breeders aim to 
maximize the genetic gain as quickly as possible. 
To this end, they often resort to the use of trunca-
tion selection: every generation, individuals that 
rank highest according to certain traits of interest are 
selected for breeding. When such parental selection 
is guided by phenotypic information, the reduction 
in genetic variation is limited  (Piepho et  al. 2008). 
However, when truncation selection is based on geno-
typic data (i.e., genomic selection), a rapid fixation 
of large-effect quantitative trait loci (QTL) has been 
observed (Clark et al. 2011; Pszczola et al. 2012; Jan-
nink 2010). The loss of favorable QTL alleles in the 
breeding population reduces the maximum reachable 
genetic value, ultimately resulting in a premature con-
vergence to a sub-optimal genetic value. Therefore, 
a successful breeding program should find a bal-
ance between genetic gain on the one hand and the 
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preservation of genetic variation in the breeding pop-
ulation on the other hand (Jannink 2010; Meuwissen 
1997; Woolliams et al. 2015).

Different methods have been proposed in literature 
to maximize long-term genetic gain by controlling the 
average inbreeding coefficient of a population (Wray 
and Goddard 1994; Brisbane and Gibson 1995; Meu-
wissen 1997). The inbreeding coefficient of a diploid 
individual is the probability that, at any given locus, 
the two alleles are identical by descent (i.e., originate 
from the same ancestor). It is important to manage 
the rate at which the average inbreeding coefficient 
changes between consecutive breeding cycles (Wool-
liams et  al. 2015). A high rate of inbreeding results 
in a quick, short-term genetic gain but a rapid loss of 
genetic variation, whereas a low rate of inbreeding 
yields a better preservation of the genetic variation at 
the expense of a slower genetic progress.

Different methods to predict and control the rate 
of inbreeding have been proposed. Wray and Thomp-
son (1990) propose the use of the long-term genetic 
contribution metric, i.e., the proportion of the genes 
of an individual that will be passed to its descend-
ants in the long term. Meuwissen (1997) proposed 
to limit the rate of inbreeding by restricting the 
coancestry between parents using the optimal contri-
bution selection method. In similar approaches, the 
rate of inbreeding was controlled by ensuring a suf-
ficient genetic distance between parents, thus limit-
ing within-family selection  (Sonesson et  al. 2012; 
Allier et  al. 2020b). Gorjanc et  al. (2018) use the 
optimal cross selection method in a two-part breed-
ing program to maximize the long-term genetic gain. 
Akdemir and Sánchez (2016) propose an optimal 
mating plan, taking into account the risk of inbreed-
ing and the desired level of allele heterozygosity. 
Because it is not computationally feasible to enumer-
ate and evaluate all possible combinations of parent 
individuals, optimization techniques such as genetic 
algorithms are often used to find a good parental 
population (Allier et al. 2020b; Gorjanc et al. 2018). 
However, such techniques tend to converge to local 
optima, which implies that the optimal parental popu-
lation may not be found.

Vanavermaete et  al. (2020) propose the scop-
ing method as an alternative strategy to preserve 
the genetic variation in a breeding population and 
thus maximize the long-term genetic gain. The 
selection of parental individuals is performed in a 

computationally efficient manner and consists of 
two steps: pre-selection followed by actual parental 
selection. First, a certain fraction of the individuals 
with the highest genomic estimated breeding values 
(GEBVs) are pre-selected from the breeding popula-
tion. This fraction is referred to as the scoping rate 
(SR). A low scoping rate results in the pre-selection 
of a small set of individuals with only the highest 
GEBVs, whereas a high scoping rate yields a larger, 
more diverse set of candidate parents. From this set, 
parents are selected and coupled aiming for genetic 
progress as well as the preservation of genetic vari-
ation. The scoping method was demonstrated to out-
perform parental selection methods such as trunca-
tion selection, the population merit method (Lindgren 
and Mullin 1997) and the maximum variance total 
method  (Cervantes et  al. 2016), with a more pro-
nounced superiority in the long term.

