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Abstract—Limitation of labeled samples has always been a chal-
lenge for hyperspectral image (HSI) classification. In real remote
sensing applications, we encounter a situation where an HSI scene
is not labeled at all. To solve this problem, cross-domain learning
methods are developed by utilizing another HSI scene with similar
land covers and sufficient labeled samples. However, the disparity
between HSI scenes is still a challenge in reducing the classification
performance, which may be affected by variations in illumination
and weather. As a robust supplement to these variations, light detec-
tion and ranging (LiDAR) data provide stable elevation and spatial
information. In this article, we propose a multisource cross-domain
classification method using fractional fusion and spatial-spectral
domain adaptation to reduce the disparity between scenes. First,
the spatial information of HSI is preserved by fractional differential
masks. Then, the LiDAR data are utilized for spectral alignment of
HSI. The utilization of LiDAR data reduces the pixel-level dispar-
ity between scenes. At last, a spatial-spectral domain adaptation
network is proposed to reduce domain shift at the feature level
and extract discriminative spatial-spectral features. Experimental
results on HSI and LiDAR scenes show 5% -10% improvements
in overall accuracy compared with the state-of-the-art methods.

Index Terms—Cross-domain classification, fractional fusion
(FrF), hyperspectral image (HSI), light detection and ranging
(LiDAR), spatial-spectral domain adaptation (SSDA).

1. INTRODUCTION

XPONENTIAL growth of multisource remote sensing data
has created a compelling demand for automatical analysis
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and interpretation of datasets [1], [2]. Artificial intelligence
provides great opportunities for multisource remote sensing data
analysis [3], [4]. Hyperspectral image (HSI)-based multisource
remote sensing data have been systematically applied for mon-
itoring land-use and land-cover classification, target detection,
and environmental changes [5]-[8]. Specifically, HSI can pro-
vide detailed spectral information for uniquely discriminating
materials of interest [9]. However, the acquisition of labeled
samples is time-consuming and laborious or even infeasible [ 10].

Inreal remote sensing applications, we encounter the situation
where an HSI scene to be classified (target domain) is not labeled
at all because of the labor and natural limitation. Meanwhile,
other similar scenes (source domain) sharing the same land
covers may have sufficient labeled samples. A nature idea is to
exploit the information of labeled samples in the source scene to
help target scene classification. This task is called cross-domain
classification [11], [12]. For instance, if a city suffered from a
natural disaster, both the field condition and disaster losses need
assessment through HSI-based multisource remote sensing data
and classification techniques. On-site labeling samples in the
investigated scene are not realistic, but some scenes captured
from similar cities are easy to find and with sufficient labeled
samples. These cities share similar land covers and make it
possible to transfer knowledge between similar scenes.

A straightforward method for cross-domain HSI classification
is training classifiers on the source scene to classify the target
scene [13]. However this simple way suffers from spectral shift,
i.e., pixels of the same land cover may vary in spectral reflectance
profiles from two scenes [14]. As shown in Fig. 1, given the same
material, the spectral reflectance profiles from two scenes may
be significantly shifted due to the variation of sensor altitude,
atmospheric condition, illumination, etc. [15], [16]. Fig. 1 illus-
trates the spectral reflectance of two HSI scenes, e.g., Trento in
Italy (source domain) and Houston in the USA (target domain).
Red and blue curves represent spectral reflectance of buildings in
the source and target domains, respectively. Due to the spectral
shift phenomenon, the classifiers trained using labeled training
samples from the source domain perform poorly on the testing
samples from the target domain.

