
Citation: De Witte, D.; Qing, J.;

Couckuyt, I.; Dhaene, T.; Vande

Ginste, D.; Spina, D. A Robust

Bayesian Optimization Framework

for Microwave Circuit Design under

Uncertainty. Electronics 2022, 11, 2267.

https://doi.org/10.3390/

electronics11142267

Academic Editors: Phivos Mylonas,

Katia Lida Kermanidis and Manolis

Maragoudakis

Received: 17 June 2022

Accepted: 18 July 2022

Published: 20 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Robust Bayesian Optimization Framework for Microwave
Circuit Design under Uncertainty
Duygu De Witte * , Jixiang Qing , Ivo Couckuyt , Tom Dhaene , Dries Vande Ginste
and Domenico Spina

IDLab, Department of Information Technology, Ghent University-imec, Technologiepark-Zwijnaarde 126,
9052 Ghent, Belgium; jixiang.qing@ugent.be (J.Q.); ivo.couckuyt@ugent.be (I.C.); tom.dhaene@ugent.be (T.D.);
dries.vandeginste@ugent.be (D.V.G.); domenico.spina@ugent.be (D.S.)
* Correspondence: duygu.kan@ugent.be

Abstract: In modern electronics, there are many inevitable uncertainties and variations of design
parameters that have a profound effect on the performance of a device. These are, among others,
induced by manufacturing tolerances, assembling inaccuracies, material diversities, machining
errors, etc. This prompts wide interests in enhanced optimization algorithms that take the effect of
these uncertainty sources into account and that are able to find robust designs, i.e., designs that are
insensitive to the uncertainties early in the design cycle. In this work, a novel machine learning-based
optimization framework that accounts for uncertainty of the design parameters is presented. This
is achieved by using a modified version of the expected improvement criterion. Moreover, a data-
efficient Bayesian Optimization framework is leveraged to limit the number of simulations required
to find a robust design solution. Two suitable application examples validate that the robustness is
significantly improved compared to standard design methods.

Keywords: Bayesian Optimization; robust optimization; Gaussian processes; microwave design

1. Introduction

The emergence of new technologies and the constant miniaturization of integrated
circuits challenge engineers to obtain designs that satisfy stringent functional specifications
and signal integrity (SI) requirements, as well as electromagnetic compatibility (EMC) con-
straints. Various optimization techniques are used to find optimal designs and improve the
device performance at the early design stage [1–3]. While in other engineering domains it
is sometimes possible to solve complex numerical equations with efficient-stable numerical
methods [4–6]; given the high computational cost of simulating modern high-frequency
circuits, surrogate modeling techniques are typically utilized to efficiently perform design
optimization [7–11]. In particular, since the complexity of design optimization problems is
constantly increasing, machine learning-based algorithms have become a popular choice to
cope with the multiscale issues in radio frequency (RF) and microwave designs [12–15].

While, theoretically speaking, the performance of an electromagnetic device can be
improved by applying adequate optimization techniques, in reality, there are many un-
avoidable geometrical and material uncertainties that degrade the device’s performance.
In particular, the real-life performance of a device is significantly affected by the manu-
facturing technology employed, the assembling inaccuracy, uncertainties due to material
diversities, operation environment, etc. From the perspective of industrial design and
manufacturing, there are two types of optimization models: deterministic and robust
optimization models [16]. In deterministic optimization methods, all design parameters
and system variables assume known values, which are freely specified by designers. Since
no random variability and data uncertainty are investigated, deterministic optimization
models fall short to find robust designs. In contrast, the latter are considered (to a certain
extent) insensitive to variations of design parameters.
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As a relatively simple case of an electromagnetic system, consider, for example, a pair
of coupled microstrip lines for high-speed digital circuits. There are several manufacturing
uncertainties for these types of structures. These include an asymmetric ground pin
configuration, signal trace length mismatch, and asymmetric discontinuities in the circuit
layout, such as at a bend of coupled microstrip lines [17]. These manufacturing variations
lead to severe signal degradation, thus decreasing performance in terms of its SI. To increase
the reliability of electromagnetic circuits, a robust design optimization is thus a necessity.

