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Antecedent: The event-related potential (ERP) components P300 and mismatch

negativity (MMN) have been linked to cognitive deficits in patients with schizophrenia. The

diagnosis of schizophrenia could be improved by applying machine learning procedures

to these objective neurophysiological biomarkers. Several studies have attempted to

achieve this goal, but no study has examined Multiple Kernel Learning (MKL) classifiers.

This algorithm finds optimally a combination of kernel functions, integrating them in a

meaningful manner, and thus could improve diagnosis.

Objective: This study aimed to examine the efficacy of the MKL classifier and the

Boruta feature selection method for schizophrenia patients (SZ) and healthy controls (HC)

single-subject classification.

Methods: A cohort of 54 SZ and 54 HC participants were studied. Three sets of features

related to ERP signals were calculated as follows: peak related features, peak to peak

related features, and signal related features. The Boruta algorithm was used to evaluate

the impact of feature selection on classification performance. An MKL algorithm was

applied to address schizophrenia detection.

Results: A classification accuracy of 83% using the whole dataset, and 86% after

applying Boruta feature selection was obtained. The variables that contributed most

to the classification were mainly related to the latency and amplitude of the auditory

P300 paradigm.

Conclusion: This study showed that MKL can be useful in distinguishing between

schizophrenic patients and controls when using ERP measures. Moreover, the use

of the Boruta algorithm provides an improvement in classification accuracy and

computational cost.

Keywords: multiple kernel learning, schizophrenia, Boruta, feature selection, event related potential, machine

learning

INTRODUCTION

Schizophrenia is a severe and persistent debilitating psychiatric disorder with a prevalence
of about 1% of the world population (McGrath et al., 2004). Although psychotic symptoms
such as hallucinations and delusions are frequently present, impaired information processing
is probably the most common symptom (Javitt et al., 1993). This deficit is reflected mainly by
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deficits in attention and working memory tasks when compared
with healthy controls (Li et al., 2018). The diagnosis of
schizophrenia is made by psychiatrists by ascertaining the
presence of predefined symptoms (or their precursors) with
personal interviews. However, in some cases this diagnosis
is unclear, or patients are misdiagnosed with Schizophrenia
(Coulter et al., 2019). Thus, finding biomarkers for the
prediction of individuals with schizophrenia would be desirable
to enable choosing the optimal treatment (pharmacologic or non-
pharmacologic). Analysis of the electroencephalogram (EEG)
during information processing tasks could provide objective
complementary measures to support the subjective human-based
decision process (Sabeti et al., 2009; Koukkou et al., 2018).

EEG is a non-invasive and low-cost technique used tomeasure
electrical brain activity along with multiple scalp locations. EEG
signals have been widely adopted to study mental disorders, such
as dementia, epileptic seizures, cognitive dysfunction, among
others, as well as schizophrenia (Loo et al., 2016; Olbrich et al.,
2016; Horvath et al., 2018). Electrophysiological data reflects
the spontaneous activity of myriad brain parcels, but also can
include responses to afferent stimuli (Cong et al., 2015). Event-
related potentials (ERPs) are electrical responses that are time-
locked to a specific stimulus or event and can be used to assess
brain dynamics during information processing in specific tasks
(Woodman, 2010). When a subject is presented with a series of
standard stimuli, interspersed with infrequent deviant stimuli,
the Mismatch Negativity (MMN) (Lee et al., 2017) and the P300
(Li et al., 2018) components are generated. This task is known
as the oddball paradigm and is used to study schizophrenia
since consistent deficits in the P300 and MNN have been
reported in this disease (Bramon et al., 2004; Javitt et al., 2017).
Although MMN and P300 are usually produced by an infrequent
unexpected event in a sequence of auditory stimuli, P300 can
also be obtained with visual stimuli. The MMN is of shorter
latency and does not require attention to the stimulus (Näätänen
et al., 2004), whereas the P300 is of longer latency and requires
attention to the stimulus (Huang et al., 2015).