The key issue of cross-domain classification is to reduce the
spectral shift of source and target scenes. One significant reason
for spectral shift is illumination, classical classification tasks
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Fig. 1. Spectral shift of HSI and robust elevation feature of LiDAR in cross-
domain classification. Solid lines depict mean spectral signature of specific land
cover in HSI, and the shaded part indicates standard deviation of corresponding
samples.

include atmospheric compensation routines to provide estimates
of the average ground leaving reflectance retrievals [17]. How-
ever, per-pixel solar and sky ancillary illumination information
varies in scenes and leads to poor classification perfor-
mance [18]. To compensate for the pixel-level shift, a guidance
auxiliary image must be robust to the variations in illumination.
As a robust supplement to these variations, light detection
and ranging (LiDAR) data provide stable elevation and spatial
information acquired at any time of the day and under adverse
weather conditions [19]. LIDAR provides meaningful elevation
and spatial information regardless of illumination variations
between scenes. As shown in Fig. 1, the normalized eleva-
tion information and spatial shape of buildings in the source
and target scenes are robust to environmental variations and
maintain discrimination against other land covers. For instance,
buildings shadowed by clouds in the target scene show shifted
spectral reflectance, but the elevations still fall into the same
range. In this regard, the diagnostic spectral information of HSI
enables fine-grained classification of observed objects, while
the vertical structural information of LiDAR can be applied
for obscuration (cloud/shadow) area exploration. Notably, the
sensor development enables HSI and LiDAR to be captured
simultaneously. Utilizing HSI and LiDAR data of the same
ground sample distance (GSD), we can obtain per-pixel solar
and sky ancillary illumination information [20]. Recently, there
has been an emergence of joint feature extraction methods
being applied to HSI-based multisource classification [21]-[25].
In [25], a novel CNN denoiser was designed to regularize HSI
and multispectral image fusion. These multimodality data come
with their unique advantages over single modality and improve
the classification accuracy [26]. However, researchers have not
investigated whether LiDAR data can aid HSI for cross-domain
pixel-level classification. By integrating the discriminative spec-
tral feature of HSI and the robust elevation feature of LiDAR,
we aim at leveraging the LiDAR data to improve cross-domain
HSI classification by reducing the per-pixel spectral shift.
Incorporating LiDAR reduces data-level per-pixel spectral
shift caused by illumination variation, but there exist feature-
level disparities between source and target scenes. With the aid
of information from the source domain and the related features,
the target domain can be adapted with the source domain and
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classified by domain adaptation (DA) techniques [27]-[29].
Inspired by the traditional DA method in machine learning, DA
technology has been introduced to HSI classification to reduce
the data shift and distribution bias [30]-[32]. The maximum
mean discrepancy criterion is widely used for first-order statistic
alignment [33], [34]. To reduce the distribution bias, transfer
component analysis (TCA) was introduced to cross-domain HSI
classification [33]. In [35], correlation alignment (Coral) was
proposed to align the correlation of scenes. In [36], stratified
transfer learning (STL) was proposed to learn common subspace
by exploiting the intra-affinity of classes.

Recently, deep DA technique achieved promising perfor-
mance in cross-domain HSI classification tasks [37]-[39].
In[38], an unsupervised cross-domain HSI classification method
was proposed based on adversarial DA. In [39], an augmented as-
sociative learning-based DA method was proposed for HSI clas-
sification. In [37], an efficient and effective model was created
for HSI classification by implementing open-set DA and gener-
ative adversarial network (GAN). Although these DA methods
reduce the disparity between scenes and improve the general-
ization ability, the discrimination of land covers is reduced in
embedding space as well. Specifically, cross-domain HSI using
GAN [37] only utilizes spatial information by convolutional
layers while the discriminative spectral information is missing.

Focusing on the above challenges in cross-domain multi-
modal classification, this article aims at reducing spectral shift
by data-level fractional fusion and modifying feature-level adap-
tation by spatial-spectral DA. In the proposed fractional fusion
and spatial-spectral domain adaptation (FrF-SSDA), first a frac-
tional differential mask (FrDM) is utilized to enhance spatial
information of HSI. Then, we propose a fractional fusion method
to fuse LiDAR data and HSI. Because of the robustness of
LiDAR to illumination variation, the spectral shift of source
and target scenes is reduced. Second, to improve cross-domain
HST classification by feature-level DA, we modified the GAN
for spatial-spectral feature extraction and domain adaptation.
The joint use of HSI and LiDAR can not only reduce spectral
shift between multimodal datasets but also utilize the discrimi-
native spectral feature of HSI and the robust elevation feature of
LiDAR data. Finally, three groups of HSI and LiDAR data are
used for cross-domain classification experiments, and the results
compared with competitive methods indicate the effectiveness
of the proposed FrF-SSDA.