For economic reasons, breeders are often inter-
ested in the maximization of genetic gain in a short 
time frame. To this end, we propose a modification 
of the scoping method that aims at optimizing the 
genetic gain of a breeding population within a pre-
defined number of breeding cycles. This method, 
referred to as the adaptive scoping method, dynami-
cally changes the scoping rate throughout the dif-
ferent breeding cycles: initially, high scoping rates 
are considered such that the preservation of genetic 
variation is emphasized, whereas during later breed-
ing cycles, increasing the genetic value is gradually 
prioritized through lower scoping rates. The adap-
tive scoping method takes only a single parameter, 
namely the time frame t (expressing the number of 
breeding cycles) during which the genetic gain should 
be maximized. This unique feature enables breeders 
to balance exploration and exploitation of their breed-
ing population.

Materials and methods

The base population and breeding scheme are 
adopted from Neyhart et  al. (2017). The base popu-
lation is constructed from two datasets of North 
American barley (Hordeum vulgare) from the Uni-
versity of Minnesota (UMN) and the University of 
North Dakota (NDSU), counting respectively 384 
and 380 six-row spring inbred lines with 1590 bial-
lelic SNP loci. The simulation study was constructed 
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in a similar way as reported by Vanavermaete et  al. 
(2020), ensuring that the performance of the adap-
tive scoping method can be compared with that of the 
original scoping method.

Breeding scheme

The recurrent breeding scheme is depicted in Fig.  1 
and has been described by Vanavermaete et al. (2020) 
as well as by Neyhart et al. (2017). In the initial breed-
ing cycle, 50 individuals with the highest phenotypic 
values of the NDSU dataset are coupled with 50 indi-
viduals with the highest phenotypic values of the UMN 
dataset. Each couple produces 20 offspring and after 
2 generations of single-seed descent, the base popula-
tion is obtained containing 1000 individuals. From this 
point onward, the parents are selected solely based on 
the genomic estimated breeding values (GEBVs) to 
reduce the financial cost of phenotyping. The GEBVs 
are predicted using a linear mixed effects model that 

has been fitted using the base population, which con-
tains both phenotypic and genotypic information.

In each subsequent breeding cycle, 100 parents are 
selected and coupled according to one of the parental 
selection methods considered to construct a crossing 
block. Each couple produces 20 offspring resulting in 
a total of 1000 F1 individuals. After two generations of 
single-seed descent, 1000 F3 individuals are obtained. 
These individuals represent the new breeding popula-
tion from which parents can again be selected. Each 
simulation run consists of 50 breeding cycles and all 
results are averaged over 100 simulation runs.

The scoping method

Vanavermaete et  al. (2020) proposed the scoping 
method to preserve genetic variation in a breed-
ing population and thus maximize genetic gain in the 
long term. The scoping method consists of two steps: 
pre-selection followed by parental selection. During 
pre-selection, individuals with the highest GEBVs are 
chosen. This ensures that genetic progress can be made 
in the next breeding cycles. The fraction of individu-
als that is pre-selected is controlled by the scoping rate 
which ranges between a minimum value SRmin and a 
maximum value SRmax . Here, SRmax = 1 (pre-select 
100% of the individuals), while SRmin = n

s
∕n

t
 , with 

ns the number of parent individuals to be selected for 
breeding and nt the total population size. For example, 
if ns = 100 parents are to be selected from a popula-
tion size nt = 1000 , then a fraction of at least 10% 
( SRmin = 0.1 ) of the individuals must be pre-selected.

Next, from these pre-selected individuals, ns∕2 
parental pairs are consecutively chosen as follows: 
the individual with the highest GEBV that has not yet 
been selected as a parent is selected as the P1 parent, 
whereas the P2 parent is selected by maximizing the 
Fscore such that the genetic variation of all selected par-
ents thus far is maximized over all markers. Mathemati-
cally, the Fscore is given as:

with k the number of genetic markers, �i the i-th col-
umn of the n × k matrix � containing the genotypes 
(coded as −1 , 0 and 1) of the n already selected indi-
viduals and � a Boolean vector of length k. Initially, pi 
is set to 1 for all marker positions. When both alleles 

(1)Fscore =

k
∑

i=1

var (�i)pi ,
Fig. 1   Overview of the recurrent breeding scheme. First, 50 
pairs of parents ( P

1
 , P

2
 ) each produce 20 offspring, yielding a 

total of 1000 F1 individuals. After two generations of single-
seed descent, 1000 F3 individuals are obtained. From those F3 
individuals, new parental lines are selected. In each breeding 
cycle, 150 individuals that have been the longest in the training 
panel are removed. Next, 150 individuals are phenotyped and 
added to the training panel according to the tails method (Ney-
hart et  al. 2017), selecting 75 individuals with the highest 
GEBVs and 75 individuals with the lowest GEBVs
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at marker i are present, pi is set to 0. This way, the 
Fscore takes into account only those markers for which 
both alleles are not yet present in the selected popula-
tion. Once both alleles are present for all marker posi-
tions, all pi are again set to 1 such that the variance is 
again maximized over all markers.

