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Abstract: The quadrature angular diversity aperture (QADA) receiver, consisting of a quadrant
photodiode (QPD) and an aperture placed above the QPD, has been investigated for pose estimation
for visible light systems. Current work on pose estimation for the QADA receiver uses classical
camera sensor algorithms well known in computer vision. To this end, however, the light spot center
first has to be obtained based on the RSS. However, this is less straightforward than for camera sensors,
as in contrast to such sensors where the relationships are linear, the RSS output from the QADA is
a non-linear function of the light spot position. When applying closed form solutions or iterative
methods for cameras on a QADA, the non-linearity will degrade their performance. Furthermore,
since in practice the aperture is not always perfectly aligned with the QPD, a procedure to calibrate
the receiver is needed. Current work on calibration requires additional sophisticated equipment to
measure the pose during calibration, which increases the difficulty of implementation. In this paper,
we target the above problems for pose estimation and calibration of the QADA receiver. To this end,
we first study the effect of the strategy of differencing and normalization on the probability density
function (PDF), a commonly applied strategy for the QPD’s robustness against RSS variation, and it
is shown that the applied strategy results in a complex PDF, which makes an effective and efficient
estimation hard to achieve. Therefore, we derive an approximated PDF in a simple closed-form, based
on which the calibration and the pose estimation algorithms using the least squares principle are
proposed. The proposed calibration does not require any information about the pose of the receiver
and is robust to variation of the received power and imperfect knowledge of the radiation pattern of
the LED, making it easy to implement. We also derive the corresponding Cramér-Rao lower bound
on the misalignment to benchmark the performance of the misalignment and to serve as an indicator
to determine the required signal-to-noise ratio (SNR) or number of LEDs to obtain a desired accuracy.
The calibration and pose estimation are evaluated by means of a Monte Carlo simulation. Computer
simulations show that this theoretical bound is close to the RMSE of the proposed estimator and that
the proposed pose estimator outperforms the PnP algorithm.

Keywords: pose estimation; calibration; quadrature angular diversity aperture receiver; Cramér-Rao
bound; visible light system

1. Introduction

White LEDs can be modulated up to several MHz. Therefore, they can be used for
wireless communication and positioning. As white LEDs are becoming the primary source
of light, visible light positioning (VLP) has the potential to achieve positioning with low
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cost, low power consumption, and long lifetime [1]. Due to the dependency of the RSS
values on the pose (position and orientation) of the receiver, it is expected that imperfect
knowledge of the pose may strongly affect the performance of visible light communication
(VLC) systems [2–7]. Recently, a compact receiver based on a quadrant PD (QPD) combined
with a single aperture, i.e., the quadrature angular diversity aperture receiver (QADA), was
proposed for VLP [8]. The QPD is a segmented photodiode consisting of four matched PDs
on a single chip separated by very thin gaps. Combined with an aperture, the resulting
receiver achieves angular diversity with a reasonably compact size. Furthermore, as only
one aperture needs to be placed above the QPD, the receiver will only have a limited
number of construction parameters, making it more robust to construction errors.

The light from an LED reaches the QPD through the aperture only and introduces
a light spot of the same size and shape as the aperture. As the position of this light spot
is determined by the position of the LED and the pose of the receiver, the overlap area
between the light spot and the four quadrants contains information about the pose of the
receiver. The RSS values in the four constituent PDs of the QPD are proportional to this
overlap area, indicating that a comparison of these RSS values allows us to estimate the
angle-of-arrival (AOA) for the different LEDs as well as the position and/or orientation
(pose) of the receiver. The current work has been initiated to achieve this goal. Experiments
in [8] show that high angular resolution in estimated AOA can be achieved. The positioning
performance of the QADA receiver is investigated in several works [8–11]. The paper [12]
considers 3D position estimation with 1D orientation estimation, i.e., it is able to determine
the azimuth angle for a receiver that is pointed upwards. The paper [13] that focuses
more on the communication aspects considers the effect of a tilt angle, which restricts
the orientation to two degrees of freedom. Recently, the work [14] studied the joint 3D
position and 3D orientation estimation, namely pose estimation, based on a classic non-
iterative perspective-n-point (PnP) algorithm, a well known algorithm for camera sensors
in computer vision. In their work, to employ the PnP, first the light spot center is obtained
based on the RSS. However, this is less straightforward than for camera sensors, as in such
sensors the relationships are linear, whereas the RSS output from the QADA is a non-linear
function of the light spot position. Moreover, the strategy of differencing and normalization
is commonly applied to the RSS, claimed by most works to improve the robustness against
RSS variation, which further increases the non-linearity. These effects will degrade the
performance of the PnP algorithm when applied to the QADA receiver; the PnP algorithm
is sensitive to noise and as a result it lacks precision [15].

Furthermore, since in practice the aperture is not always perfectly aligned with the
QPD, a procedure to calibrate the receiver is needed. The current work starts to consider
the presence of misalignment between the aperture and the QPD. In [8], the authors
manually adjusted the position of the aperture as a pre-step in the experiment, and the
need for calibration is further emphasized in [9]. However, such a hardware calibration is
a burdensome, time-consuming procedure. A better approach is to analyze the effect of
the aperture misalignment and compensate for it through signal processing. For example,
in [12], the authors propose a calibration method to compensate for the mismatch using
signal processing. As the authors assume in this calibration phase that the relative distance
between the LED and the receiver is known, additional equipment such as Optitrack is
required to determine the ground truth on this distance. This limits the usability of the
considered method.

In this paper, we target the above problems for pose estimation and calibration of
the QADA receiver. On the one hand, we propose a calibration procedure using signal
processing that does not require the knowledge of the pose of the receiver; thus no ad-
ditional hardware is needed to obtain the ground truth on this pose. On the other hand,
a pose estimation algorithm is proposed that directly estimates the pose from the (normal-
ized) RSS values, achieving better performance compared to the method that estimates the
light spot center and then applies the camera algorithm. To this end, we first investigate
the strategy of differencing and normalization to the RSS, i.e., where we only look at the
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relative differences between the normalized RSS values to obtain an observation that is
robust against variation in received power and offsets common to all quadrants [12]. We
investigate the distribution of the observation obtained from the noisy RSS values, based
on which we then propose the algorithm to estimate the pose of the receiver that is more
robust to noise.

The main contributions of this paper are as follows:

1. We first model the RSS vector of the QADA at an arbitrary pose using the perspective
projection model. With the help of this model, we derive an explicit expression relating
the RSS with the intrinsic parameters, i.e., the aperture height and the misalignment
of the aperture, and the extrinsic parameters, i.e., the position and orientation of
the receiver.

2. We use the strategy of the normalized differences of the RSS values to make the
estimator robust against variations in the transmitted power and radiation pattern.
To be able to derive a simple estimation algorithm, we replace the complex true PDF of
the resulting observations by an approximated Gaussian PDF based on the first order
Taylor series approximation of the observation.

3. Using this approximated PDF, we propose a calibration algorithm based on the least
squares (LS) principle. The algorithm jointly estimates the intrinsic and extrinsic
parameters from which the intrinsic parameters are extracted. This estimation is
performed in an iterative way, where the principle of optimization on manifolds is
used. After calibration, a simplified version of the estimation algorithm is used to
extract the pose, as now we use the calibrated intrinsic parameters as prior knowledge
for the misalignment.

4. To evaluate the optimality of the proposed algorithms, we derive the misspecified
Cramér-Rao bound (MCRB) to take into account the effect of the approximated PDF.
We compare the MCRB with the Cramér-Rao bound (CRB) for the detected RSS
values to quantify the performance loss due to using the normalized differences of
the RSS values to make the estimator robust against imperfect knowledge of the
transmitted power and radiation pattern. The designed algorithms are verified by
Monte Carlo simulations.