The main contributions can be highlighted as follows.

1) A fractional fusion stage leveraging LiDAR data is pro-
posed to reduce per-pixel spectral shift of HSI and im-
prove cross-domain multimodal classification. The classi-
cal FrDM is modified for comprehensive spatial-spectral
information extraction. Combined with LiDAR data, the
shift of spectral signature for the same land cover in source
and target domains is reduced.

2) A spatial-spectral domain-adaptive network is proposed
to reduce the feature-level disparity. Based on the spatial
adaptation ability of GAN, the modified SSDA network
extracts sequential spectral features from the fused data,
which aligns domains in feature space while improving
feature discrimination.
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Fig. 2. Flowchart of proposed FrF-SSDA framework.

The rest of this article is organized as follows. The proposed
framework is introduced in Section II. In Section III, experi-
mental results and analysis are presented. Finally, Section IV
concludes this article.

II. PROPOSED FRAMEWORK

In this article, an FrF-SSDA method is proposed for multi-
modal cross-domain classification. The overall flowchart of the
method is shown in Fig. 2.

The proposed FrF-SSDA consists of 1) a LiDAR-aided spec-
tral alignment and fractional fusion part to reduce spectral
shift, and 2) an SSDA network for feature-level adaptation. In
Section II-A, first the problem statement and motivations of the
proposed FrF-SSDA are depicted. Then, the two major parts of
the proposed FrF-SSDA are depicted in Sections II-B and II-C,
respectively. Finally, the training and inference procedures are
introduced in Section II-D.

A. Problem Statement and Motivations

For a clear presentation, we first introduce the cross-domain
classification problem statement and notations used in the pro-
posed FrF-SSDA. In the cross-domain HSI classification task,
the source scenes consist of registered HSI image H*® and
LiDAR image L®, which are captured together and of the same
GSD. The target domain consists of the registered HSI image
H” and LiDAR image L’ In cross-domain classification, the
source and target scenes share the same land covers but only the
source scenes have sufficient labeled samples. The cross-domain
classification aims at exploiting information of the labeled sam-
ples in source scenes to classify the target scenes.

Affected by the capturing environment variations especially
illumination changes, the spectral signatures of same land cover
in H¥ and H” may be shifted. But the LiDAR data L® and L”
provide meaningful elevation and spatial information regardless

of illumination variations. Thus, one of the motivations is to re-
duce the per-pixel spectral shift caused by illumination changes
by leveraging LiDAR data. To align the pixel-level spectral
reflection of H® and H”, a fractional fusion stage is designed
using H®, L® and H”', L. The fused scenes are represented as
F? and FT'. The motivation of this LIDAR data-aided spectral
alignment and fractional fusion stage is to reduce data-level
spectral shift, which is detailed in Section II-B.

To reduce feature-level disparity between F*° and FT, an
SSDA network is designed. Given the labeled sample set X =
{x1,22,...,2Tns} in the fused source scene F* with their la-
bels Y* = {y1,Y2,- -, Yns} the target of cross-domain clas-
sification is predicting the labels of X” = {z1,29,..., 2}
in target scene F7. Considering both feature alignment and
discrimination, the proposed SSDA aims to align scenes by
projecting source and target features to shared feature space and
improve the effectiveness of the classifier on the target scenes.
Only the source labels Y are utilized and the DA from X* to
X7 is applied. Without using any target labels Y7, the test set
consists of target samples X 7. This feature-level SSDA process
is detailed in Section II-C.

B. Fractional Fusion

As shown in part I of Fig. 2, the first stage of proposed
method is leveraging LiDAR data to reduce per-pixel spectral
shift and fractional fusion to preserve both spatial and spectral
information.