Several studies have reported significant differences in the
latency and amplitude of MMN and P300 between controls
and patients, suggesting that these features are possible markers
of the prodromal phase of schizophrenia (Atkinson et al.,
2012; Loo et al., 2016) as well as potential endophenotypes for
schizophrenia (Earls et al., 2016). Analysis of a large dataset of
auditory P300 ERP (649 controls and 587 patients) confirmed
the reliability of this reduced amplitude, with a large effect size
(Turetsky et al., 2015). However, these findings of statistically
significant differences in a group analysis do not imply that EEG
is useful for the prediction of individual schizophrenia cases (Lo
et al., 2015), which requires applying a prediction paradigm using
Machine Learning.

Machine learning techniques have potential value for assisting
the diagnosis of brain disorders (Burgos and Colliot, 2020).
Recent works are based on EEG signals for the diagnosis of
epilepsy (Tanu, 2018), Alzheimer’s disease and dementia (Joshi
and Nanavati, 2021), and Parkinson (Maitín et al., 2020), among
other disorders. Particularly, ERP measures combined with
machine learning techniques are being tested for the classification

of schizophrenia. The most common features used are based
on the amplitude and latency of different components [e.g.,
N100 and P300 (Neuhaus et al., 2013), P50 and N100 (Iyer
et al., 2012; Neuhaus et al., 2014)], with several classifiers tested.
Neuhaus et al. (2013) used visual and auditory oddball paradigms
and a k-nearest neighbor (KNN) classifier and obtained a
classification accuracy of 72.4 %. The same author with a bigger
sample size and a Naive Bayes (NB) classifier achieved a 77.7%
of accuracy (Iyer et al., 2012). Laton et al. (2014) evaluated
the performance of several classifiers extracting features from
auditory/visual P300 and MMN. The results using NB and
Decision Tree (without and with AdaBoost) achieved accuracies
of about 80%. Recently, Barros et al. (2021) published a critical
review that summarizes machine learning-based classification
studies to detect SZs based on EEG signals, conducted since 2016.
These authors reported that Support Vector Machines (SVM)
were the most commonly used classification algorithm, probably
due to their computational efficiency. This kernel-based learning
method also achieved the best performance in most studies.
Nevertheless, to the best of our knowledge, none of the studies
focused on ERP for SZ classification have used multiple kernels,
employing instead only one specific kernel function.

Themultiple kernel learning (MKL)method learns a weighted
combination of different kernel functions and can benefit from
information coming from multiple sources (Wani and Raza,
2018). A recent survey of artificial intelligence methods for
the classification and detection of Schizophrenia (Lai et al.,
2021), shows that MKL has been applied to both structural
and functional Magnetic Resonance Images (MRI), increasing
performance accuracy (Ulaş et al., 2012; Castro et al., 2014;
Iwabuchi and Palaniyappan, 2017). Nevertheless, in this review
MKL algorithms applied to electrophysiological data have been
not reported, although a recent study used EEG dynamic
functional connectivity networks to classify SZ based on MKL
(Dimitriadis, 2019). To our knowledge, ERP data has not been
used to classify SZ using MKL despite its use for other purposes
such as brain-computer interfaces (Li et al., 2014; Yoon and Kim,
2017).

Here, we explore the efficacy of MKL for the classification of
schizophrenia based on ERP measures extracted from auditory
and visual P300 and MMN. Using the same dataset provided by
Laton et al. (2014), we extended the set of predictor variables
beyond the latency and amplitude of the ERP components, by
including additional morphological features (based on time)
together with some features extracted from the frequency
domain. Due to the huge number of features, the Boruta
method (Kursa and Rudnicki, 2010) was applied, which is a
wrapper Random Forest (RF) based feature selection algorithm,
to estimate the impact of a subset of important and relevant
feature variables in the classification accuracy.

MATERIALS AND METHODS

Dataset
The study (Laton et al., 2014) was carried out on data from
54 SZ patients and 54 HC, matched for age and gender.
Patients were classified by a semi-structured interview (OPCRIT
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TABLE 1 | Demographic data (Laton et al., 2014).