The core idea is that the P1 parents drive the 
genetic progress of the offspring, whereas the P2 
parents ensure the preservation of genetic varia-
tion. Clearly, the scoping rate controls the trade-off 
between the degree in which genetic variation can 
be preserved on the one hand, and the rate at which 
genetic gain can be made on the other hand.

The adaptive scoping method

The scoping method uses a single, fixed value for 
the scoping rate across successive breeding cycles. 
In contrast, the adaptive scoping method gradually 
decreases the scoping rate from its maximum value 
SRmax to its minimum value SRmin . The adaptive 
scoping method takes a single parameter t, expressed 
through the number of breeding cycles over which the 
scoping rate is varied. Specifically, at breeding cycle 
i, the scoping rate takes the value:

In other words, the scoping rate decreases linearly 
over t breeding cycles from SRmax = 1 at breeding 
cycle 1 to SRmin at breeding cycle t (and later cycles). 
As a consequence, during the first breeding cycles, 
the adaptive scoping method pre-selects a larger num-
ber individuals, focusing on the preservation of the 
genetic variation (exploration). In contrast, at breed-
ing cycles t and later, only elite individuals are pre-
selected, maximizing the genetic progress (exploita-
tion). From this set of pre-selected candidate parents, 
parent pairs are chosen in an identical manner as in 
the scoping method.

H‑optimal genomic mating method

The H-optimal genomic mating (H-OGM) method 
was designed to compare two existing methods using 
the same setting as the adaptive scoping method. In 
other words, the existing methods are combined with 

(2)

SR(i) =

{

SRmin − 1

t − 1
i +

t − SRmin

t − 1
, if 1 ≤ i ≤ t

SRmin , if i > t
.

a preselection using the same SR values as for the 
adaptive scoping method. To do so, a fraction of the 
individuals with the highest GEBVs is preselected. 
Only the preselected individuals can be used as a 
parent. Similar to the adaptive scoping method, the 
preselection is controlled by the SR allowing for both 
methods to use the same pool of individuals as poten-
tial parents. Next, the actual parents are selected. 
Individuals with the highest GEBVs are selected as 
P1 parents, whereas the P2 parents are selected based 
on the highest H-score.

The H-score is a metric proposed by Allier et  al. 
(2020a) by which individuals are scored based on the 
presence of favorable haplotype segments that are not 
available in the elite P1 parents. A full description of 
the H-score was also reported by Vanavermaete et al. 
(2020). First, the haplotype estimated breeding value 
(HEBV) is calculated for each individual. In this sim-
ulation study, the genotype is decomposed into differ-
ent haploid segments using a window size of 20 and a 
step size of five. A matrix � of size k × nH , with k the 
number of markers and nH the number of haplotype 
segments, is constructed to keep track of the selected 
markers per haplotype segment, such that Mij = 1 if 
marker i is part of the j-th haplotype segment and 
Mij = 0 otherwise. Mathematically, the HEBV matrix 
� can be written as:

with � a matrix of size 2n × k containing the haplo-
type of n different individuals and k different mark-
ers coded as 0 and 1 (such that the haplotype of indi-
vidual i is represented at rows 2i − 1 and 2i), ◦ the 
Hadamard product operator, �2n a vector of size 2n 
containing 1s and � a vector of size k with estimated 
marker effects. The HEBV can then be calculated as:

with � a scaling parameter defined as the ratio 
between the step size and the window size. Finally, 
the H-score of individual i can be calculated as:

The crossing block is designed using the optimal 
genomic mating method proposed by Akdemir and 

(3)� = (�◦�2n�
T )� ,

(4)

HEBV(i, j) = �

nH
∑

h=1

max
(

�2i−1,h,�2i,h,�2j−1,h,�2j,h

)

,

(5)H(i) = max
j∈P1

HEBV(i, j) .
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Sánchez (2016). This method includes information on 
the complementarity of parents, allowing for a better 
crossing design in the long term. The OGM method 
was performed using the getGaSolutionsFrontier 
function of the R package GenomicMating using 
default values (Akdemir and Sánchez 2016).