The rest of the paper is organized as follows. The channel link model and the expres-
sions for the observation and output vectors are presented in Section 2. The approximated
PDF and the calibration system model are provided in this section as well. The calibra-
tion and the pose estimation algorithms using the LS principle are proposed in Section 3.
Subsequently, the theoretical bound is derived in Section 4. The Monte Carlo numer-
ical comparison is given in Section 5. Finally, some concluding remarks are given in
Appendix A.

Notation: Scalars are denoted in italic, e.g., x. Lowercase boldface indicates a column
vector, e.g., x. Uppercase boldface denotes a matrix or a set, e.g., X, with IN representing
an N × N identity matrix, and 0N×M representing an N ×M zero matrix. The vector ei is
a unit basis vector with its ith element being 1, and the operator ·̄ converts the Cartesian
coordinates x into the homogeneous coordinates x̄ = [xT, 1]T. Matrix transpose and inverse
are indicated by superscript T, and −1, respectively. The Euclidean norm is denoted by
‖ · ‖, and the expectation operator is denoted by E{·}. ∇x = ∂/∂x denotes the Del operator,
while ∆z

x = ∇z∇T
x denotes the Hessian operator. The rectangular function Π(·) is defined as

Π(x) ∆
=

{
1, |x| ≤ 1.
0, |x| > 1.

(1)

The set of all real numbers is denoted by R. The group of all rotation matrices, i.e., the
special orthogonal group, is denoted by SO(3), and the associated Lie algebra is denoted
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by so(3). The special Euclidean group is denoted by SE(3). The operator ·∧ converts a
6× 1 vector into a member of se(3) – the Lie algebra of SE(3) – which is,([

aT, bT
]T
)∧

=

[
b× a
0T 0

]
∈ R4×4, a, b ∈ R3×1, (2)

while the operator ·× converts a 3× 1 vector into so(3), which is,a1
a2
a3


×

=

 0 −a3 a2
a3 0 −a1
−a2 a1 0

. (3)

The operators ·∨ and ·⊗ are, respectively, the inverse operators of ·∧ and ·×. Additionally,
exp(·) and log(·) are the matrix exponential and matrix logarithm functions, respectively.

2. System Description

In this section, we describe a visible light system that is able to detect signals trans-
mitted by different LEDs from which the pose of the receiver can be determined. To avoid
interference between the reference signals for pose estimation, we assume the system
adopts multicarrier multiplexing based on (DC-biased) sinusoidal waves [16,17], where a
portion of the subcarriers is assigned to the LED anchors to be used as reference signals
for pose estimation, while the rest of the subcarriers can be used for communication. Each
anchor is assigned a different subcarrier, implying that due to the orthogonality of the
subcarriers, the reference signals from the different LEDs can be separated in a simple
way. We assume the receiver has knowledge of the used subcarrier and position of each
LED, e.g., because this information is contained in the reference signal or is available in a
database accessible by the receiver.

The rest of this section is organized as follows. We first model the channel link between
a single LED and the QADA and give the expressions for the output vector and observation.
We further derive the PDF of the observation. As this PDF is too complex for practical
estimation purposes, we also derive a simple closed-form approximation. Finally, we
design a system model for calibration and discuss the goals of the pose estimation problem.

2.1. Receiver Structure

The considered visible light system uses a QPD consisting of four matched photo-
diodes deposited on a single chip separated by very thin gaps. To convert the incident
light of an LED into a light spot on the QPD, we place an opaque screen with a circular
aperture at a specific height above and parallel to the surface of the QPD [8] as shown in
Figure 1 (a square aperture has the disadvantage of being sensitive to rotational offsets,
which means that the rotational offset must be calibrated and compensated for, while
a circular aperture is circularly symmetric, implying it is inherently robust to rotational
offsets. Therefore, in this paper, we focus on the circular aperture). The light spot on the
QPD’s surface, as shown in Figure 2, leads the QPD to produce a unique quad-tuple of
RSS values proportional to the overlap areas, i.e., the RSS output is uniquely determined
by the position of the light spot. Because of this, the position of the light spot can be
estimated from the RSS values, which in turn, e.g., is useful in detecting an object’s angle
coordinates [8].
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Figure 1. Structure of QADA.
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Figure 2. Geometry of the light spot of a light beam, where xS = [rS,q]1 and yS = [rS,q]2.

The aperture is chosen so that its diameter is very large compared to the wavelength
of the light. Further, as the distance between the LED and the QPD is very large compared
to the wavelength, the receiver is in the far-field region of the LED, implying the incident
waves can be considered as plane waves. As a result [18], the only light that reaches the
QPD is the light that passes through the aperture, and the incident light will introduce a
circular light spot of the same size as the aperture on the plane of the QPD. The position
of the light spot in the QPD plane not only depends on the position of the light source,
but also on the pose of the receiver, implying the RSS outputs in the constituent PDs of
the QPD are functions of the position of the light source and the pose of the receiver. We
assume that the light spot overlaps with all quadrants and completely falls within the
active area of the QPD (in case the light spot does not overlap with all quadrants, one or
more of the RSS values will be zero. This will obstruct the strategy of differencing and
normalization of the RSS values, which is used to make the estimation algorithm robust
against variations in the transmitted optical power. In case the light spot partially falls off
the QPD, the relationship between the RSS values and the pose of the receiver becomes
very complex, implying the resulting estimation algorithm will have high complexity). To
ensure that the first condition is fulfilled, we assume the receiver considers only LEDs that
lead all quadrants to produce a sufficiently high RSS output. The second condition implies
that the aperture diameter is upper limited by (roughly) the dimension of a quadrant,
i.e., half the diameter of a circular QPD or half the side of a square QPD. This guarantees a
simple unique relationship between the quad-tuple of RSS values generated by the QPD
and the pose of the receiver, and by combining the information from different light sources
satisfying the above conditions, the pose of the receiver can easily be determined.

In the following, we will describe the relationship between the pose of the QADA and
the position of the light spot, and then we will derive the relationship between the light
spot and the RSS output.
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2.2. Channel Link Model

To obtain the quad-tuple of RSS values as a function of the pose, we note that the
dependency of the RSS values on the pose is twofold. Firstly, the channel gain is determined
by the radiation pattern of the LED and the irradiance attenuation, implying the incident
power at the QPD (and thus the optical power in the light spot) depends on the relative
position of the light spot with respect to the LED. Secondly, the RSS values in the quadrants
are proportional to the overlap areas of the light spot with the quadrants of the QPD,
which is determined by the position of this light spot with respect to the center of the QPD.
To express the RSS values as function of the pose of the receiver, we define the following
three coordinate systems: (1) The first coordinate system, i.e., the system frame, corresponds
to the inertia frame and is used to describe the pose of the receiver with respect to the LEDs.
Furthermore, we define two coordinate systems that are attached to the receiver and will
be used to describe the position of the light spot and misalignment due to construction
errors; (2) In the first receiver attached coordinate system, i.e., the receiver frame, the x-y
plane is the plane of the aperture, and the z-axis is the normal to that plane. The origin
Or of this receiver frame coincides with the center of the aperture. We will use an extra
subscript r to indicate coordinates represented in the receiver frame, i.e., the coordinates xr
in the receiver frame correspond to their counterpart x in the system frame. This coordinate
system is used to find the distance vector of the light spot to the LED as a function of
the pose; (3) The second receiver attached coordinate system is the QPD frame, where
the x-y plane is the surface of the QPD, the origin Oq is placed in the center of the QPD,
and the x and y axes are aligned with the gaps between the quadrants. We will use an extra
subscript q to indicate coordinates represented in the QPD frame, i.e., the coordinates xq
in the QPD frame correspond to their counterpart x in the system frame. Although this
coordinate system is closely related to the receiver frame, its benefit lies in the simplification
of the computations, as it enables us to convert the 3D receiver frame coordinates to the 2D
coordinates in the QPD frame (we assume that the aperture plane is parallel to the plane of
the QPD, and the x- and y-axes of the QPD and receiver frames are aligned. This implies
that the transformation of vectors in the aperture frame into vectors in the QPD frame is a
simple translation). This approach is commonly used in the perspective projection model,
which we employ to determine the position of the light spot in the QPD plane, and from
which we compute the overlap areas of the light spot and the QPD. In the following, we
will determine the coordinates of the light spot generated by an LED.