Several formulations for robust design have been proposed in the literature [16,18–23].
The main idea of these approaches is to capture and account for the process variations
and manufacturing tolerances early in the design cycle. In [24], Kriging surrogate models
assist a worst-case robustness scenario for the optimization of electromagnetic devices.
Simulation-based robust design strategies were developed by employing the Monte Carlo
(MC) [25] sampling method to investigate the impact of parameter variations on product
performance [26,27]. Most of these approaches, however, rely on methods that are not
data-efficient. This motivates us to introduce a data-efficient optimization methodology
while accounting for the uncertainties described earlier in this section.

The term data-efficient is used here to indicate techniques that minimize the amount
of data necessary to reach the desired objective. Data-efficiency is particularly relevant for
modern microwave design problems since (full-wave) simulations are computationally
very expensive. Therefore, in this paper, we present a new data-efficient methodology
for robust optimization of microwave circuits and systems based on Bayesian inference,
which allows designers to take manufacturing imperfections during the optimization
process into account, while minimizing the related computational cost. More precisely, our
methodology adopts Gaussian Processes (GPs) [28] and propagates the input uncertainty
on the design parameters by moment matching the predictive distribution of the underlying
GP. Furthermore, we propose a modified version of the Expected Improvement (EI) criterion
that accounts for the input uncertainty, called stochastic EI (sEI), which is used to guide
the optimization process [29]. To the best of the authors’ knowledge, in this paper, sEI
is used for the first time for the data-efficient, robust optimization of microwave circuits
and systems.

The paper is organized as follows. Section 2 first discusses the concept of robust
optimum by means of an illustrative example. Next, it continues with a brief discussion
on robust design optimization in engineering and introduces some of the most recent
developments. Since our methodology is based on Bayesian inference, the relevant features
of BO, GPs and EI are introduced in Sections 2.1–2.3, respectively. In Section 3, the complete
novel methodology for solving robust BO problems in electrical engineering is proposed.
Two representative numerical examples and their results are presented in Section 4. Finally,
conclusions are drawn and the future research avenues are described in Section 5.

2. Problem Formulation

In electronics, engineers are interested in a design solution that satisfies specifications
and, at the same time, is stable under uncertainty. Such a robust solution may represent
a local rather than a global optimum, as long as it is significantly less sensitive to small
production perturbations compared to the global optimum. A schematic example of a
minimization problem is shown in Figure 1. In this figure, the horizontal axis shows a
design parameter x, while f (x) indicates the function that we want to minimize (often
referred to as the objective function in an optimization framework). For microwave circuits,
f (x) typically corresponds to a figure of merit describing the performance of the circuit,
such as bandwidth, gain, attenuation, etc. Deterministic methods tend to find the global
optimum of a function f (x), indicated as point A in Figure 1, without taking any parameter
variations into account [16]. This may result in big fluctuations (∆ f1) of the objective
with respect to small variations ∆x of a design parameter (the length of a microstrip, for
example). Looking at Figure 1, the solution B is considered as robust, as the objective
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function f (x) does not change much with respect to the same perturbation ∆x. Therefore,
despite being a local optimum, in practice design B is more favorable for engineers.

Figure 1. Illustration of global versus robust solutions.

Recently, several procedures have been presented to find such robust solutions in
different engineering domains. While in [30] a sensitivity analysis was exploited to build
a framework for robust design optimization of Mechatronics Systems, a global two-layer
meta-model approximation was presented in [31] to cope with the computational chal-
lenges of robust design optimization. Moreover, in [32] a multidisciplinary robust design
optimization framework, which takes both parameter and metamodeling uncertainties into
account, was introduced.

In general, evaluating a relatively simple robustness measure (e.g., expectancy or worst
value) of the cost function is a common practice in literature. However, worst-case analysis
methods typically result in an overly pessimistic estimation of the tolerance effects [33,34].
Nowadays, Uncertainty Quantification (UQ) of electronic circuits is a popular alternative
where surrogate models are adopted for efficient statistical analysis [35–38]. UQ methods
can assist engineers to achieve robust designs. In [39], an UQ-based optimization strategy,
leveraging on knowledge-based feature surrogates, is introduced for the robust design of
microwave components. For a broad overview of several robust optimization approaches,
the reader is referred to [2,16,19,40].