Prediction model

The GEBVs are predicted by fitting a linear mixed 
effects model:

with � a vector of phenotypic values, �n a vector of 
size n containing ones, n the number of individuals 
in the training panel, � the fixed effect (phenotypic 
mean), � the incidence matrix of the training panel 
with marker information, � the marker effects fol-
lowing a normal distribution N(�,�) with � = �2

u
�k 

(with �k the identity matrix of dimension k), k the 
number of markers and � the residual effects follow-
ing a normal distribution N(�,�) with � = �2

e
�n . 

Both variance components �2
u
 and �2

e
 are estimated 

by means of restricted maximum likelihood (REML). 
The GEBVs of the individuals are calculated as:

with �̂ the GEBVs, � the marker information and �̂ 
the predicted marker effects.

At the start of the simulation study, both the UMN 
and NDSU datasets are used as training population. 
In the subsequent breeding cycles, 150 new individu-
als are phenotyped and added to the training panel 
according to the tails method, selecting 75 individu-
als with the highest GEBVs and 75 individuals with 
the lowest GEBVs  (Neyhart et  al. 2017). According 
to Neyhart et al. (2017), this results in a (non-signifi-
cantly) higher genetic gain compared to other update 
methods. Before updating the training panel, 150 
individuals that have been the longest in the training 
panel are removed from the training population. This 
reduces the computational time without reducing the 
prediction accuracy (Neyhart et al. 2017).

The linear mixed effects model in Eq.  (6) is fitted 
using the package rrBLUP in R  (Endelman 2011). 
Even though it has been recommended to remove mark-
ers with low levels of polymorphism from the training 

(6)� = �n� + �� + � ,

(7)�̂ = ��̂ ,

panel (Chang et al. 2018), we kept all markers as this 
resulted in a higher prediction accuracy.

Simulation of the population

The simulation study was built upon the work of Ney-
hart et  al. (2017), using the packages GSSimTPUp-
date and hypred in R (version 3.6.3). First, the 
genome of barley is constructed based on marker posi-
tion, allele, and chromosomal information. One hun-
dred QTL ( L = 100 ) are selected randomly from the 
available 1590 biallelic SNP loci. The remaining 1490 
biallelic SNP loci are available as markers for predic-
tion and selection purposes. The QTL effects are calcu-
lated according to a geometric series. At the k-th QTL, 
the favorable homozygote will have a value ak , the het-
erozygote a value zero, and the unfavorable homozy-
gote a value −ak with a = (L − 1)∕(L + 1) . Dominance 
and epistatic effects were assumed to be absent. The 
phenotypic value is calculated over three different envi-
ronments, each drawn from a normal distribution with 
mean 0 and a variance component �2

E
 which is defined 

as eight times the genetic variance  (Bernardo 2014). 
The phenotypic value of the i-th individual in the j-th 
environment ( yij ) is calculated as follows:

with gi the genetic value of the i-th individual, ej the 
j-th environmental effect and �ij the residual effect 
of the i-th individual and the j-th environment. The 
residual effect is drawn from a normal distribution 
with mean 0 and a variance component �2

R
 , with �2

R
 

scaled to simulate a population with a heritability (h2) 
of 0.5. The phenotypic value of an individual is the 
averaged value over the three environments. A com-
prehensive overview of the simulation study has been 
described by Vanavermaete et al. (2020).

To track the inbreeding coefficient of the population, 
the genetic relationship matrix � is required, which is 
calculated as follows (VanRaden 2008):

with � a matrix of size n × k of which each column 
is calculated as �i − �n[2(Pi − 0.5)] , n the number of 
individuals in the breeding population, �i the geno-
type of n individuals at the i-th marker, �n a vector 

(8)yij = gi + ej + �ij ,

(9)
� =

���

2

k
∑

i=1

Pi(1 − Pi)

,
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of size n containing ones, k the number of markers, 
and Pi the frequency of the second allele at the i-th 
marker. Next, the averaged inbreeding coefficient F 
can be calculated as:

with Gii the diagonal elements of the genetic rela-
tionship matrix. To track the fixation of unfavorable 
QTL alleles, the maximum reachable genetic value 
is calculating as the sum of the QTL effects that are 
fixed (both favorable and unfavorable) and the sum 
of the favorable QTL effects that are not yet fixed. It 
represents the maximum genetic value that could still 
be reached, taking into account the fixation of unfa-
vorable QTL alleles. The maximum reachable genetic 
value and the mean genetic value are rescaled such 
that the maximum reachable genetic value has a value 
of 1. As in Vanavermaete et  al. (2020), the mean 
genetic value of the top-10 individuals is reported. 
These individuals represent the superior lines that are 
prime candidates for commercialization.