Assume that in the system frame, the pose of the receiver is described by its orientation
R ∈ SO(3), i.e., R belongs to the Special Orthogonal group and position r ∈ R3×1, where
the position of the receiver is defined as the position of the center of the aperture. We further
assume the LED has position rL and normal vector nL in the system frame. To calculate
the position of the light spot in the QPD frame, we notice that the line going through the
position rL of the LED and the centers r of the aperture and rS ∈ R3×1 of the light spot
can be seen as a ray in the perspective projection model of a center of projection located at
the center of the aperture and having focal length equal to the aperture height |h|, i.e., the
distance between the planes of the aperture and the QPD (see Figure 3). The perspective
projection model allows us to relate the 3D coordinates of the LED—the ‘object’—in the
system frame to the 2D coordinates of the light spot —the ‘image’—in the QPD frame. Note
that the position of the light spot in the QPD frame is specified by the (x, y) coordinates
only. To make the paper self-contained, we include the background on the perspective
projection model. Taking this into account and using the projection principle, the position
rS,q ∈ R2×1 of the center of the light spot in the QPD frame is given by [19]:

rS,q =

C︷ ︸︸ ︷
km,q +

[
eT

1
eT

2

]
[I3, 0]

h
eT

3 Tr̄L
Tr̄L︸︷︷︸

A︸ ︷︷ ︸
B

. (4)
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The matrix T ∈ SE(3) is defined through its inverse

T−1 =

[
R r

01×3 1

]
. (5)

Furthermore, the misalignment vector km,q expresses the errors in the alignment
of the aperture with respect to the QPD. Due to construction errors, a small horizontal
offset between the origins of the QPD frame and the receiver frame may occur. This
is illustrated in Figure 3, where the brown dot does not coincide with the center Oq of
the QPD. The horizontal misalignment vector, which takes into account this offset in the
transformation of the light spot coordinates in the receiver frame to the coordinates in the
QPD frame, is defined as km,q

.
= [um, vm]T, with um and vm the misalignment in the x and y

direction, respectively. Taking into account (4), we see that the projection principle consists
of three steps:

• Step A: This step converts the LED coordinates r̄L in the system frame to the coordi-
nates r̄L,r = Tr̄L in the receiver frame using the matrix T.

• Step B: This scales r̄L,r along the projection line with the factor h
hL

where hL = eT
3 Tr̄L

and gets rid of the last component of the homogeneous coordinates through the
3× 4 matrix [I3, 0], consisting of the 3× 3 identity matrix extended with a zero col-
umn, as this last component is irrelevant for the determination of the position of the
light spot. This results in the position rS,r = [I3, 0] h

eT
3 Tr̄L

r̄L,r of the light spot in the

receiver frame.
• Step C: This transforms rS,r into the 2D coordinates rS,q by discarding the z coordinate

through the mapping of rS,r on the 2× 3 matrix
[

eT
1

eT
2

]
and adds the misalignment

vector km,q.

Or
zx

y r (Aperture center)

rS

y

x

QPD

Oq

h

hL
LED

nL

rL

Figure 3. The channel link model. The position of the LED and centers of the aperture and the light
spot comply with the perspective projection model, while the shape and size of the light spot is
determined by the aperture. Note that in this perspective projection model, the light spot does not
correspond to the image of the LED, but it only relates the position of the light spot with the position
of the LED.

Equation (4) can be rewritten in the following compact form:

rS,q =
KTr̄L

eT
3 Tr̄L

. (6)

The matrix K, which is used in the perspective projection model, is called the intrinsic
parameter matrix and describes the internal properties of a receiver, i.e., that are inde-
pendent of the pose. It only depends on the misalignment vector km,q and the aperture
height h:

K =

[
h 0 um 0
0 h vm 0

]
. (7)
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On the other hand, the matrix T contains the pose information of the receiver and is
independent of the internal properties of the receiver. Therefore, it is called the extrinsic
parameter matrix. Similarly, taking into account (4), we can write the position rS,r of the
center of the light spot in the receiver frame (in homogeneous coordinates) in the following
compact form:

r̄S,r =
K0Tr̄L

eT
3 Tr̄L

with K0 =
[

hI3 0
eT

3 0

]
, (8)

and the position r̄S of the light spot in the system frame (in homogeneous coordinates) is
obtained through:

r̄S = T−1r̄S,r. (9)

To determine the RSS values in the quadrants of the QPD, we first need to compute
the overlap area between the light spot and the quadrants of the QPD. Let us assume
the aperture has radius l. Taking into account we already assumed that the light spot
completely overlaps with the QPD, i.e., no part of the light spot falls outside the QPD,
and that all quadrants overlap with the light spot, the overlap areas can easily be computed
based on the position rS,q of the center of the light spot in the frame of the QPD. Defining
the overlap area Ai > 0 of the ith quadrant, i = 1, . . . , 4 and the angles αj ∈ [0, π] with
[rS,q]j = l cos αj, j = 1, 2, and the operator [rS,q]j as the jth element of rS,q (see Figure 2), we
obtain the overlap areas by solving the following set of equations:

• The light spot has area πl2, implying A1 + A2 + A3 + A4 = πl2.
• Taking into account that the area of a circular segment with central angle 2α, α ∈ [0, π]

equals l2

2 (2α− sin 2α), we find that A2 + A3 = (α1 − sin α1 cos α1)l2 and A3 + A4 =
(α2 − sin α2 cos α2)l2.

• The overlap area A1 with the first quadrant is a combination of a circle sector with

central angle 3π
2 − (α1 + α2) having an area

( 3π
2 − (α1 + α2)

) l2

2 , a rectangle with area
[rS,q]1[rS,q]2 = l2 cos α1 cos α2 and two triangles with areas l2

2 cos αj sin αj, j ∈ {1, 2}.
Note that, depending whether cos αj > 0 (if αj ∈ [0, π

2 ]) or cos αj < 0 (if αj ∈ [π
2 , π]),

the above contributions will combine positively or negatively, resulting in the wanted
overlap area Ai. Hence, the overlap area vector A = [A1, . . . , A4]

T is the solution of
MaA = s with

Ma =

[ 1 0 0 0
0 1 1 0
0 0 1 1
1 1 1 1

]
and s = l2


3π
4 −

α1+α2
2 + sin 2α1+sin 2α2

4 + cos α1 cos α2
(α1 − sin α1 cos α1)
(α2 − sin α2 cos α2)

π

. (10)

Now that we obtained the overlap areas of the light spot with the PDs of the QPD
and related them to the pose of the receiver, the RSS values in the different PDs can be
determined. To this end, we define the distance vector between the transmitter and the
light spot as v = rS − rL. With this definition, we can write the distance v between the LED
and the light spot, and the incidence angle θ, i.e., the angle between the vector −v and the
normal nQ = Re3 of the QPD as:

v = ‖v‖, (11)

cos(θ) = −
(
T−1e3

)Tv̄
‖v‖ , (12)

where the last equation holds due to the equalities
[
nT

Q, 0
]T

= T−1e3, obtained from (5),

and nT
Qv =

[
nT

Q, 0
]
v̄. The channel gain hi for the ith quadrant of the QPD is given by [20]

hi =
Γ(nL, v) cos θΠθ

2πv2 Ai, (13)