However, the current state-of-the-art techniques are either not probabilistic or not
data-efficient. To overcome these shortcomings, we present a novel data-efficient approach
that relies on a robustness measure and stochastic EI, detailed in Section 3. Still, first,
the preliminary concepts BO, GP, and EI are succinctly introduced in Sections 2.1–2.3,
respectively.

2.1. Bayesian Optimization

Consider an objective function f : X→ R, also called cost function in the BO frame-
work, defined on a compact subset X ⊆ RD. BO is a model-based approach to solve a
global minimization (or maximization) problem defined as follows:

min
x∈X⊂RD

f (x), (1)

where x is the vector of length D containing the D design parameters. In the context of
an electromagnetics problem, one might want to minimize the return loss of a filter at
its center frequency or maximize the gain of an antenna over a certain frequency range.
Here, the objective function f is often expensive to evaluate, as it requires full-wave
modelling implemented in simulation tools such as Advanced Design System (ADS) [41].
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BO is particularly effective to solve expensive design optimization problems, as it aims at
minimizing the number of expensive function evaluations.

BO relies on two main elements: a surrogate model that mimics the objective function,
and a sequential sampling strategy that selects the next sample intelligently in order to
reach the global optimum as fast as possible. Let us consider the general BO methodology
depicted in Figure 2. First, the objective function f (x) is evaluated for a limited set of
design parameters [xk]

K
k=1 ∈ X. Initial samples are typically generated according to suitable

space filling techniques, such as a Latin Hypercube Design [42]. Based on this initial data, a
surrogate model of f (x) is computed. This model is very cheap to evaluate compared to
performing (full-wave) simulations, and it is used to calculate the location of the candidate
optimum. It is important to remark that surrogate models used in BO are stochastic: the
model not only predicts the value of the objective function with regards to the parameters
x, but also the degree of confidence in its prediction.

Figure 2. Flowchart of the BO framework.

The sampling strategy in BO relies on a so-called acquisition function. More specif-
ically, the acquisition function is used to determine the location of the new sample to be
evaluated, based on the stochastic model’s predictions and its confidence bounds. The sam-
ple selected is then evaluated by a new (expensive) simulation of the objective function and
the surrogate model is updated. This procedure continues until suitable stopping criteria
are met, and each simulation refines the surrogate, increasing the probability of finding
the global optima of the problem (1). A complete description of the BO properties is given
in [43,44].

2.2. Gaussian Processes

In this work, we adopt a BO framework that leverages on GP as a surrogate model.
Different surrogate models can be used in BO, such as Bayesian neural networks [45]
and GPs [28,46]. The latter choice (GPs) is common in a BO context and also used in this
paper. This is because it is analytically tractable and provides a predictive distribution
given new input data. More specifically, a GP f ∼ GP(m, k) represents a distribution over
functions f : X → R, which is completely characterized by its mean function m: X → R
and a positive-definite kernel, or covariance function, k: X× X → R. As such, a finite
set of function values [y1, y2, . . . , yN ] = [ f (x1), f (x2), . . . , f (xN)] are distributed according
to a multivariate Gaussian distribution with mean m and covariance matrix Kxx, where
mi = m(xi) and (Kxx)ij = k(xi, xj). The mean is typically chosen to be zero. Among the
different covariance functions presented in literature, the popular squared exponential (SE)
kernel is used in this work, which has the form:

kSE
(
x, x′

)
= σ2 exp

(
−

D

∑
d=1

(
xd − x′d

)2

2 l2d

)
,
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where the hyperparameters θ are the collection of the kernel variance σ and the length-
scales ld, d = 1,. . . , D. The hyperparameters θ are tuned for a given training data set using
the Maximum Likelihood Estimation (MLE):

θ̂ = arg max
θ

log p(f|θ)

= arg max
θ
−1

2

(
log|2πKxx|+ fTK−1

xx f
)

.

Let Dn = {xn, yn}, n = 1,. . . , N, denote the set of observations of the design under
study. The predictive distribution of GPs for a new input x? based on Dn (also called
posterior distribution) is denoted p( f?|x?,Dn) and it can be analytically calculated, resulting
in a Gaussian distribution with the following moments [28]:

µ(x?) = E( f?|x?,Dn) = kT
?xK−1

xx yn

σ2(x?) = Var( f?|x?,Dn) = k?? − kT
x?K−1

xx kx?

where (Kxx)ij = k(xi, xj), (kx?)i = k(x?, xi), k?? = k(x?, x?). In our optimization problem,
the posterior mean µ(x?) represents the GP prediction, while its variance σ2(x?) indicates
the model’s confidence in its predictions.