Data availability

The scripts, figures, datasets of the base popula-
tion and supplementary data are available from the 
GitHub repository https://​github.​com/​bioin​tec/​Adapt​
iveSc​oping. The dataset and the simulation of the 
recurrent breeding scheme have been reported and 
published by Neyhart et al. (2017).

Results

Performance of the adaptive scoping method

The adaptive scoping method is designed to maxi-
mize the preservation of genetic variation in the first 

(10)F =
1

n

n
∑

i=1

Gii − 1 ,

breeding cycles and maximize the genetic progress in 
later cycles. This is achieved by linearly decreasing 
the scoping rate over the course of t breeding cycles. 
Fig.  2 shows the mean genetic value of the top-10 
individuals of the population for different values of 
t = 10, 20, 30, 40 and 50 breeding cycles. The mean 
genetic value of the top-10 individuals and the maxi-
mum reachable genetic value of the adaptive scop-
ing method and the scoping method are also reported 
in the supplementary material in Tables  S1 and  S2, 
respectively. For a value of t = 10 , the preservation of 
variation is quickly traded off for a rapid genetic gain: 
from breeding cycle 10 onward, only the individuals 
with the highest GEBVs are considered as parents. At 
breeding cycle 15, this manifests itself in an at least 
4 percentage points higher mean genetic value com-
pared with the other values of t. Nevertheless, due to 
the rapid reduction of genetic variation, the adaptive 
scoping method with t = 10 quickly loses its ability 
to drive genetic progress further, yielding the worst 
genetic values beyond about 30 breeding cycles. The 
adaptive scoping method with t = 20 preserves the 
genetic variation somewhat longer before focusing on 
genetic gain. Around breeding cycle 25, this yields 
the highest mean genetic value compared with other 
values of t. Again, this advantage quickly degrades 
throughout later breeding cycles.

In general, the behavior of the adaptive scop-
ing method can be understood as follows: the higher 
the value of t, the longer genetic variation is pre-
served before genetic gain is prioritized. As soon as 
t breeding cycles are completed, the adaptive scop-
ing method resembles the behavior of truncation 
selection (although the pairing of parents is not ran-
dom). Therefore, the adaptive scoping method will 
yield the highest genetic gains shortly after t breed-
ing cycles. This is indicated in the middle panels 
of Fig.  2, where the results for different values of t 
are compared at different breeding cycles: the adap-
tive scoping method with t = 10 yields the highest 
gain at cycle 15, the adaptive scoping method with 
t = 20 yields the highest gain at cycle 25, etc. The 
only exception is the adaptive scoping method with 
t = 50 . In that case, the adaptive scoping method is 
not able to outperform the adaptive scoping method 
with t = 40 at breeding cycle 55 but converges to the 
same value (see Table  S1). Clearly, by choosing a 
particular value for t, a breeder can expect the high-
est gains during the breeding cycles that immediate 

Fig. 2   Top panel: the mean genetic value of the top-10 indi-
viduals and the maximum reachable genetic value for the 
adaptive scoping method with a value for t of respectively 10, 
20, 30, 40 and 50 breeding cycles. Middle panels: the mean 
genetic values for the different parental selection methods at 
breeding cycles 15, 25, 35, 45 and 55. Bottom left panel: the 
SR for the different parental selection methods. Bottom right 
panel: the genetic variation for the different parental selection 
methods

◂

https://github.com/biointec/AdaptiveScoping
https://github.com/biointec/AdaptiveScoping
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follow t, outperforming the adaptive scoping method 
with different values of t.

We also compare the adaptive scoping method 
with the original scoping method for a fixed scoping 
rate across the breeding cycles. In Vanavermaete et al. 
(2020), a scoping rate of 0.3 was suggested to maxi-
mize the genetic gain in the short as well as in the 
long term and is hence also used here. Compared with 
the scoping method, the adaptive scoping method 
uses a higher scoping rate and hence pre-selects more 
individuals during the first breeding cycles, allowing 
for a better preservation of the available genetic vari-
ation. As a consequence, during those initial breeding 
cycles, the adaptive scoping method suffers less from 
the loss of favorable QTL alleles and hence preserves 
a higher maximum reachable genetic value at the 
expense of a lower mean genetic value of its top-10 
individuals (see Fig. 3).