Sensors 2022, 22, 5073 9 of 22

where Γ(nL, v) is the radiation pattern of the LED pointing nL and is evaluated at direction
v, Πθ = Π(φ/φFOV). The factor Πθ in (13) implies that the QPD can detect the light
only when the LED is within its FOV, i.e., 0 ≤ φ ≤ φFOV . Taking into account (11)–(13),
the channel gain vector is given by

h(k, T) = −
ΠθΓ(nL, v)

(
T−1e3

)Tv̄
2π‖v‖3 A, (14)

and is a function of the intrinsic parameter vector k .
= [um, vm, h]T and the pose T. From this

channel gain, we obtain the RSS output vector y = [y1, . . . , y4]
T in the four PDs:

y = g + η, (15)

where g = RpPth, with Rp the responsivity of the QPD, and Pt the transmitted power.
Due to coupling between the quadrants, the noise components are correlated Gaussian
distributed random variables η ∼ N (0, σ2

ηC), where C is the correlation matrix with Ci,i = 1
and Ci,j = ρ if i 6= j, ρ is the correlation between the noise of different quadrants, which
can be determined by comparing the noise values in the different quadrants during an
experiment and calculate the resulting correlation, and σ2

η is the noise variance.
In the derivation of g in (15), it is assumed that the transmitted optical power is

perfectly known, and the LED is a perfect Lambertian radiator. However, directly estimating
the intrinsic and/or extrinsic parameters from the RSS output vector will result in inaccurate
estimates. To make the estimator more robust to changes in the incident power, the
normalized differences between the RSS values along the two axes can be used, astx = (y1+y4)−(y2+y3)

y1+y2+y3+y4

ty = (y1+y2)−(y3+y4)
y1+y2+y3+y4

. (16)

The approach (16) will make the observations insensitive to variations in the trans-
mitted optical power and radiation pattern provided that the RSS values are noise-free
or affected by a common offset so that the normalized differences of (16) are noiseless
observations. However, the noise induced by ambient light in visible light systems is
non-negligible, and due to the randomness of the shot and thermal noise, the noise present
in the different quadrants is in general not equal. The presence of this non-identical ran-
dom noise will have an impact on the distribution of tx and ty. As the estimation of the
intrinsic and extrinsic parameters relies on proper knowledge of this distribution, we need
to evaluate the effect of the noise on the distribution to see if the observations (16) are still
insensitive to variations in the transmitted power when noise is present. Therefore, in the
following section, we will analyze the distribution of the normalized differences tx and ty.

2.3. Approximation to the PDF of the Observation

To find the distribution of the normalized differences, we first rewrite the numerator
and denominator of tx and ty in a more compact form by introducing m .

= [m1, m2, m3]
T =

Myg and w .
= [w1, w2, w3]

T = Myη with

My =

[
1 −1 −1 1
1 1 −1 −1
1 1 1 1

]
, (17)

implying (16) can be rewritten as t =
[

m1+w1
m3+w3

, m2+w2
m3+w3

]T
. Taking into account that the

components of w are linear combinations of Gaussian distributed random variables, w has
a multivariate normal distribution, i.e., w ∼ N (0, Σw) with

Σw = 4σ2
η

[ 1−ρ 0 0
0 1−ρ 0
0 0 1+3ρ

]
. (18)
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Note that the numerator (m3 + w3) = ∑i yi corresponds to the sum of the RSS values
in the different quadrants. Hence, m3 and σ2

w3
.
= 4(1 + 3ρ)σ2

η are the average and variance
of the total received signal strength, which implies we can define ξ

.
= m2

3/σ2
w3 as the

received signal-to-noise ratio (SNR) at the receiver. Furthermore, we define

µ
.
=
[

m1
m3

, m2
m3

]T
, (19)

i.e., the ratio of the averages of the denominator and numerator of t. Obviously, in the
absence of noise, the observation equals t = µ. We will show that:

• µ is independent of the channel gain parameters and the transmitted power.
• At high SNR, the distribution of t is given by t ∼̇ N (µ, Σ) with

Σ = ξ−1
(

1−ρ
1+3ρ I2 + µ · µT

)
. (20)

Let us first take a closer look at the dependency of µ on the channel gain and the
transmitted power. Defining h(k, T) = λA, and taking into account that the factor λ is
independent of the considered quadrant, it follows that µ is independent of the channel
gain parameters and the transmitted power contained in the factor λ, but only depends on
the overlap area vector A. Substituting the solution of MaA = s in (19), we find after some
straightforward computations that

[µ]i =

(
1− 2(αi − cos αi sin αi)

π

)
. (21)

Hence, the vector µ solely depends on the angles αi that are determined by the
coordinates of the center of the light spot in the QPD frame. These coordinates, and therefore
also µ, only depend on the intrinsic and extrinsic parameters through (6) but not on the
channel gain parameters nor the transmitted power.

To obtain the distribution of t at high SNR, we first notice that tx = m1+w1
m3+w3

and
ty = m2+w2

m3+w3
are both a ratio of two independent normal variables with non-zero means,

and as they share the same denominator, they are correlated. The distribution of a single
ratio of normal variables has been investigated in the literature, e.g., [21–23]. In these works,
it is shown that a closed-form expression for the PDF in the general case for such a ratio
is very complex as its shape differs significantly with its parameters, i.e., in some cases
it resembles the Cauchy distribution, in other cases a normal distribution or a bimodal
distribution. Several closed-form approximations were discussed in the literature, e.g., the
approximate normal distribution. In this paper, we need the distribution of two correlated
ratios of normal variables. As this is an even more complicated situation compared to the
single ratio case, it is clear that the closed-form expression for the PDF will be even more
complex. To simplify the analysis, we first notice that at high SNR, wi

m3
� 1. Expanding t

with respect to w using the Taylor series, keeping up to the linear terms in w, we obtain:

t ≈ µ + Mww with Mw =

 1
m3

0 −m1
m2

3

0 1
m3
−m2

m2
3

. (22)

This first-order approximation directly leads to the distribution t ∼̇ N (µ, Σ) with
Σ = MwΣwMT

w. Substituting Mw and Σw (18) in Σ, and using the definition of the SNR ξ,
it follows that the covariance matrix Σ reduces to (20).

Following the above analysis, at high SNR we can design an estimator based on µ
to achieve robustness against variations in the transmitted optical power and radiation
pattern to estimate parameters from t.
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3. Calibration and Pose Estimation

Using the approximate PDF of the normalized differences derived in the Section 2, we
can now estimate the pose of the receiver, taking into account the relations (19) and (21).
When the intrinsic parameters are known, the estimation of the pose, i.e., the extrinsic
parameters, is straightforward. However, in practice, the intrinsic parameters are not prior
known and need to be estimated because inaccurate knowledge of the misalignment param-
eters may result in significant biases in the pose estimates. As these intrinsic parameters
can be considered fixed once the receiver is assembled, the intrinsic parameters can be
determined once during a calibration process. The standard approach is to determine the
intrinsic parameters assuming the pose of the receiver is known. However, this approach
requires accurate knowledge of the pose of the receiver. Although it is possible to accu-
rately determine the pose of the receiver, this requires costly equipment, in particular to
determine the orientation of the receiver, and a laborious procedure to determine the pose
of the receiver before each measurement. Therefore, we propose in this section a method
to estimate the intrinsic parameters not requiring the knowledge of the pose, making it
simpler and less costly than the standard calibration procedure. Note that our approach
differs from the classical algorithm commonly used in camera-based systems, e.g., the
non-iterative PnP algorithm and its iterative version [24], as in our method we directly
estimate the pose from the normalized differences, while in the classical algorithm used for
cameras, first the position of the light spot is determined, after which the pose is extracted.
Although the algorithm used for cameras can be adapted to solve the problem at hand, we
expect that this algorithm will perform worse than the algorithm proposed in this paper,
as compared to the high resolution pixel measurement from the camera sensor, the RSS
output from the QADA typically has a lower SNR. Furthermore, because of the non-linear
relationship between the center of the light spot and the RSS values, the algorithm will be
suboptimal for the considered system [15,25]. As the proposed method directly estimates
the pose from the RSS values, it also differs from classical techniques used to determine the
position, i.e., where first the AOA or distances to the LEDs are estimated before determining
the position using , e.g., trilateration or triangulation.