HSI can provide detailed spectral information for uniquely
discriminating materials of interest, but the spatial and textural
information is usually limited. To preserve the valuable spatial
information, an FrDM [40] step is applied for spatial information
enhancement and preservation. To realize the cross-domain clas-
sification, discriminative spatial-spectral information is signifi-
cant. We proposed FrF to improve the discrimination of spectral
information while preserving spatial information.
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Given an HSI image H € R"**?, the spatial fractional in-
formation of kth channel of H is preserved as [V'Hy]; =
([DYHy];, [Dng]j)T, where [-]; denotes the jth column, and
DY and D3 are the horizontal and vertical finite fractional
difference operators, respectively, which are defined as

[DyH]; Zw Hy(r +1,5)
[DyH,, Zwl”)Hk(r s+1) (1)
1=0
where wl”) = (-)*tey, ¢y = % denotes the

generalized binomial coefficient, I'[-] is the Gamma function,
and J > 3 is a positive integer.

With the preserved spatial information VVH, the spectral
shift problem maintains to be reduced. To compensate the il-
lumination variations, LiDAR data are utilized to modulate the
preserved HSI on a per-pixel basis. The per-pixel illumination
intensity can be measured using the robust LiDAR source and
utilized to align spectral-spatial information of HSI. The objec-
tive is to adjust the target spectral energy and make it statistically
more similar to the source HSI with similar land covers. The
alignment coefficient A is obtained from per-pixel solar and sky
ancillary illumination information of LIDAR. With LiDAR data
L € R™° and overall intensity of HSI I =Y"0_ LH®), the
coefficient A is defined as

o(I)
M(L))J(L) + p(I) 2
where ;1 is the mean of the 2-D image while 0 means the variance.

With the spectral alignment coefficient, we adjust the HSI
scenes HS and HY to reduce the spectral shift caused by per-
pixel illumination variations. The aligned data by fractional
fusion are

=(L-

F® = V'H, + (A - 1)/2 3)

where H®) and F(*) are the kth band of the preserved HST and
aligned data F, respectively. The source and target scenes after
alignment and fusion are represented as F* and F”', respectively.

More than considering the discriminative spectral signature
of HSI images for cross-domain classification, preserving the
spatial information of HSI and leveraging LiDAR data to reduce
per-pixel spectral shift of HSI are also significant. The FrDM is
applied to transfer the geometry of the HSI image (especially
for spatial details and texture) into the fused multisource image,
which models that the fractional-order gradient feature of the
fused image should be consistent with that of the HSI image.
Then, LiDAR-based alignment coefficients are utilized for spec-
tral alignment of the spatial-spectral fused data. As the solid
lines in Fig. 3 shows, even with the same land-cover buildings,
the spectral reflectance of source (e.g., Houstonl3 in Fig. 3)
and target scenes H” (e.g., Trento in Fig. 3) are different.
Due to the capturing environment changes (e.g., illumination
variations), the spectral shift is a major obstacle that leads to
poor classification performance on the target scenes. As shown
in Fig. 3, the proposed fractional fusion and the LiDAR-based
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Fig. 3.  Effects of the proposed fractional fusion stage. Solid lines depict the
mean spectral signature of HSI, and the dashed lines represent the aligned mean
spectral signature of fused data. The shaded part indicates the standard deviation.

per-pixel alignment stage reduce the spectral shift and maintain
the aligned spectral-spatial information. Compared with the
original spectral feature, the fused data not only show a reduced
spectral shift but also show a smaller standard deviation, which
improves the discrimination of spectral information.

C. Spatial-Spectral Domain Adaptation

Section II-A demonstrates that fusing HSI and LiDAR can
reduce the pixel-level spectral shift caused by illumination vari-
ation, but there exists feature-level disparity between source
and target domains. As shown in part II of Fig. 2, the SSDA
network is designed to generate domain-invariant and class-
discriminative features. In this stage, two aspects are ensured
including 1) projecting source and target features to a shared
feature space to reduce the feature-level domain shift, and 2)
improving the discrimination of spectral features by recurrent
layers.

Given the fused source and target scenes, the labeled train-
ing set X% = {x1,29,...,2,,} € RV in the fused source
scene F¥ € R™*? and their labels Y = {y1, 92, ..., Yns} €
{1,2,..., Nc} are used for pretraining, where 7 X c¢ is image
sizes while b being the number of band. Then, by utilizing
unlabeled sample set X7 = {xy, 29, ..., 2, } € R in the
target scene FT ¢ R™*¢* the motivation of cross-domain
classification is predicting the labels Y = {y1, 4o, ..., ¥ns} €
{1,2,...,Nc} for XT.