Patients Controls P (t-test)

Number of participants 54 54

Male 36 36

Age (years): mean ± std 40.5 ± 10.1 37.6 ± 14.1 0.22

Age (years): range [22.4, 60.5] [15.1, 64.4]

Education (years): mean ± std 12.6 ± 1.80 14.8 ± 2.11 4.84 × 10–5

Disease duration (years): mean ± std 14.8 ± 9.04 –

Disease duration (years): range [1, 40] –

TABLE 2 | Paradigms and procedures (Laton et al., 2014).

Auditory P300 Visual P300

Tone Figure Distribution (%)

Target 1500Hz 70 dB Square, side 106 pixels 10

Distractor 500Hz 70 dB Circle, diameter 176 pixels 10

Standard 1000Hz 70 dB Square, side 158 pixels 80

Inter-stimulus interval was randomized between 1 and 1.5 s. 400

stimuli per test. 100ms per stimuli. Total test time of 540 s.

MMN

Tone Duration Distribution

Duration deviant 1000Hz 70 dB 250ms 5%

Frequency deviant 1500Hz 70 dB 100ms 5%

Standard 1000Hz 70 dB 100ms 90%

Inter-stimulus interval of 300ms, 1800 tones per test. Total test time of

733 s.

v4.0) and all participants gave written informed consent.
Detailed demographic data can be found in Table 1. EEGs were
recorded using a 64-channel and the international 10/10 system,
with a sampling frequency of 256Hz. Three paradigms were
used: auditory/visual P300 and MMN. Table 2 shows a brief
description of the paradigms and procedures. We refer to Laton
et al. (2014) for the study details.

The signals were filtered using bandpass Butterworth filters
with cut-offs at 0.1 and 30Hz. Epochs were extracted using time
windows between−200 and 800ms for the P300 paradigms (257
discrete data points) and between−100 and 500ms for theMMN
(155 discrete data points). Subsequently, baseline correction, re-
referencing to linked ears, and artifact rejection were performed.
Finally, epochs were averaged into stimulus-specific responses for
each individual, and low-pass filter and baseline correction were
re-applied. More details can be found in Laton et al. (2014).

Feature Extraction
The initial set of measurement data consists of averaged signals
of 62 channels for each specific response to the three paradigms.
This leads to a large amount of data, so it is necessary to
transform the initial raw data into a set of features, or signal
characteristics that better represent the underlying problem. The
process of transforming the signals into numerical features has

been carried out on the waveform of ERPs emerged as the
averaging of the electrical responses corresponding to the set of
stimuli implicated in the detection of rare events (Target and
Distractor for P300, Duration and Deviant for MNN), which
are more prominent at midline scalp electrode locations Fz,
Cz, and Pz (Bénar et al., 2007). As stated, SZ typically exhibits
smaller amplitudes in these components compared to HC (Li
et al., 2018). Additionally, several studies demonstrated P300 and
MMN component differences between SZs and HCs at midline
electrodes (Hirayasu et al., 1998; Graber et al., 2019), thus only
these channels were considered (see Figure 1).

The set of features can be divided into three categories: peak
related features, peak to peak related features, and signal related
features. The formal definitions of the used features are given in
Annex 1. Some of these features were previously used by other
authors to calculate features related to the ERP signal (Kalatzis
et al., 2004; Abootalebi et al., 2009). Four peaks for the P300
paradigms (N100, P200, N200, and P300) and two peaks for the
MMN paradigm (N200, P300) were considered (see Figure 2).
Consequently, the number of features extracted for classification
purposes was 726 (282 features for auditory P300 paradigm, 282
for visual P300 paradigm, and 162 for MMN paradigm).