3.1. Calibration Procedure

The calibration procedure proposed in this paper makes use of the setup shown
in Figure 4, where NL LEDs are installed on a plane in the system frame xOsy, and the
positions of these LEDs are fixed and known. The receiver observes these LEDs at NT
different poses. Hence, the receiver observes for each LED NT quad-tuples of RSS values.
The resulting observations are arranged in the 4NT NL × 1 vector y̆ ∈ R4NT NL×1:

y̆ = ğ + η̆, (23)

where the vector η̆ ∼ N
(
0, Σ̆η

)
collects the noise, and Σ̆η = σ2

ηINT NL ⊗C (see Section 2.2
for the definition of the noise correlation matrix C). The vector ğ can be rewritten as

ğ = Rp

[
Pt,1gT

1,1, Pt,2gT
1,2, . . . , Pt,NL gT

NT ,NL

]T
, where gi,j ∈ R4×1 is the channel gain between

the jth LED and the receiver at the ith pose T−1
i , and Pt,j is the transmitted power of the jth

LED. For each LED and each pose, we compute the normalized differences and arrange
them in the 2NT NL × 1 vector t̆ ∈ R2NT NL×1. Taking into account that the noise in the
different observations is statistically independent, we can write the Gaussian approximation
of the PDF of t̆ as:

pm
(
t̆
)
=

1√
det(2πΣ̆)

e(−
1
2 ‖t̆−µ̆‖2

Σ̆
) (24)

where µ̆ =
[
µT

1,1, µT
1,2, . . . , µT

NT ,NL

]T
. The components µi,j correspond to the jth LED and the

ith pose and are defined through (19), while the covariance matrix Σ̆ is the block diagonal
matrix given by
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Σ̆ = diag(Σ1,1, Σ1,2, . . . , Σ1,NL , Σ2,1, . . . , ΣNT ,NL) (25)

In this covariance matrix, Σi,j is the covariance matrix for the noise of ti,j (see (20)).
These covariance matrices Σi,j are a function of µi,j, which in turn depend on the parameters
to be estimated. As a consequence, maximum likelihood estimation will be complex.
Therefore, we will use the least squares (LS) method to estimate the intrinsic and extrinsic
parameters. Let us define the parameter set Θ = {k, T1, . . . , TNT}, then the LS estimate is
given by:

Θ̂ = arg min
Θ

1
2
‖t̆− µ̆‖2,

s.t. RT
i Ri = I, det(Ri) = +1. (26)

The constraints RT
i Ri = I and det(Ri) = +1 imply that Ri, which defines the orienta-

tion of the receiver at pose i and is enclosed in the transform matrix T−1
i ∈ SE(3) (see (5)),

is a rotation matrix that is a member of SO(3). Unfortunately, (26) has no closed-form
solution, implying we need to resort to an iterative algorithm to estimate Θ. As the solution
of the above (iterative) constrained optimization problem is complex and cumbersome in
Euclidean space, we first notice that SE(3) is a manifold and convert the above optimization
problem into an unconstrained optimization problem on manifolds [26]. In what follows,
we use the Gauss–Newton method on manifold SE(3) to solve (26), similarly as in [27].
At each iteration, the update direction is calculated by[

∆k, ∆T1 , . . . , ∆TNT

]T
= (∇Θµ̆)†(t̆− µ̆

)
(27)

where (·)† is the Moore–Penrose pseudoinverse, and ∇Θµ̆ = [∇Θµ1,1,∇Θµ1,2, . . . ,
∇ΘµNT ,NL ]

T ∈ R2NT NL×(6NT+3) the gradient of µ̆ with respect to Θ. The derivation of
the components ∇Θµi,j can be performed in a similar way as in [27], and the result is
given in Appendix A. As the update directions (27) depend on k and all Ti, the intrinsic
parameters and the poses need to be estimated jointly:kt+1 = kt + τk∆k(kt, Tt

1, . . . , Tt
NT

)

Tt+1
i = exp

((
τT∆Ti (k

t, Tt
1, . . . , Tt

NT
)
)∧)

Tt
i , i ∈ {1, . . . , NT}

(28)

where τk and τT control the incremental step size for k and Ti, respectively.

Os

z

x

y

n

Receiver

NL LEDs

rS
vj

rL,j

Figure 4. System frame for calibration.

The Gauss–Newton method needs an initialization Θ0 to start the iterative estima-
tion process. To obtain this initial estimate, we consider the direct linear transformation
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method [24]. Assuming the positions of at least four LEDs, and the positions of the light
spots for these LEDs are known, the direct linear transformation method gives a closed-
form coarse estimate for Θ0. Although in our problem, the positions of the light spots are
not known, we can estimate them from the normalized differences ti,j, which is a noisy
version of µi,j (22). This µi,j is a function of the angles α`, ` = 1, 2 (21), which in turn are
related to the position rS,q,i,j of the light spot, i.e., we can write µi,j as a function of rS,q,i,j:
µi,j(rS,q,i,j). In many situations, the noise is relatively small, implying we can neglect the
presence of the noise, i.e., ti,j ≈ µi,j. Inverting the function µi,j(rS,q,i,j), we obtain the coarse
estimate r̂S,q,i,j ∈ R2×1 of the light spot for the jth LED and the ith pose:

r̂S,q,i,j =
(
µi,j
)(−1)

(ti,j), (29)

where (·)(−1) is the inversion operator. Unfortunately, due to the non-linearity of µ as
a function of its argument rS,q, no closed-form expression can be found for this inverse.
However, as µ monotonically increases with rS,q, we can precompute the function µ for a
set of values rS,q and save them in a look-up table. Based on this table, the inverse can be
determined by interpolating between the values available in the look-up table.

3.2. Theoretical Lower Bound

In the Section 3.1, we considered the LS estimation of the intrinsic parameters based
on the approximated PDF of t̆ in the presence of the (unwanted) extrinsic parameters Ti. To
gain insight into the optimality of the designed calibration algorithm and to investigate
how the SNR, NL or NT would effect the accuracy of the estimator, in this section we derive
the theoretical lower bound for the mean squared errors of the intrinsic parameters h and
km,q. Since the estimation includes the unwanted parameter Ti and since the estimator
is designed based on an approximated PDF, we will derive the misspecified Cramér-Rao
bound (MCRB) [28] for the whole parameter set Θ and only keep the left upper 3× 3
submatrix corresponding to the intrinsic parameters.