Considering both feature alignment and feature discrimina-
tion, the objective of the proposed SSDA is to align source and
target scenes by projecting features to shared feature space and
improve the effectiveness of classifier on the target scene. The
designed SSDA consists of feature extractor G f(~; 0 f), domain
discriminator G4(; 84), and classifier G.(-; 6..), with their corre-
sponding parameters 0, 04, and 0.

In a classical GAN, convolutional layers are applied to extract
the local 2-D spatial information. However, the spatial receptive
field produced by stacking multiple convolutional kernels is
limited, resulting in long-range dependencies that are still not
adequately captured. In addition, the lack of the ability to extract
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framework.

sequential spectral information results in the loss of spectral
information, which limited the DA and classification perfor-
mance. To modify the baseline GAN method, a spatial-spectral
feature extractor is designed to project the source and target
features to a shared feature space in the proposed SSDA. The
feature extractor G ¢ consists of convolutional blocks to maintain
complete spatial information, and gate recurrent unit (GRU) [41]
blocks to acquire long-distance nonlocal dependencies between
spectra while with clearer spatial location information and more
detailed sequential spectral information. G projects the input
samples into a shared feature space, which allows the classifier
G, to predict the label of source and target samples in the same
manner. For instance, given a labeled sample in source domain
x; € X with its label y; € Y, the pretraining classification
loss is

Li(07,0.)= L (Ge (G (24307) 5 00) , vi)
1
gc(gf (l'iE 9f)§ ec)yi .

= log 4)

Given X® and X7 from fused data, the objective of the fea-
ture extraction part is to learn the spectral features and drive
the target samples under the support of the source samples.
As shown in Fig. 4, with the spatial-spectral feature extractor
applied, the preserved spatial information is extracted by con-
volutional blocks while the GRUs emphasize the discriminative
spectral information. By training the network in an adversarial
manner, the domain shift between source and target samples is
reduced.

The domain discriminator G4(-; 04) is designed to cripple the
ability to detect whether the samples belong to the source or
target domains. And then, the domain discriminator can adjust
the classifier to fit the source samples closely and drive the
target samples under the support of the source domain. Then,
the domain loss is

L} (0f,04) = Lq (Ga (G (x5 05) :04) , dy)
1

= d1 lo
% G. (G (2;367) ; 0a

1
1— G (Gy (x;05);04)

+(1—dy)log 5)
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Algorithm 1: FrF-SSDA Framework.

Require: Source data H®, L, source labels Y, target
data H”, L7, training epochs Ep.

Ensure: Target labels Y7

1:  Preserve fractional spatial information as (1).

2:  Spectral alignment leveraging LiDAR L°, L as (2).

3:  Fractional fuse and extract training samples X and

xT.

4: Initialize all weights and bias terms

5:  while epoch < Ep do

6: for i from 1 to n do

7: Train X and compute L (6, 6.) as (4).

8: Train X7 and compute L5 (6y,0,) as (5).

9: Compute overall loss as (6).

10: Backpropagation and update weights.
11: end for

12:  end while
13: Predict target labels Y7

where d; is the domain label for the jth sample and d; =0
means that x; is from the source domain while d; = 1 for the
target domain. To realize DA by backpropagation, a gradient
reversal layer is R (z) used [27].

Considering both domain adaptation and discriminative fea-
ture extraction, the complete optimization objective is

ns ns nt
E=1 Zch(gc) -t ZlLd — AL ZlLd (6)
= = Jj=

where A is the weight of discriminator and is adaptively con-

trolled by the ratio parameter A(l) = m — 1 with [

being the number of training epoch. By updating the parameters
0,0, and 0, in the training process, the proposed SSDA aligns
source and target scenes, adapts classifier G, to the target scene,
and predicts the target labels Y.