The short-term sacrifice in genetic gain pays off 
in the long term. The adaptive scoping method with 
t = 10 outperforms the scoping method after 13 
breeding cycles and yields higher genetic values up 
to breeding cycle 20. At that point, the adaptive scop-
ing method has exploited the remaining genetic varia-
tion, quickly leading to the convergence of the genetic 
value from that point onward. Similarly, the adaptive 
scoping method with t = 20 outperforms the scoping 
method after 20 breeding cycles. Finally, the adaptive 
scoping method with t = 50 surpasses the scoping 
method at breeding cycle 30 and yields the highest 

long-term gain (a 4 percentage point increase com-
pared to the scoping method at breeding cycle 50). At 
that point, the genetic value of the adaptive scoping 
method is even higher than the maximum reachable 
genetic value of the scoping method. This means that 
the loss of favorable QTL alleles from the popula-
tion during the initial breeding cycles of the scoping 
method has caused an insurmountable disadvantage 
in the long term. We conclude that the adaptive scop-
ing method is able to outperform the original scoping 
method, both in the short term (when low values of t 
are used) and in the long term (for high values of t).

We have also compared the adaptive scoping 
method to the H-OGM method, which combines the 
H-score and the OGM method using the same setting 
as the adaptive scoping method  (Allier et  al. 2020a; 
Akdemir and Sánchez 2016). The mean genetic value 
of the top-10 individuals and the maximum reacha-
ble genetic value of the H-OGM method are reported 
in the supplementary material in Tables  S3 and  S4, 
respectively. In the short term, the H-OGM method 
results in a lower genetic gain compared to the (adap-
tive) scoping method (see Fig. 4). When t increases, 
the short-term genetic gain of the H-OGM method 
decreases. However, in contrast to the adaptive scop-
ing method, the genetic gain is not optimized after t 
breeding cycles. For each t value, the genetic value 
converges to almost the same value in the long term. 
It is clear that adaptive scoping is able to improve 
upon the scoping method, but cannot directly be used 

Fig. 3   The mean genetic 
values of the top-10 indi-
viduals using the scoping 
method ( SR = 0.3 ) and the 
adaptive scoping method for 
t = 10 , t = 20 and t = 50
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to improve other methods like the H-OGM method 
within a given time frame. At breeding cycle 50, a 
17 and 23 percentage points higher genetic value is 
observed for the adaptive scoping method compared 
to the H-OGM method for a t value of 10 and 40, 
respectively.

Robustness of the adaptive scoping method

The original scoping method and the adaptive scop-
ing method have been evaluated in different simula-
tion settings. In each experiment, these methods were 
assessed using 100 different genomes such that the 
effects of different QTL and marker positions are 
averaged. The effects of the heritability and the num-
ber of QTL on the genetic gain using both methods 
have also been tested: simulation studies were per-
formed using a heritability of 0.2 and 0.8 using 100 
QTL, and a heritability of 0.5 using 50 and 200 QTL 
(see Fig. 5).

In each case, shortly after t breeding cycles, the 
adaptive scoping method resulted in the highest 
genetic value throughout a certain number of breed-
ing cycles. For t = 50 , the adaptive scoping method 
always yielded the highest long-term genetic gain. 
Increasing the heritability improves the prediction 
accuracy, resulting in higher genetic gains for all 
methods. Similarly, the GEBVs can be more accu-
rately predicted when fewer QTL are present. For 
lower values of the heritability, the effect of the 

environment becomes more pronounced, making it 
more challenging to accurately select the best par-
ents (based on the GEBVs). As the adaptive scoping 
method is better at preserving the genetic variation in 
the first breeding cycles, a slower but more accurate 
fixation of the QTL alleles is observed, resulting in 
higher long-term genetic gains compared to the scop-
ing method.