The MCRB for the whole parameter set Θ is given by

MCRB(Θ) = (M1(Θ̊))−1M2(Θ̊)(M1(Θ̊))−1 + Bias(Θ̊, Θ). (30)

In (30), Θ̊ is the parameter set to which the estimation converges due to the PDF
approximation assumed by the estimator, given by

Θ̊ = arg min
Θ

D
(

p(t̆)||pm(t̆|Θ)
)
, (31)

where D
(

p(t̆)||pm(t̆|Θ)
)

is the Kullback–Leibler divergence (KLD) between the true (p(t̆))
and the approximated (pm(t̆|Θ)) PDFs. The matrices M1, M2, and Bias(Θ̊, Θ) are, respec-
tively, given by [28]

M1 = Et̆

{
∆Θ

Θ ln pm(t̆|Θ),
}

(32)

M2 = Et̆

{
∇T

Θ ln pm(t̆|Θ)∇Θ ln pm(t̆|Θ),
}

(33)

Bias(Θ̊, Θ) = ε(Θ̊, Θ)ε(Θ̊, Θ)T, (34)

where ε(Θ̊, Θ) is the error vector between Θ̊ and Θ. The error vector is defined as

ε(Θ̊, Θ) =
[
εT

k, εT
T1

, . . . , εT
TNT

]T
with εk = k̊ − k and εTi = log(TiT̊−1

i )∨. After a few

rearrangements, it can be seen that the expectations in (32) and (33) depend on p(t̆) through
its mean and covariance only. Due to the complexity of the true PDF p(t̆), this mean and
average must be calculated numerically via Monte Carlo integration.

To analyze the effect of NT , NL and SNR, we take in account that since the approxi-
mated PDF pm(t̆|Θ) is Gaussian, the minimum of the KLD (31) is obtained when the first
two moments of the true and the approximated PDFs are matched [29]. When the SNR is
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high, the first two moments of the approximated PDF approach those of the true PDF. As a
result, the estimator is asymptotically unbiased, i.e., Bias(Θ̊, Θ) ≈ 0 for SNR� 1, so that
M1 ≈M2, MCRB(Θ) ≈M−1

2 and

M2 ≈
NT

∑
i

NL

∑
j
∇T

Θµi,jΣ
−1
i,j ∇Θµi,j. (35)

It can be seen that when NT or NL increases, the number of terms in (35) increases.
As the matrices being summed in (35) are symmetric and positive-semidefinite, this implies
that M2 is non-decreasing in the sense of the Loewner order. Furthermore, as Σ−1

i,j is
proportional to the SNR, increasing the SNR also enlarges the Loewner order of these
matrices being summed and thus leads the partial order of M2 to enhance. As a result,
the MCRB is a non-increasing function of NT , NL, or SNR. While an increase of NT , NL,
or SNR improves the robustness of the estimator against noise, these parameters do not
have an impact on the feasibility of the estimation. The number of observations required to
make proper estimation feasible follows from the analysis from [24] dealing with intrinsic
parameter estimation for cameras. Translating the results of that paper to the problem at
hand, it follows that observations at two different poses provide sufficient constraints to
avoid depth ambiguity, and at each pose, at least four LEDs should be observed to have
enough information for the calibration.

In this paper, we estimated the intrinsic parameters from the normalized differences
instead of the quad-tuple of RSS values, where the PDF of the normalized differences
was approximated by a Gaussian distribution. To evaluate the effect of both the approx-
imation and normalized differencing, we compare the misspecified Cramér-Rao bound
MCRB(Θ) (30) with the Cramér-Rao bound for the quad-tuple of RSS values y̆ observed by
the QPD, i.e., CRB(Θ), corresponding to the true PDF p(y̆). As y̆ is Gaussian distributed,
the derivation of the Fisher information matrix J(Θ) and thus CRB(Θ) = J−1(Θ) [30] is
straightforward and yields

J(Θ) = (∇Θğ)TΣ̆−1
η (∇Θğ), (36)

where ∇Θğ =
[
∇Θg1,1,∇Θg1,2, . . . ,∇ΘgNT ,NL

]T ∈ R(4NT NL)×(6NT+3) denotes the gradient
of ğ with respect to Θ.

3.3. Pose Estimation

Once the intrinsic parameters are estimated during the calibration process, the esti-
mated parameters can be used for accurate pose estimation of the receiver. To estimate the
pose, a similar procedure can be used for the calibration by means of the Gauss–Newton
method, except that now it is assumed that the intrinsic parameters k are known. At pose i,
the observation ti only depends on the pose Ti and is independent of other poses. There-
fore, we can estimate the poses independently, in contrast to the calibration procedure that
needed to consider the observations of multiple poses due to the presence of the unknown
intrinsic parameters. Again, the estimation is obtained with an iterative procedure of which
the update step is the same as in (28):

Tt+1
i = exp

((
τT∆Ti (k, Tt

i)
)∧)Tt

i (37)

Similar to the calibration procedure, we can obtain a coarse estimate by means of
the direct linear transformation method together with (29) to initialize the Gauss–Newton
method for pose estimation.

To evaluate the pose estimates, the position error is expressed by the Euclidean distance
between the position vector r and its estimate r̂, i.e., re = r̂− r, while the orientation error
is expressed by the axis-angle vector between the orientation matrix R and its estimate
R̂, i.e., ue = (log(R̂RT))⊗ [27]. Similar to the pose estimator derived from the calibration
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algorithm, we can derive the theoretical lower bounds for the pose estimate, i.e., MCRB(Ti)
and CRB(Ti), from (35) and (36), respectively, by restricting the parameters Θ to Ti. Then
the left upper and right bottom 3× 3 submatrices of MCRB(Ti) are bounds on position and
orientation, respectively. The same result applies to CRB(Ti).

4. Numerical Assessment

In this section, we first verify the performance of the proposed calibration algorithm
and compare the mean squared error with the theoretical bound based on simulations.
Then, the calibration procedure is used to determine the intrinsic parameters in a simulation
setup, after which the pose is estimated. To obtain a comparative study, this section gives
a comparison between our proposed pose estimation method and the camera’s PnP and
iterative methods.

4.1. Calibration

As the number of parameters to be estimated in the calibration phase is large, to have
good performance, the number and quality of observations must be sufficiently high. To en-
sure that these concerns are met, we consider a dedicated calibration setup, where we place
the LEDs in a plane at vertical distance sufficiently close to the receiver, i.e., z = 0.65 m,
to obtain a sufficiently high SNR. Furthermore, to guarantee the receiver has suffi-
cient LEDs within its FOV, we assume NL = N2

L,r LEDs are placed in a square grid
with an area of 400 cm2, where the LED in the ith row and jth column has position

rL =

(
20

NL,r−1

[
i−1
j−1

0

]
−
[ 10

10
0

])
cm, i, j ∈ {1, . . . , NL,r}. All LEDs are assumed to have a

transmitted power Pt = 1 W, and a Lambertian pattern with order γ = 1. We set the origin
of the system frame as the center of the LED plane.

The receiver consists of a circular QPD with radius rp = 5 mm, resulting in an active
area Ap = πr2

p, and responsivity Rp = 0.4 A/W. Above the QPD, we place at a height
|h| = 3.0 mm a circular aperture with radius l = 2.5 mm. In our simulations, we set the mis-
alignment between the centers of the aperture and the QPD equal to km,q = [0.5,−0.3] mm.
The noise in the different quadrants of the QPD is assumed to have a correlation coef-
ficient ρ = 0.7. The orientation R of the receiver is defined with the ZXZ Euler angles
[θα, θβ, θγ] [31]. We assume the azimuth and roll angles, i.e., θα and θγ, are uniformly dis-
tributed over [0, 2π), and we set the elevation angle θβ as a variable. In this way, the receiver
has a random orientation but a controlled tilt angle of θβ. After fixing the orientation, we
still need to specify the position of the receiver. To ensure that most LEDs are observed, we
select the position of the receiver so that it is pointing toward the center of the LEDs plane.
This corresponds to the position r = zRe3

eT
3 Re3

.