The proposed SSDA modifies the baseline GAN method
and employs the convolutional GRU in the feature extractor
to acquire long-distance nonlocal dependencies between spec-
tra. While the convolutional layers maintain complete spatial
information, more detailed sequential spectral information is
captured by GRU. As shown in Fig. 4, the spatial-spectral feature
extraction step improves the discrimination of different kinds of
land covers. The domain-adaptive network aligns domains in the
same feature space and reduces the feature-level domain shift.

D. Training and Inference Procedures

The training and inference procedures of the proposed FrF-
SSDA are divided into four steps, as Fig. 5 shows. Parameters
of convolutional layers and GRU are listed in the figure for
example.

1) Step I: LiDAR-aided spectral alignment and fractional fu-
sion. We first designed a v-order FrDM to preserve spatial
information of the HSI scenes. Then, LiDAR images are
incorporated to compensate for the per-pixel illumination
variations. In the process of spectral alignment, both the
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Fig.5. Network structure, and training and inference processes of the proposed
FrF-SSDA framework.

HST and LiDAR data are normalized. Finally, each pre-
served HSI band is adjusted using its LiDAR-aided align-
ment coefficient to reduce the per-pixel spectral shift. This
step fuses the discriminative spectral feature of HSIs and
robust elevation information of LIDAR images, preserving
the valuable spatial information of HSIs and reducing the
spectral shift.

2) Step 2: Pretraining on the source scene. After the frac-
tional fusion stage in step 1, normalization is applied again
to scale the input of the SSDA network. The pretraining on
the source scene trains the feature extractor and predictor
on the source scene to classify the source samples cor-
rectly. G takes each sample z; € X< as input and learn
the spectral-spatial feature. A standard cross-entropy loss
is used as (4). This step makes the network fit the source
features, and works in an adversarial manner with the
following step 3 to align the source and target scenes at
feature level.

3) Step 3: Domain discriminating. With the initialized 0
by step 2, 04 is adjusted in an adversarial manner to
maximize the discrimination loss. This step is executed
in both source and target domains and aligns the extracted
spatial-spectral features. By minimizing E (6, 0., 04), pa-
rameters are updated to train the proposed network.

4) Step 4: Inference of the target samples. After training the
feature extractor and domain discriminator in steps 2 and
3, the inference process fixes the parameters and predicts
the target labels Y7 The detailed training and inference
procedures of the proposed FrF-SSDA are summarized
in Algorithm 1.

III. EXPERIMENTAL RESULTS AND COMPARISON
A. Data Description and Preparation

To verify the effectiveness of the FrF-SSDA, three groups of
multimodal scenes are utilized for experimental analysis.
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1) Houston Scenes: They consist of two urban scenes ac-
quired over the University of Houston campus, Houston, TX,
USA. The IEEE GRSS DFC released these HSI and LiDAR
datain 2013" and 2018, respectively. The spatial resolution and
spectral bands of Houston13—-Houston18 scenes are different.
We first reserve the overlap area of two scenes containing similar
land covers, and then reduce the spatial resolution of Houston18
to that of Houston13 by down-sampling. The 48 co-occurrence
spectral bands of HSIs in Houston13 and Houstonl8 are ex-
tracted. The HSI and LiDAR data are shown in Fig. 8 while
the labeled samples are listed in Table II. To evaluate the effec-
tiveness of cross-temporal classifiers, seven general land-cover
categories of interest are selected for example.

2) Nashua—Hanover Scenes: They consist of two urban
scenes acquired over the city of Nashua and Hanover, USA,
which comes from G-LiHT data.’> The Nashua dataset supplies
coregistered LIDAR and HSI with 450 x 1050 pixels ata GSD of
1 m. The Hanover dataset supplies coregistered LiDAR and HSI
with 700 x 620 pixels ata GSD of 1 m. The HSI data contain 114
spectral channels ranging from 0.42 to 0.95 um. The HSIs and
LiDAR data are shown in Fig. 9 with seven land-cover categories
of interest.

3) Houston—Trento Scenes: They consist of two HSI and
LiDAR scenes acquired over different areas. One set of HSI and
LiDAR-based digital surface model (DSM) is Houston13 and
another named Trento was acquired over a rural area in Trento,
Italy [42]. We extract the 64 co-occurrence spectral bands of
HSIs in Houston13 and Trento. The HSIs and LiDAR data are
shown in Fig. 10 with four land-cover categories of interest.