2.3. Expected Improvement

Among the most commonly used acquisition functions are the Expected Improve-
ment (EI) [47,48] and Probability of Improvement (PoI) [49]. In particular, a stochastic
version of EI is adopted in this manuscript (see Section 3). Traditional EI is defined as:

αEI,n(x?)=
∫ ymin

−∞
(ymin − f?) p( f?|x?,Dn)d f?. (2)

Here, ymin is the minimum value observed thus far, ymin = minx∈DnE( f |x,Dn) and
|ymin − f?| represents the improvement. Hence, under the GP model, EI can be rewritten
in closed form as:

αEI,n(x?) = (ymin − µ(x?))Φ
(

ymin − µ(x?)
σ(x?)

)
+ σ(x?)φ

(
ymin − µ(x?)

σ(x?)

)
,

when σ > 0 and vanishes otherwise. Note that φ(·) and Φ(·) denote the probability
density function and cumulative distribution function of the standard normal distribution,
respectively.

The goal is to find the point that maximizes the EI and add it to the data set Dn. Using
this data, the predictive distribution p( f?|x?,Dn) is updated and EI is recalculated to
determine the next point to evaluate. This corresponds to one iteration of the BO loop and
continues until the global optimum is found.

Note that finding the value of the parameters x that maximizes the acquisition function
is an optimization problem per se. However, solving this problem is a relatively easy task:
the EI is fast to compute since it is calculated using the current posterior distribution.
It is also differentiable and can therefore be maximized with a standard gradient-based
optimizer [50].

3. Robust Bayesian Optimization in Engineering Design

In circuits, design parameters are usually affected by uncertainties which degrade the
overall performance. Among different types of uncertainty, manufacturing tolerances are
one of the primary uncertainty sources, and therefore the focus of this work.
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The optimization strategy described in Section 2 is deterministic. Thus, it does not
take the uncertainty on the design parameters into account when searching for the optimal
design configuration. Hence, the goal of robust design optimization is finding the minimum
of f (x + δ), where x is the set of design parameters and δ represents the perturbation on
the design parameters. Note that δ is a vector of stochastic (random) variables and not
deterministic ones. In this paper, the elements of δ are assumed to be normally distributed,
that is δ ∼ N (0, Σ), where the correlation matrix Σ is chosen as a diagonal matrix. Thus, the
elements of δ are considered uncorrelated (and since they are Gaussian random variables,
they are also independent). Additionally, we assume that the elements of Σ are constant, so
their values are independent on x.

Finding a robust optimum instead of a global optimum is a challenging mathematical
problem. Moreover, there is no unified mathematical definition of robustness [16,18]. One
main idea portrayed in literature is to evaluate an expectation measure of the objective
function. This was first introduced in literature as Type 1 robustness by Deb and Gupta [51].

In this manuscript, inspired by [51,52], the used expectation measure Er is:

Er(x) =
∫
RD

f (z)N (z|x, Σ)dz, (3)

where p(z) = N (z|x, Σ) is the probability density function of a multivariate normal
distribution with mean x and covariance Σ. This expectation measure Er is, in essence,
the expectation value of the cost function under perturbation [29]. Figure 3 illustrates
the optimal solution resulting from minimizing an objective function (point B) versus its
corresponding expectation measure Er (point A). Solution A is considered robust, as for
a small amount of perturbation δ of the design parameters, the objective function value
of the solution does not change significantly. Solution B offers a better minimum, but it is
sensitive to perturbations: it may not be suited for the application at hand.

E (x)r
f(x)

Figure 3. Illustration of the expectation measure Er in Equation (3) versus the traditional cost function.

The main idea of the proposed robust optimization strategy is to adopt the BO algo-
rithm described in Section 2.1 and summarized in Figure 2, where the uncertainty on the
design parameters is propagated through the GP model and a new acquisition function is
defined to estimate a robust optimum following the measure in Equation (3). Hence, the
EI presented in Section 2.3 is replaced by a stochastic EI as follows: first, the expectation
of EI in Equation (2) is taken with regards to p(z), which is the equivalent of the regular
EI, but using the metric defined by Equation (3). Next, using Fubini’s theorem [53], the
following acquisition function is obtained:
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αsEI,n(x?) = Ep(z|x? ,Σ)[αEI,n(z)]

=
∫ ymin

−∞
(ymin − f?)