In the simulations, we use (15) to generate the observations. We assume the shot
noise has power spectral density N0 = 2.10× 10−22A2/Hz, which corresponds to a back-
ground spectral irradiance pn = 5.8× 10−6 W/(cm2 · nm) and a visible light bandwidth
∆λ = 360 nm [32]. Supposing the electrical bandwidth equals B = 1 MHz [8], we can
compute the noise variance σ2

w3 with σ2
w3 = N0B. Simulation results will be given in terms

of the effective SNR =
(
(γ+1)AaRtPt

2πσw3

)2
with Aa = πl2 .(As the received SNR depends

on the receiver pose, a fixed received SNR will limit the parameter space of the receiver
pose. As this will complicate the simulation, we chose to fix the effective SNR) Given
the optical transmitted power Pt = 1 W, we obtain the effective SNR = 44.73 dB. In our
simulations, we will use the range SNR ∈ [25, 65] dB to take into account variations of the
system parameters.

First, we evaluate the performance of the designed calibration estimator as a function
of SNR. As a baseline method, we consider the calibration algorithm for cameras [33].
Because the algorithm of [33] takes the image of an object as input, which in this case
corresponds to the observation of the light spot’s position, we use (29) prior to this algorithm
to convert the observation t to the estimated center of the light spot. The number of LEDs in
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the LED plane is set to NL = 25, and the receiver observes the plane from NT = 4 randomly
generated poses with θβ = π/9 rad. We vary the SNR from 25 to 65 dB and plot in
Figure 5a the resulting root mean square error (RMSE) (denoted by CAL) versus ξ̄, i.e., the
received SNR averaged over the four poses. The root of the MCRB and CRB (denoted by
rMCRB and rCRB) from Section 3.2 and the performance of the baseline method (denoted
by BAS) are also plotted for comparison. As we can see from Figure 5a, at high ξ̄, the two
calibration methods perform close to optimal, while at low ξ̄, the proposed calibration
algorithm outperforms the baseline method. This can be explained as the bias in (29) for the
baseline method is larger than for the proposed calibration method when ξ̄ is low. The gap
between MCRB and CRB reflects the net performance cost of the followed strategy, where
we use the normalized differences instead of the RSS values and the approximated PDF.
The gap shows that the robustness to imperfect knowledge of the transmitted power and
radiation pattern of the LEDs, obtained by this strategy, is achieved at the cost of accuracy.
The performance loss for the estimation of h is larger than for the estimation of km.

(a) (b)

(c) (d)

Figure 5. RMSE of the estimator and the theoretical bound: (a) NL = 25, NT = 4, θβ = π/9 rad;
(b) SNR = 45 dB, NT = 3, θβ = π/9 rad; (c) SNR = 45 dB, NL = 25, θβ = π/9 rad; (d) SNR = 45 dB,
NL = 25, NT = 4.

Next, we evaluate the effect of the number NL of LEDs and the number NT of poses. We
set SNR = 45 dB and θβ = π/9 rad. Both variables influence the number of observations, so
we expect that increasing either NL or NT will improve the performance of the calibration.
In Figure 5b, we show the performance for NL,r =

√
NL = {2, 3, . . . , 9} with NT = 3, and in

Figure 5c for NT = {2, 4, . . . , 16} with NL = 25. The figures show that the lower bound is
reached for both the proposed calibration method and the baseline method when NL or NT
is sufficiently large. In that case, the performance improves logarithmically with NL and
NT . When NL or NT are small, i.e., when the number of observations is small, the proposed
method outperforms the baseline method.
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Finally, we evaluate the effect of the orientation θβ of the receiver with respect to the
LED plane. We set SNR= 45 dB, NL = 25, and NT = 4. The calibration performance for θβ

varying from 0 rad to 5π/18 rad is shown in Figure 5d. When θβ is small, the performance
first improves by increasing θβ. This can be explained as for small θβ, the randomly
generated poses are very close to each other implying the solution set is tightly coupled
and thus more susceptible to noise. For large θβ, the performance starts to degrade, as in
our assumptions we assumed that the receiver is pointing to the center of the LEDs plane,
implying large θβ corresponds to placing the receiver far from the center of the LEDs
plane. As a consequence, the RSS values will experience lower SNR values, causing the
slight degradation of the performance. The optimal performance will therefore occur at
intermediate values of θβ.

4.2. Pose Estimation

In the pose estimation phase, we assume the intrinsic parameters are known, i.e., in
practice, we use the intrinsic values obtained in the calibration phase. As in this case, we
only need to estimate the six parameters of the pose; the number of LEDs can be lower than
for the calibration phase. Furthermore, we assume the VLP system is combined with the
illumination system, so the number and placement of the LEDs must satisfy the illumination
standards. To this end, we consider in the evaluation of the pose estimator a 5 m× 5 m× 3 m
area, where NL = 25 LEDs with optical power Pt = 5 W are mounted at the ceiling of
the area, as shown in Figure 6, unless specified otherwise (assuming the optical power of
the LEDs equals 5 W, an average horizontal illuminance of 500 lm (corresponding to an
office area) in a plane at z = 2 m below the LEDs requires roughly 25 LEDs). We define the
boundary vector b = [5, 5, 3]T, the number of LED columns in the X direction NL,X = 5 and

Y direction NL,Y = 5, and the positions of the LEDs are given by
[
[b]1(2i−1)

2NL,X
, [b]2(2j−1)

2NL,Y
, [b]3

]T
,

with i ∈ {1, . . . , NL,X} and j ∈ {1, . . . , NL,Y}, where [b]i denotes the ith component of b.
We assume the algorithm only uses the LEDs that result in all quadrants to produce a
sufficiently large RSS output to ensure that the information in the RSS values is reliable.
To take into account the effect of calibration and the possible uncertainty in the estimated
parameters, we assume that the receiver has been calibrated and that the estimated intrinsic
parameter vector k̂ ∼ N (k, Σk̂), with Σk̂ = diag([σ2

uv, σ2
uv, σ2

h ]), and σuv and σh are set to
the RMSE of the calibration given in the Section 4.1.

Figure 6. Simulation setup for the QADA receiver. The three orthonormal vectors in three different
colors (the red, green, and blue vector represent the x-axis, y-axis, and z-axis, respectively) at each
sample on the path represent the frame of the receiver. The pink arrows represent the LEDs (only a
fraction of them are shown) on the ceiling. θr indicates the traveled angle along the dotted circle in
the XY plane.

To evaluate the performance of the proposed estimators, we consider a path with a
circular pattern in the XY plane and a sinusoidal pattern in the Z direction as shown in
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Figure 6. The radius of the circle in the XY plane is 1.5 m, and the amplitude of the sinus is
0.2 m. The circle is centered at [2.5, 2.5, 1.2]T m. Starting at the coordinates [4.0, 2.5, 1.2]T m,
the path oscillates sinusoidally in the Z direction and completes the path in three periods.