Peak Related Features
Peaks were estimated using the same algorithm described in
Laton et al. (2014). Four intervals were established around the
average latency of the respective peak, measured on the grand
averages. The algorithm considered Amplitude as the largest
absolute value in each interval and Latency as the time where
the peak appears in the respective time window (interval).
The other features were: Absolute Amplitude, Latency/Amplitude
ratio, Absolute Latency/Amplitude ratio, Average Absolute Signal
Slope, and Slope sign alterations.

Peak to Peak Related Features
Three features were calculated considering the relationship
between adjacent selected peaks: the absolute difference between
the amplitude of the peak and the next peak in latency order; the
difference in latencies of these two peaks; and the slope of the
signal in this time window.

Signal Related Features
Features considering the area under the curve were calculated:
the sum of the positive signal values (Positive Area); the sum of
the negative signal values (Negative Area); the Total Area, and
Absolute Total Area. Two more features related to the whole
signal were calculated: the number of times that the amplitude
value of the signal crosses the zero y-axis between two adjacent
peaks (Zero Crossing); and the relation of the number of crosses
per time interval (Zero Cross Density).

Additionally, frequency domain features were extracted using
a Power Spectral Density (PSD) analysis: the frequency with the
largest energy content in the signal spectrum (Mode frequency)
spectrum; the frequency that separates the power spectrum into
two equal energy areas (Median frequency); and an estimate
of the central tendency of the derivate power distributions
(Mean frequency).
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FIGURE 1 | Averaged evoked potential signals used for feature extraction.

FIGURE 2 | Principal components of P300 tasks (N100, P200, N200, P300) and MMN task (P200, P300).

Feature Scaling
Mapping the feature values of a dataset into the same
range is crucial for those algorithms that exploit distances or
similarities (Ahsan et al., 2021). The feature values were z-
scored, for standardizing them on the same scale by dividing
the feature’s deviation by the standard deviation in a data
set. This improved the numerical stability of the model.
Standardization also maintains useful information about outliers
and makes the algorithm less sensitive to them (Sahu et al.,
2020). The standardized values were then normalized, rescaling
them all to values between 0 and 1 using the sigmoid
transformation function.

Feature Selection
After the feature scaling process, feature selection was applied.
This is useful for constructing the smallest subset of features
from the original set maintaining as much as possible the original
meaning of the data. This technique of dimensionality reduction
removes redundant and irrelevant features. The main purpose
of this process is to reduce the training time and amount of

memory required for the algorithm to work, thus reducing the
computational cost when developing a predictive model (Zebari
et al., 2020). In some cases, it also improves the performance of
themodel, although this is not always guaranteed (Benouini et al.,
2020).

There are several methods available for performing feature
selection in the setting of random forest classification (Speiser
et al., 2019). RFs are a collection of classification and regression
trees, which are simple models using binary splits on predictor
variables to determine outcome predictions. Thus, they provide
variable importance measures to rank predictors according to
their predictive power.

Boruta Algorithm
Boruta is a feature selection algorithm that uses a wrapper
method based on the RF classifier to measure the importance of
variables. RF makes it relatively fast due to its simple heuristic
feature selection procedure (Kursa, 2017).

In the Boruta algorithm, the original feature set is extended by
adding shadow variables (Kursa and Rudnicki, 2010). A shadow
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FIGURE 3 | Grouping input data (726 features) in three possible kernel combinations according to the feature space approach.

variable is created by shuffling the values of the original feature.
Several RFs are run. In each run, the set of predictor variables is
doubled by adding a copy of each variable. An RF is trained on
the extended data set to obtain the variable importance values.
For each real variable, a statistical test is performed comparing its
importance with the maximum value of all the shadow variables.
If a variable systematically falls below the shadow ones, its
contribution to the model is doubtful and is therefore eliminated.
The shadow variables are removed, and the process continues
until all variables are accepted, rejected, or a limit number of
iterations is reached in which case some variables may be left
undecided. This limit corresponds to the maximal number of
RF runs.

In this work, we made use of the R package “Boruta” (Kursa
and Rudnicki, 2020), and set the number of maximum RF to 500.