B. Experimental Setup

1) Implementation Details: The programs are implemented
using MATLAB and Python 3.6. The networks are constructed
using Pytorch. Experiments are conducted on a personal com-
puter equipped with Ubuntul8.04 and NVIDIA GeForce RTX
2080 Ti. To quantify the experimental results, three commonly
used evaluation metrics are adopted including overall accuracy
(OA), average accuracy (AA), and Kappa coefficient (Kappa).
In the training phase, we use Adam optimizer. No regularization
term has been applied in cost functions (4)—(6). The learning
rate can be updated by multiplying the initial learning rate by
1— gggfﬁ’s, where the basic learning rate is 5 x 10™2 and the
weight decay is 1073, Pixel-by-pixel input strategy is used in
training the network with the input batch size being 128.

2) Algorithm Configuration: The proposed FrE-SSDA con-
tains four parts as follows. In the fractional fusion and spectral
alignment part, v = 0.5 order FrDM is applied for spatial in-
formation preservation. n = 3 approximate expression is used.
In the SSDA network, each convolutional block contains a
convolutional layer with r X r filter, a batch normalization layer,
and a ReL.U activation layer. Each GRU contains two recurrent

'[Online].  Available:  http://www.grss-ieee.org/community/technical-
committees/data-fusion/2013-ieee- grss-data-fusion-contest/

2[Online].  Available:  http://www.grss-ieee.org/community/technical-
committees/data-fusion/2018-ieee- grss-data-fusion-contest/

3[Online]. Available: https:/glihtdata.gsfc.nasa.gov
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Fig. 6. Classification performance of the proposed FrF-SSDA with different
parameters. (a) Convolution kernel size 7 x r, (b) Learning rate. (c) Gradient
Coefficient. (d) Discriminator Coefficient.

layers with 128 features in the hidden state. There are three dense
blocks with the size of output feature 1000, 100, P. The first two
include a linear layer, ReLU, and batch normalization layer. The
last layer only contains a linear layer and is then fed into the
softmax function for classification. The domain discriminator
shares the same network setting with the predictor except for
a gradient reverse layer. The Gradient parameter is initialed as
~v = 500.

3) Parameter Analysis: To validate the effectiveness and
sensitivity of parameters involved in the proposed FrF-SSDA,
experimental analysis using varying parameters are compared
in Fig. 6.

The effect of convolution kernels sizes  x r is depicted in
Fig. 6(a). The researched range is constrained from 3 x 3 to
13 x 13. As shown in Fig. 6(a), the input blocks with dif-
ferent sizes yield different classification performances. Small
sizes yield better performance, and all three tasks obtain the
best classification results with 3 X 3 convolutional kernels. In
Fig. 6(b), the OA after 200 training epochs shows that learning
rate Ir affects the convergence of the learning process. The search
range is constrained from 5 x 1076 to 10~2. The algorithm using
a small learning rate, e.g., 5 x 1076,107°, cannot converge
and results in poor performance. Large learning rates 102
means large fluctuations in the objective function and results
in an unstable training process. For the gradient coefficient ~
in Gy, the search range is constrained from 5 to 10%, which
indicates that the classification performance varies with the ratio
of adapted information. A larger v means a larger increase in the
speed of domain loss, which transfers more source information
to target scenes. Fig. 6(c) shows v = 500 is optimal, which
means a proper weight of information adaptation. Furthermore,
a hard discriminator between source and target samples is also
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TABLE I
ABLATION ANALYSIS OF THE PROPOSED FRF-SSDA
USING DIFFERENT FUSION STAGES (%)
Methods ~ RAW HPF GS BRO WAVE  GRW  SFPSD FrF
Source: Houston13, Target: Houston18

OA 70.00 65.96 76.63 75.53 66.63 75.17 77.31 79.45
AA 64.59 67.45 73.55 62.84 65.70 61.84 74.02 79.07
Kappa 0.4861 04443  0.6023  0.5696 0.4033 0.5708 0.6127  0.6755