In Figure 7, we evaluate the proposed estimator with respect to the transmitted power.
In this simulation, we set Σk̂ equal to the corresponding RMSE values from the calibration
when SNR = 55 dB, i.e., σuv = 1.17× 10−5 m and σh = 2.60× 10−5 m. The RMSE of the
pose estimate, averaged over the path, is first evaluated in terms of the transmitted power
Pt = (1 + 2m) × 10n W, where the variables m ∈ {0, . . . , 4} and n ∈ {0, 1} specify the
selected power values in the figure. Figure 7 shows this averaged RMSE of the designed
estimator based on the least squares method (LSM) (denoted by LSM) and the root of the
MCRB (denoted by rMCRB) as a function of the mean received SNR ξ̄. In comparison,
we also add the performance of the proposed estimator when perfect knowledge of the
intrinsic parameters is given (denoted by LSM-K) and when the intrinsic parameters are not
calibrated and assumed to be the design values |h| = 2.8 mm and km,q = 0 mm (denoted by
LSM-X), while the true values are randomly selected from a Gaussian distribution with as
averages the design values and variances given above. The averaged RMSE of the baseline
method [33] (denoted by BAS) and the root of the CRB (denoted by rCRB) are also plotted
for comparison. As a second baseline method, we also consider the classical PnP method
(denoted by PnP). As expected, the performance of the estimator with perfect knowledge of
the intrinsic parameters reaches the theoretical lower bound MRCB and improves with the
SNR. On the other hand, the performance of the estimators without perfect knowledge of
the intrinsic parameters, i.e., calibrated or not, shows an error floor when the received SNR
increases. This error floor is caused by the uncertainty in the estimated intrinsic parameters,
which becomes dominant when the received SNR is sufficiently large. Obviously, the error
floor is much higher in the absence of calibration. Our algorithm strongly outperforms
classical PnP, as expected, while the its performance is slightly better than the baseline
method BAS. The gap between MCRB and CRB implies that the robustness to imperfect
knowledge of the transmitted power and the radiation pattern of the LEDs, obtained by
the strategy of normalizing differences, is achieved at the cost of accuracy.

Figure 7. RMSE for position and orientation estimates, compared with the mean received SNR ξ̄.

To illustrate the robustness of the proposed algorithm to fluctuations in the transmitted
power, we consider the situation where the transmitted power of an LED follows a Gaussian
distribution [34], i.e., Pt = κPt,m, with κ ∼ N (1, σ2

κ ). Experiments in [34] show that the
standard deviation σκ in general is smaller than σκ < 0.0667. In Figure 8, we plot the
RMSE averaged over the entire path as a function of the standard deviation σκ ∈ [0, 0.0667],
assuming Pt,m = 5 W, σuv = 1.17× 10−5 m, and σh = 2.60× 10−5 m. We observe that for
the given range of σκ , the RMSE is (essentially) independent of σκ , implying the approach
of the normalized differences is robust to fluctuations in the transmitted power.
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Figure 8. RMSE for position and orientation estimates as a function of σκ .

Next, we show the RMSE of the pose estimates of the proposed estimator as a function
of the uncertainty in k̂ for Pt = 5 W and compare the resulting RMSE with that of the
baseline method and with the theoretical lower bounds. Figure 9 shows that, as expected,
the performance of the estimator with the perfect knowledge of the intrinsic parameters
reaches the theoretical lower bound and is independent of the uncertainty. The figure also
illustrates that a large uncertainty degrades the performance of the estimators significantly.
When the uncertainty becomes smaller, the performance of the estimators of LSM and
BAS gradually reach and are bounded by the theoretical lower bound. This is expected,
as due to the uncertainty, the estimators are in the best case as good as the ones with perfect
knowledge of the intrinsic parameters. (Close to) optimal performance is achieved as long
as the uncertainty is sufficiently small.

Figure 9. RMSE for position and orientation estimates as a function of σuv and σh.

Finally, we evaluate the performance of the proposed receiver over the whole consid-
ered area. For the LEDs, we consider the setup of Figure 6, where the NL = 25 LEDs are
attached in a square grid to the ceiling of the 5 m × 5 m area. We assume the receiver is
placed at the positions belonging to a horizontal grid with a horizontal spacing of 0.2 m,
at a vertical distance zd ∈ {1, 1.5, 2, 2.5, 3}m from the LEDs. Taking into account that the
receiver in practice is pointing roughly upwards, we consider for each sample point a
random orientation with an elevation angle θβ that is uniformly distributed within the
interval

[
0, θβ,m

]
rad. We consider two scenarios, i.e., θβ,m = 0 rad for the case where the

receiver is always pointing upwards, and θβ,m = π/3 rad for the tilted scenario. Figure 10
shows the cumulative distribution (CDF) of the pose error when zd = 2 m. We observe
that the proposed algorithm outperforms the baseline methods BAS and PnP. The figure
further reveals that our algorithm converges approximately for 95% of the sample positions
when θβ,m = 0 rad, i.e., when the receiver points upwards, while this reduces to 75%
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when a random tilted angle is considered, i.e., when θβ,m = π/3 rad. Hence, as expected,
the coverage degrades if the receiver has a random tilt. To evaluate the effect of the vertical
distance zd on the performance, we compute the probability that the error is smaller than
1 m for the position and 0.2 rad for the orientation. Figure 11 shows that the performance
of our estimator improves when the distance increases, as well as for the baseline method
BAS. Despite the larger distance, and thus lower SNR, increasing the distance will bring
more LEDs into the field-of-view of the receiver, implying more information is available
to estimate the pose. On the other hand, for the PnP method, the performance degrades
when the distance increases. This is explained as the PnP method is more sensitive to a
reduction of the SNR, resulting in a performance degradation despite the larger number of
LEDs available within the field-of-view.

(a) (b)

Figure 10. CDF of RMSE for position and orientation estimates for zd = 2 m: (a) position error;
(b) orientation error.

(a) (b)

Figure 11. Probability versus the distance zd for: (a) position error ‖re‖ < 1 m; (b) orientation error
‖ue‖ < 0.2 rad.

5. Conclusions

In this paper, we investigate the pose estimation and calibration problem for the
QADA receiver. To this end, the channel link is first modeled in terms of the receiver’s pose
and misalignment using the perspective projection model. Then, we study the effect of
the strategy of differencing and normalization to the probability density function (PDF),
and it is shown that the applied strategy results in a complex PDF. Therefore, we derive
an approximated PDF in a simple closed-form, based on which the calibration and the
pose estimation algorithms using the least squares principle are proposed. The proposed
calibration does not require any information about the pose of the receiver and is robust
to the received power variation and imperfect knowledge of the LEDs’ radiation patterns,
while the proposed pose estimator is able to directly estimate the pose from the (normalized)
RSS values. Computer simulations confirm that the proposed calibration algorithm is
effective and that the proposed pose estimator outperforms the PnP algorithm.
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Appendix A. The Expressions for the Gradient ∇Θµi,j

Based on the chain rule,∇Θµi,j = ∇rS,q,i,j µi,j∇ΘrS,q,i,j ∈ R2×(6NT+3), where∇rS,q,i,j µi,j is
the gradient of µi,j with respect to rS,q,i,j, and ∇ΘrS,q,i,j is the gradient of rS,q,i,j with respect
to Θ. ∇rS,q,i,j µi,j is determined by its kth component

[
∇rS,q,i,j µi,j

]
k
=

(2− 2 cos 2αk)eT
k

lπ
√

1−
(
eT

k rS,q,i,j/l
)2

, (A1)

while ∇ΘrS,q,i,j =
[
∇krS,q,i,j,∇T1rS,q,i,j, . . . ,∇TNT

rS,q,i,j

]
∈ R2×(6NT+3) is given by

∇krS,q,i,j =

(
Ti r̄L,j

)©

eT
3 Ti r̄L,j

(A2)

and

∇Tk rS,q,i,j =


(

K
eT

3 Ti r̄L,j
− KTi r̄L,jeT

3

(eT
3 Ti r̄L,j)

2

)(
Ti r̄L,j

)� if k = i

0 ∈ R2×6 if k 6= i
, (A3)

where the gradient of rS,q,i,j with respect to Tk (A3) is calculated with the infinitesimal
perturbation, and the operators ·© and ·� are defined as(

[a1, a2, a3, a4]
T
)©

=

[
a3 0 a1
0 a3 a2

]
, (A4)

and ([
ξT, η

]T
)�

=

[
ηI3 −ξ×
0T 0T

]
, (A5)

respectively.
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