Discussion

The effect of a variable scoping rate on the genetic 
gain

The loss in genetic variation and the resulting 
risk associated with truncation selection are well 
known (Jannink 2010; Meuwissen et al. 2001; Vanav-
ermaete et  al. 2020). In response to this, parental 
selection techniques such as the scoping method 
were developed to better preserve genetic variation 
and thus maximize genetic gain in the long term. To 
achieve this, individuals with a lower GEBV can also 
be considered as a parent when they contribute to the 
genetic diversity. To avoid an adverse effect on the 
rate of genetic progress, a fraction of individuals with 
the highest GEBVs in the breeding population is pre-
selected. This fraction is controlled by the scoping 
rate. The (original) scoping method relied on a fixed 
scoping rate throughout the different breeding cycles. 

Fig. 4   The mean genetic 
value of the top-10 indi-
viduals and the maximum 
reachable genetic value 
for the scoping method 
( SR = 0.3 ), the adaptive 
scoping method ( t = 10 and 
t = 40 ) and the H-OGM 
method ( SR = 0.3 , t = 10 
and t = 40)
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For a scoping rate of 0.3, the maximum reachable 
genetic value decreases significantly in the first breed-
ing cycles, indicating that several favorable QTL 
alleles are lost from the population at the early stages 
of the breeding program. In principle, this could be 
avoided by increasing the scoping rate (and thus pre-
selecting more parents), but this would unavoidably 
slow down the genetic progress and, hence, require a 

very large number of breeding cycles to outperform 
the truncation selection method.

By introducing a variable scoping rate, the trade-
off between genetic gain and genetic variation can be 
controlled during the breeding process itself. In the 
first breeding cycles, a high value for the scoping rate 
prevents the loss of favorable QTL alleles. The scop-
ing rate is decreased linearly, gradually prioritizing 

Fig. 5   Simulation results of the original and adaptive scop-
ing methods (using t = 10 , 20 and 50) for a heritability of 0.2 
and 0.8 using 100 QTL (top) and for a heritability of 0.5 using 

50 and 200 QTL (bottom). The impact of both methods on the 
genetic value and on the maximum reachable genetic value is 
reported
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genetic progress over preserving genetic variation. 
This leads to a slower, but more accurate fixation of 
the QTL alleles, translating into lower short-term, but 
higher long-term genetic gains. The parameter t rep-
resents the number of breeding cycles over which the 
scoping rate is varied, and can thus be used to control 
the time frame over which the genetic value is to be 
optimized. After t breeding cycles, the adaptive scop-
ing method fully prioritizes the increase of the genetic 
gain, and a rapid fixation of QTL alleles is observed.

Optimizing the breeding population within a 
predefined time frame

The key advantage of the adaptive scoping method is 
that it can be used to optimize the genetic gain of a 
breeding population within a predefined time frame. 
Depending on the goals of the breeder, an appropriate 
choice for t can be made: a low value of t will provide 
fair genetic values in the short term, whereas higher 
values of t will lead to higher genetic values in the 
long term. Once t breeding cycles have been com-
pleted, genetic gain is fully prioritized and the highest 
genetic values will quickly be reached during the next 
few breeding cycles. Irrespective of the choice of t, 
the breeder can expect the adaptive scoping method 
to yield superior genetic values during a short time 
window that follows breeding cycle t. This is shown 
in Fig. 6 where at each breeding cycle, the results of 

the method that yields the highest genetic values are 
shown.

In a commercial breeding program, elite lines are 
selected in each breeding cycle for commercializa-
tion. Because the adaptive scoping method requires t 
breeding cycles before it renders elite individuals, it 
cannot be used in a commercial setting. The adaptive 
scoping method should be used in a situation where 
no output is expected in the first t breeding cycles. 
Such a scenario arises in prebreeding where individu-
als with a high variation and low genetic value are 
crossed for several breeding cycles to maximize the 
genetic gain before introducing these individuals into 
a commercial breeding population.

The adaptive scoping method proves robust even 
when the prediction accuracy is low. This was dem-
onstrated in Fig.  5 by decreasing the heritability or 
increasing the number of QTL. In both cases, select-
ing the best parents based on the GEBVs becomes 
more tedious.

Comparison of the scoping and adaptive scoping 
methods

Compared to the (original) scoping method which 
uses a fixed scoping rate, the adaptive scoping method 
has two important advantages.

First, during the initial breeding cycles, the adap-
tive scoping method uses a higher scoping rate 
and thus better prevents the loss of favorable QTL. 