MKL Classifier Algorithm
Kernel-based SVM employs a kernel k

(

xi,xj
)

as a function of
the similarity between two instances xi and xj. Given a binary
classification and N labeled training instances

(

xi,yi
) (

yiǫ±1
)

a result of training an SVM is learning the weights (αi) in the
decision function:

f (x)=sign

(

N
∑

i=1

αiyik (xi, x)+b

)

(1)

The three commonly used kernels are: linear kernel (KL),
polynomial kernel (KP), and Gaussian kernel (KG):

KL

(

xi, xj
)

=
〈

xi, xj
〉

(2)
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(
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=(
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〉
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q

(3)
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)

= exp

(

−

∥
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∥

∥

2

s2

)

, (4)

with parameter q the polynomial degree and parameter s

determine the width for Gaussian distribution.
Multiple kernel learning can be a linear or

nonlinear combination of M sub-kernel functions
(k1

(

x11, x
)

. . . kM
(

xM1 , x
)

), where xi =
{

xmi
}M

m=1
, xmi ∈R

Dm ,

Dm denotes the dimensionality of themth feature representation.
The methods aim to construct an optimal kernel model where
the kernel is a linear combination of M fixed base kernels.
Learning the kernel then consists of learning the weighting
coefficients β= [β1,β2,..,βm] for each base kernel, rather than
optimizing the kernel parameters of a single kernel.

Kopt

(

xi,xj
)

=

M
∑

m=1

βmKm

(

xmi ,x
m
j

)

β >0,

M
∑

m=1

βm=1 (5)

Plugged into the SVM decision function leads to the following
decision function:

f (x)=sign





N
∑

i=1

αiyi





M
∑

j=1

βjkj (xi, x)



+b



 (6)

There are several MKL algorithms. We used MKL available
in the SHOGUN toolbox (Sonnenburg et al., 2010). In this
implementation, the kernel functions and corresponding kernel
parameters are known before training, thus, only the parameters
used to combine the set of kernel functions are optimized during
training. The MKL learning method can help to find which
kernel or combination of kernels corresponds to a better notion
of similarity for the same representation of data. Nevertheless,
by using inputs coming from different representations (that
have different measures of similarities corresponding to different
kernels), and combining them, the learning methods can find
the best kernel for data representation or the combination that
includes the discriminative information the data could carry.
These approaches depend on the regularization chosen for the
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FIGURE 4 | Feature selection steps applying nested cross-validation.

restrictions on the kernel’s weights. Regularized L1-norm induces
sparsity on the kernel’s coefficients obtained with a considerably
large fraction of zero entries focusing on the best kernels. Using
the L2-norm the solution will be non-sparse, distributing the
weights over all kernels (Kloft et al., 2011). Additionally, it has
been demonstrated that the L2 MKL yields better performance
on most of the benchmark data sets (Yu et al., 2010).

The two-step training method used here updates the
combination function and the base learner parameters in an
alternating manner. The algorithm was then based on wrapping
linear programs around SVMs. The outer loop optimization is
related to the Semi-Infinite Linear Program (SILP) that optimizes
the non-smooth dual problem formulated by Sonnenburg et al.
(2005, 2006). In this approach, the optimization target function
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FIGURE 5 | Distribution of feature selection in 10 fold cross-validation. (A) Amount of attributes selected per k iteration of the 10 fold CV and the distribution per

paradigm in the 10 subsets of features selected, (B) Frequency of selection of all the attributes that were selected at least once in the ten Boruta applications. The

bottom number means how many features were selected at least in n CV iterations (n on top).

follows the structural risk minimization framework and tries to
minimize the sum of a regularization term that corresponds to
the model complexity and an error term that correspond to the
system performance. The optimization problem modeled as a
SILP problem has lower computational complexity compared to
those modeled with a semidefinite programming (SDP) problem

and a quadratically constrained quadratic programming (QCQP)
used in one-step methods.