[∫
RD

p( f?|z,Dn)p(z|x, Σ)dz
]

d f?.
(4)

The last integral corresponds to the marginalization of z and has the predictive distri-
bution p( f?|x?,Dn) as a result.

The chosen acquisition function αsEI,n requires the marginalization of the input space
of the GP. However, this is analytically intractable. Relying on the literature, the most
accurate way to calculated the predictive distribution is to apply Markov Chain Monte
Carlo (MCMC) methods. Since the moments of the predictive distribution are analytically
tractable if the kernel expectations are tractable [54], a moment matching method is used to
approximate the predictive distribution p( f?|x?,Dn). The kernel expectations are noted
as follows:

ξ? = E(k??)
(ψ?x)i = E((k?x)i)

(Φ?x)ij = E((k?x)i(k?x)j)

(5)

In Section 2.2, it is described that the SE is used as a kernel of the GP model: the
expectations in Equation (5) can be calculated analytically for the SE kernel. To obtain a
sufficiently good approximation of the real distribution, in practice, we suggest to adopt
only the mean and variance and calculate them through the law of total cumulance [55]:

E( f?) = Ep(x?)(E( f?|x?,Dn)) = ψT
?xK−1

xx yn

Var( f?) = Varp(x?)(E( f?|x?,Dn)) +Ep(x?)(Var( f?|x?,Dn))

= ξ? + Tr(K−1
xx (ynyT

n − Kxx)K−1
xx Φ?x)−E( f?)2.

These stochastic moments are matched with a Gaussian distribution to approximate
p( f?|x?,Dn). In this case, the expression of the sEI is similar to the deterministic case:

αsEI,n = (ymin −E( f?))Φ

(
ymin −E( f?)√

Var( f?)

)

+
√

Var( f?)φ

(
ymin −E( f?)√

Var( f?)

)
.

Finally, the global minimum ymin (which is unknown) is replaced by the lowest expec-
tation under uncertainty: ymin ≈ minx∈Xn Ep(z|x,Σ)(E( f?|z,Dn)). The derived formula for
sEI is used in the BO framework defined in Figure 2 to find the robust optimum.

A 1D example that illustrates the sEI versus deterministic EI is shown in Figure 4. In
this example, the sEI is much smoother than the regular EI because of the averaging over
the input distribution. The robust optimum is a local minimum. Clearly, the EI samples at
the global optimum (i.e., it has higher values around the global optimum), while the sEI
samples near the robust optimum.

In the traditional BO setting, the current best optimum is easily obtained by comparing
the function values evaluated so far. However, when using sEI, it is impossible to know
what the current best optimum is. Indeed, to calculate the current best optimum, the GP
model is used to approximate the expectation measure Er. Consequently, unlike in the
regular BO setting, the convergence graph of the current best optimum may not exhibit a
monotonously decreasing trend.
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(a)
  

(b)

y

y

Figure 4. (a) The GP model and (b) comparison of acquisition functions EI and sEI for an objective
function f (x).

4. Application Examples

In this section, the proposed method is applied to optimize two microwave filter
designs, and their performances are compared to standard BO. The proposed method was
implemented using the GPFlowOpt Python package [56].

4.1. Microstrip Lowpass Filter

The two-port lowpass stepped impedance microstrip filter presented in [57] is studied
in this section. The filter is formed by six microstrip line sections with different lengths li,
i = 1,. . . , 6, while the following relation holds for their widths [57]: w1 = w3 = w5 and
w2 = w4 = w6. The corresponding filter layout is presented in Figure 5. This filter operates
in the [1, 4]GHz band, and resides on a substrate with a relative permittivity εr = 4.2 and
thickness h = 1.58 mm. The nominal values of its geometrical parameters are shown in
Table 1. The simulator used to estimate the filter’s performance is the MATLAB RF Toolbox
(Mathworks Inc., Natick, MA, USA).

Table 1. Microstrip low-pass filter geometrical parameters.