Fig. 6   Simulation results 
of the scoping and adap-
tive scoping methods. At 
each breeding cycle, the 
mean genetic value of the 
top-10 individuals and 
the maximum reachable 
genetic value is depicted 
for the method and/or value 
of t that yields the highest 
genetic value
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The effect of the loss of favorable QTL is clearly 
observed in Figs. 3 and 5: during the first few breed-
ing cycles, the maximum reachable genetic value of 
the scoping method decreases significantly whereas 
this is less pronounced for the adaptive scoping 
method.

Second, after t breeding cycles have been com-
pleted, the adaptive scoping method relies on a low 
scoping rate to efficiently convert the remaining 
genetic variation into genetic gain. From breeding 
cycle t onward, the scoping rate reaches its mini-
mum value and the pre-selection procedure yields 
the same parental population as truncation selection 
(i.e., the individuals with the highest GEBVs). How-
ever, whereas truncation selection relies on a random 
crossing of parents, the adaptive scoping method con-
structs the crossing block using an identical procedure 
as the scoping method. The latter was demonstrated 
to result in an overall higher genetic gain  (Vanav-
ermaete et  al. 2020). As such, the adaptive scoping 
method allows for a better and more accurate exploi-
tation of the remaining genetic variation toward the 
end of the pre-defined time window.

Except for the case where the optimization of a 
breeding population in a very short period of time 
is desired, the adaptive scoping method outperforms 
the (original) scoping method. In turn, the scoping 
method was demonstrated to outperform parental 
selection methods such as truncation selection, the 
population merit method and the maximum variance 
total method in simulation studies  (Vanavermaete 

et  al. 2020). As such, the adaptive scoping method 
appears to be an attractive parental selection method.

Comparison of the H‑OGM and the adaptive scoping 
method

The OGM method uses an evolutionary algorithm to 
optimally cross the selected parents. However, com-
pared to the scoping method and the adaptive scop-
ing method, the H-OGM method yields much lower 
genetic gains. The inbreeding coefficient for the 
scoping, adaptive scoping and H-OGM methods is 
shown in Fig.  7. A higher increase in inbreeding is 
observed for the (adaptive) scoping method compared 
to the H-OGM method. The H-OGM method crosses 
parents in such a way that the inbreeding coefficient 
is minimized in each breeding cycle. This is not the 
case for the scoping and adaptive scoping methods. 
Although the Fscore is used to maximize the genetic 
variation between two crosses, over time, favorable 
marker alleles will accumulate in the breeding popu-
lation while unfavorable alleles will still be preserved. 
The scoping method balances the preservation of 
genetic variation and the maximization of genetic 
gain by selecting parents that maximize the genetic 
gain (P1) and the genetic variation (P2). Therefore, 
the (adaptive) scoping method will result in a higher 
inbreeding coefficient compared to methods that min-
imize the inbreeding coefficient, but a lower inbreed-
ing coefficient compared to methods that maximize 
the genetic gain (e.g. truncation selection). This also 

Fig. 7   Left panel, the evolution of the inbreeding coefficient 
in each breeding cycles for the H-OGM method ( SR = 0.3 , 
t = 10 and t = 40 ). Right panel, the evolution of the inbreed-

ing coefficient in each breeding cycles for the scoping method 
( SR = 0.3 ) and the adaptive scoping method ( t = 10 and t = 40

)
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means that the H-OGM method will result in a higher 
effective population size compared to both scoping 
methods. Nevertheless, the adaptive scoping method 
can reach higher genetic values in the long term and 
can better preserve the genetic variation compared to 
the H-OGM method. This indicates that the inbreed-
ing coefficient is not sufficient as a metric to guide 
the selection of parental combinations. Whereas the 
H-OGM method minimizes the inbreeding coeffi-
cient, the adaptive scoping method can find a balance 
between preservation and genetic gain, allowing for a 
higher inbreeding coefficient but also a higher genetic 
progress.

Conclusion

We proposed the adaptive scoping method as an 
enhanced version of the original scoping method. By 
dynamically balancing genetic progress and genetic 
variation, we demonstrated its ability to maximize the 
genetic gain of a breeding population within a spe-
cific, predefined time frame of interest. This unique 
ability enables breeders to balance between explora-
tion and exploitation of their breeding population: 
they can obtain fair genetic values in a relatively short 
term, or they can aim for the highest genetic values 
in the longer term. Regardless of this choice of time 
frame, the adaptive scoping method was shown to 
outperform the original scoping method.
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