In this work, the input data was mapped into different feature
spaces trying to group variables with common aspects or sources:
type of paradigm (P300a, P330v, MMN), channels (Fz, Cz,
Pz), or type of feature (Latency & Amplitude, Morphological,
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Frequency) as shown in Figure 3. The 726 features were
rearranged into three sources of data considering the common
aspects. Thus, three different views of the data can be used to
create three models to be compared. The experiments explored
combinations of three kernels (one per source of data). For
example, in the case of Channels the criteria used were grouping
all the features from the global feature set that belong to the Cz
channel and feeding a kernel to look for a notion of similarity and
do the same with the other two kernels for Fz and Pz channels.
The kernels were iteratively selected from a grid search of linear,
polynomial, and RBF kernels with different parameters. We used
a non-sparse MKL with L2-norm for thoroughly combining
complementary information of the heterogeneous data sources.

Nested Cross-Validation
To explore the feature selection impact, nested cross-validation
(NCV) was applied. The NCV is characterized by having an inner
loop responsible for model selection/hyperparameter tuning and
an outer loop is for error estimation. The entire data was divided
randomly into k subsets or folds with stratification, the same
proportion of patients and controls as in the complete dataset.
The k-1 subsets are used for feature selection and the remaining
subset for testing the model after feature selection. As in the k-
fold cross-validation method, this process was repeated k times
(outer loop), each time leaving out one of the subsets reserved
for testing and the rest for feature selection using the Boruta
algorithm in an inner loop (see Figure 4).

Each subset obtained after feature selection was used for
model hyperparameter tuning in the inner loop. One of the
approaches commonly used in practice for the selection of
hyperparameters is to try several combinations of them and
evaluate theirs out of sample performance. The tuned parameters
in the MKL classifier were:

• Regularization parameter C, we evaluated C with {0.5, 1, 1.5, 5,
10}, and selected the best value considering a tradeoff between
misclassification and model simplicity

• Type of kernel (linear, RBF, and polynomial)
• In the case of RBF kernels the Sigma (σ ), we explored the

following values 10, 5, 1, 0.25, 0.5, 0.75, to determine the width
for Gaussian distribution.

The parameters configuration selected to train the final model
was the one that reached the highest average accuracy on the
inner loop. The whole dataset used for tuning parameters was
then trained and tested with its corresponding test set in the outer
loop. The classifiers’ performance was obtained by averaging the
accuracy of the k trained models.

RESULTS

Feature Selection
The Boruta algorithms yielded an average of 32 (in a range
of 26–42) attributes selected per k iteration in a 10-fold cross-
validation (see Figure 5A). The median computation time was
around 2.6min (std 0.04), with 0.005min per RF run. A total of
76 attributes were selected at least in one CV iteration. Figure 5B
shows the number of attributes that were selected in n of the
10 CV iterations. The distribution of variables per paradigm

TABLE 3 | Features selected by the Boruta feature selection method.

Paradigm Stimulus Channel Peak Feature

P300v Target Pz P2 Latency

P300a Distractor Cz N1 absRatio

P300a Distractor Fz P2 absRatio

P300a Distractor Fz P2 absAmplitude

P300a Target Cz N1 absRatio

P300a Target Cz N2 Latency

P300a Target Cz P2 Latency

is also shown. About 80% of the 76 attributes selected were
related to amplitude, latency, or the correlation between them.
Attributes related to the frequency domain were rarely selected.
Only seven features were identified as important every time the
Boruta algorithmwas used.Table 3 describes these seven features
according to the paradigm, type of stimulus, channel, and type
of feature.

Classifier Performance
To compare the performance of the MKL algorithms, four
metrics derived from the confusion matrix were used, namely
accuracy (Acc), area under a receiver operating characteristic
(ROC) curve (Auc), sensibility (Sen) which evaluates true positive
rates, and specificity (Spe) to evaluate the false positive rate (Kohl,
2012). The performances of the MKL classifier, with and without
feature selection are summarized in Table 4.