Parameter Value

Microstrip lengths l1 = 2.05 mm, l2 = 6.63 mm, l3 = 7.69 mm,
l4 = 9.04 mm, l5 = 5.63 mm, l6 = 2.41 mm

Microstrip widths w1 = w3 = w5 = 11.3 mm
w2 = w4 = w6 = 0.428 mm

For this example, we will consider the length of each microstrip section as a rele-
vant design parameter, defined in the supports l1, l6 ∈ [1, 5] mm, l2, l5 ∈ [4, 8] mm and,
l2, l3 ∈ [6.5, 10.5] mm. The design goal is a filter with a 3 dB cut-off frequency at 2.4 GHz.
This is achieved by minimizing the objective function formulated as: fc(x) = | fc − 2.4|,
where fc(x) is the cut-off frequency expressed in GHz for a specific design configuration.
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l5l3l1

l2
Input Output

l4 l6

w
1

w
2

w
4

w
3 w

5

w
6

Figure 5. Top view of the layout of the lowpass filter under study.

In this example, we assume that the perturbation δ on the six design parameters has
the following covariance matrix Σ = diag(0.62, 1.22, 1.72, 1.72, 1.22, 0.62) mm2. Comparing
the elements of the covariance matrix with the nominal values defined in Table 1, it is
clear that a relatively large perturbation of the design parameters is assumed. This choice
is made to clearly illustrate the performance of the proposed method compared to stan-
dard BO. The optimization is performed by assuming a total computational budget of
100 (l1, l2 , l3, l4, l5, l6) samples for both standard BO (with EI) and our novel robust BO
methodology (with sEI). Ten initial samples are chosen via a Latin Hypercube Design, while
the remaining samples are sequentially chosen by the optimization algorithm, comparing
EI with sEI.

In order to assess the robustness to the value of the initial samples, 12 sets of initial
samples are chosen via a Latin Hypercube Design and the optimization process is repeated
for each sample set. This allows one to estimate a confidence interval for both standard BO
and the advocated methodology.

Results are shown in Figure 6, which illustrates the progression of the robust measure
Er with respect to the number of simulations performed for both BO and the proposed
robust algorithm. The proposed optimization method clearly outperforms BO to find a
robust optimum, and the difference already becomes clear after a few iterations.

10 30 50 70 90
Number of evaluated samples

Figure 6. The expectation measure Er as a function of samples. We show the median (lines) and the
25/75th percentiles (shaded area) of the Er measure calculated for 12 different sets of initial samples.

To evaluate how different Er values describe the robustness of the filter performance
with respect to the perturbation δ on the design parameters, additional results concerning
the filter’s transmission characteristic (element S21 of the filter’s scattering matrix) are
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shown in Figure 7. First, consider the optimization results for one set of the initial sam-
ples: standard BO individuates a global optimum xBO = (5.00, 5.25, 9.89, 8.38, 8.00, 1.33)
corresponding to f (xBO) = 3.4e − 16, while the proposed robust optimization strategy
selects a robust local optimum at xRBO = (1.00, 7.81, 10.50, 6.50, 8.00, 5.00), corresponding
to f (xRBO) = 0.025. Figure 7 shows the results of the MC analysis performed around xBO
and xRBO: the design solution individuated by the novel algorithm is significantly more
robust to the perturbation δ on the design parameters. Similar results hold for all 12 initial
sample sets.

2.8

MC mean
MC samples

optimum

|S
2
1

|

(a)

1.8 3.3

MC mean
MC samples

optimum

|S
2
1

|

(b)

Figure 7. (a) Transmission characteristic |S21| of the lowpass filter using the robust methodology and
(b) standard BO. (a) The optimal 3 dB cut-off frequency found by the robust BO is 2.38 GHz, and MC
analysis reveals that it varies in the [1.9, 2.8] GHz range; (b) The optimal 3 dB cut-off frequency found
by the standard BO is 2.40 GHz, and MC analysis reveals that it varies in the [1.8, 3.3] GHz range.

4.2. Zigzag Narrow Bandpass Filter

The second microwave example is a zigzag narrow bandpass filter (see Figure 8) based
on the design proposed in [58]. The filter is defined over the frequency range [2, 3]GHz
on a substrate with height h = 0.5 mm, relative permittivity εr = 2.2 and loss tangent
tanδ = 0.003. The width of both the horizontal and vertical conductors is 0.4 mm. This
filter has a very narrow pass-bandwidth around [2.4, 2.6]GHz and a center frequency at
2.5 GHz.