DISCUSSION

In this work, we explored the use of MKL classification for
distinguishing SZs from HCs based on ERP data. Using all
features, the best classification accuracy (83%) was achieved when
kernels were built by grouping features according to paradigms.
Moreover, when MKL was combined with the Boruta features
selection method, a classification accuracy of 86% was obtained.
With this feature selection algorithm, the large number of
predictor variables was reduced significantly (96%) with a lower
computation time. Therefore, the training time of MKL was also
reduced [0.18 (std 0.03) seconds per inner cross-validation loop],
thus solving one of its main shortcomings: its high computational
cost, especially when many features are used (de Carvalho, 2019).

The feature selection algorithm results showed that the
variables that contributedmost to the discrimination were related
to the auditory P300 paradigm. This corresponds with the
general finding that auditory P300 measures are more effective in
differentiating SZs fromHCs than those obtained from the visual
stimuli (Park et al., 2005). The selected features were peak related,
mainly related to amplitude, latency, and their combination. To
a lesser extent, peak to peak related features were included in
the selection. However, only three Signal related features were
occasionally included. Thus, features from the frequency domain
did not contribute much to the improvement of the classification.

Our results are in line with prior works. A previous study
(Santos-Mayo et al., 2017) proposed a system to help diagnose
schizophrenia by analyzing P300 signals during an auditory
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TABLE 4 | Performance of MKL algorithm with and without feature selection.

MKL Kernels Without FS With FS

ACC(%) SEN(%) SPE(%) AUC ACC(%) SEN(%) SPE(%) AUC

Paradigm 83 80 88 0.88 86 86 87 0.92

Channels 80 74 87 0.82 84 85 86 0.91

Type of Features 82 78 85 0.87 86 86 86 0.92

oddball task. The authors extracted time and frequency domain
features similar to ours but using different collections of signals
from electrodes in different regions of the scalp. Our results are
comparable to theirs when the electrode groupings were used,
but they obtained larger AUC values (more than 0.95) for their
Left and Right hemisphere electrode groupings. We did not
explore these locations. However, their dataset was unbalanced
and small, which possibly limits the reliability of their findings.
Other authors using also P300 amplitude and latency values as
features (Shim et al., 2016) reported classification accuracies of
81% using an SVM classifier. When they combined these features
with a selection of source-level density measures they increased
their accuracy to 88%, a result similar to ours. Laton et al. (2014)
also extracted latency and amplitude features of responses to
three different odd-ball tasks and applied several classification
algorithms. They achieved an average accuracy of 77% (std =

3.5). Their best result (about 85%), corresponded to an RF
classifier, comparable to our results. Laton et al. (2014) also found
that in a ranking of the 20 main variables contributing to the
classification, 14 were extracted from the P300 auditory oddball
paradigm. This suggests that, out of the three ERP paradigms
used, the auditory P300 contributes most to the classification
which is congruent with our findings.

One limitation of our study is that we did not use the
spatial distributions of the ERPs over the scalp. Further research
should include features using ERP scalp topographic maps
(STM). This would take advantage of the differences in STM
between schizophrenia and normal control groups reported by
different authors (Morstyn et al., 1983; Frantseva et al., 2014).
This is a pure image processing approach. Another track is
to use independent component analysis (ICA) to split up the
multi-channel ERP data into several independent spatiotemporal
components. ICA separates the mixed signals into unmixed
signals which are statistically independent. These approaches
could generate features for a classifier. Another limitation of
the present study is the small sample size which is usual in
psychiatric cohorts from one site. We addressed this limitation
using cross-validation strategies. However, training with larger
data sets (possibly from multiple sites) would yield a more
stable and reliable estimate of future performance and guarantee
better generalization.

CONCLUSION

Using Multiple Kernel Learning (MKL) classifiers on features
defined for ERP obtained in oddball paradigms, it was possible
to distinguish SZs from HCs with a classification accuracy up
to 86%. Accuracy improved when the Boruta feature selection
was applied. The auditory P300 provided the most informative

features. Future work should explore new ERP features including
topographic information.
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