S

S

L D

Figure 8. Top-view of the zigzag bandpass filter.

Since the bandwidth is very sensitive to the filter’s geometrical parameters, three
design parameters are considered: the distance D, the length L of the two coupling parts
and the gap S between the horizontal conductors (see Figure 8). These parameters are
defined in the supports [0.2, 2] mm, [16, 20] mm and [0.1, 1] mm, respectively. The goal is
to design a filter with passband in the range [2.4, 2.6]GHz. For simplicity, we only consider
performance specifications imposed on the reflection coefficient (element S11 of the filter
scattering matrix). In order to achieve our optimization goal, the objective is formulated
as follows:

f (x) = | fL − 2.4|+ | fH − 2.6| .
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where fL and fH are the frequencies determining the intended operating bandwidth ex-
pressed in GHz. The perturbation on the design parameters has the following covariance
matrix Σ = diag(0.032, 0.062, 0.92), which corresponds to around 5% of their nominal values.

The optimization starts with 15 initial points, and continues for 100 iterations adding
up to 115 (D,L,S) samples in total. As for the previous example, 16 sets of different initial
samples are chosen via Latin Hypercube Design and the optimization process is repeated
for each sample set. Differently from the example in Section 4.1, where the scattering
parameters of the filter are computed using a quasi-analytical model in MATLAB, here,
full-wave simulations, using Advanced Design System (Momentum EEsof EDA, Keysight
Technologies) [41], are adopted to calculate the reflection coefficient. Due to the high
associated computational cost, it was not feasible to calculate the Er measure over all
100 iterations. Therefore, we present the results only for the last iteration of the optimization
loop. The results are shown in Table 2.

Table 2. Median across 16 replications.

Method Corresponding Er Value

BO 0.145
Robust BO 0.137

As observed, the proposed methodology indeed achieves a lower Er value compared
to the BO method with respect to the small perturbations imposed. The global minimum
found by BO is xBO = (0.3, 0.7, 18), leading to f (xBO) = 4.4e− 16. The robust minimum
defined by metric Er lies at xRBO = (0.5, 1.1, 17), corresponding to f (xRBO) = 0.089. The
results of the MC analysis performed around xBO and xRBO are shown in Figure 9: despite
being a local optimum, the design solution individuated by the novel algorithm is more
robust to the perturbation δ on the design parameters.

2.34 2.65 2.82.2

MC mean
MC samples

optimum

|S
1
1

|

3

(a)

2.25 2.72

MC mean
MC samples

optimum

|S
1
1

|

3
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Figure 9. (a) Return loss |S11| of the zigzag bandpass filter using robust BO and (b) standard BO.
(a) The optimal 3 dB bandwidth by the robust BO is [2.47, 2.58] GHz. MC analysis reveals, however,
that it may extend up to [2.34, 2.65] GHz. (b) The optimal 3 dB bandwidth by the standard BO is
[2.40, 2.61] GHz. MC analysis reveals, however, that it may extend up to [2.25, 2.72] GHz.

5. Conclusions

We presented a framework for robust optimization within the standard Bayesian
optimization framework, which considers input uncertainty. The standard BO framework
is extended to the novel robust methodology by using the sEI, a modified version of the EI
acquisition function, as the sampling strategy. sEI takes a measure of robustness (Er) into
account to converge to a robust optimum rather than a global one. Such a robust solution
may be a local optimum, however, it is more stable under perturbations compared to the
global optimum obtained by standard BO. GPs are employed as the surrogate model and
the uncertainty on the input parameters is propagated by moment matching the predictive
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distribution. Moreover, our advocated robust optimization is performed in a data-efficient
manner: the number of the expensive function evaluations is limited owing to the BO
scheme. The effectiveness of the optimization framework is demonstrated on two filter
design examples. Clearly in both cases, a lower median of the measure Er, as well as a
lower variance across replications of the optimization method, is observed.

Several extensions and improvements to the current approach are possible. In par-
ticular, we aim at extending the current approach to high dimensional inputs. Another
improvement would be considering an input uncertainty distribution other than Gaus-
sian. Moreover, for engineering design, a multi-objective version of a robust optimization
method is very relevant.
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