Source: Nashua, Target: Hanover
OA 81.49 83.25 85.59 77.36 82.77 87.44 88.61 93.16
AA 65.12 64.04 75.04 62.10 70.09 74.31 75.64 74.93
Kappa 0.7440  0.7019  0.7953  0.6847 0.7219  0.8126  0.8354  0.9035

Source: Houston13, Target: Trento
OA 67.79 67.38 67.45 88.21 82.30 88.67 89.73 97.14
AA 64.79 64.55 65.79 62.62 70.13 67.81 69.54 94.21
Kappa 0.4570 04616 04778 0.7687  0.6522  0.8061  0.8213  0.9432

important hyperparameter, Fig. 6(d) shows the discriminator
coefficients perform best when ¢ = 0.5 on all the three datasets.
These parameters can be set by cross-validation on the available
training set in practical applications. The optimal parameters in
the researched three cross-domain tasks are r x r = 3 x 3,1Ir =
5e — 5,7 = 500.

C. Ablation Analysis

To demonstrate the effectiveness of FrF-SSDA, the extracted
features are shown with visualized feature maps. The discrimi-
nation of different land covers is improved step by step while the
extracted features are aligned between source and target scenes.

As listed in Table I, the proposed fractional fusion stage is
compared with other fusion methods. Simple HSI and LiDAR
feature splicing or stacking operations are highly susceptible to
redundant information stacking, and cannot reduce the spectral
shift. As shown in Fig. 3, the source and target scenes are aligned
by the proposed fusion stage. The proposed fractional fusion
stage reduces data-level spectral shift by incorporating LiDAR
scenes. The t-distributed stochastic neighbor embedding feature
visualization algorithm is used to visualize the similarity of
data [49]. As shown in Fig. 7, the proposed fractional fusion
stage improves the feature discrimination of different land cov-
ers. As listed in Table I, addition (ADD), high-pass filtering
(HPF) [43], Gram—Schmidt pan-sharpening (GS) [44], Brovey
transform (BRO) [45], additive wavelet transform (WAVE) [46],
generalized random walks (GRW) [47], and subpixel registration
(SFPSD) [48] are used to fuse HSI and LiDAR data. However,
the classical fusion methods cannot reduce the spectral shift,
which results in unsatisfactory feature discrimination and clas-
sification performance. As shown in Fig. 7, the red, green, and
blue circles/squares, respectively, show that the stressed grass,
healthy grass, and tree land cover are well separated by the
proposed fractional fusion stage. These land covers are with sim-
ilar spectral signatures but different elevations, which results in
misclassification using original HSI data. With other competitive
fusion methods, these land covers are still difficult to distinguish,
while the proposed fractional fusion stage improves feature
discrimination well. Furthermore, compared with the baseline
GAN model, the proposed SSDA network included GRU blocks
to acquire long-distance nonlocal dependencies between spectra
while with detailed sequential spectral information. As shown
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Wavelet [46]. (f) GRW [47]. (g) SFPSD [48]. (h) Fractional fusion. (i) SSDA feature.

TABLE II

COMPARISON OF THE CLASSIFICATION ACCURACY (%) USING THE HOUSTON13-HOUSTON18 SCENES

Feature visualization of different fusion methods on Houston13—Houston18 datasets. (a) Original HSI. (b) HPF [43]. (c) GS [44]. (d) Brovey [45]. (e)

Samples (Train/ Tes)] SVM [13] | STL [36] | Coral [35] | MEDA [31] | JGSA [32] | JDA [30] | DSAN [50] | TsTNet [51] | GAN [37] | FrE-SSDA
Class Source: | Target: |y | G | gsi | Gs | Hst | Gs | Hst | Gs | Hsi| s | Hst| Gs | msi| Gs | Hsi| Gs | Hst| Gs | HSI | Proposed
Houston13|Houston18
1. Grass Healthy | (345/0) | (071353) | 99.78 | 96.38 | 87.21 | 97.78 |99.78 | 96.45 | 78.71 |100.00| 87.66 | 99.78 | 79.45 | 90.54 | 62.31 | 67.55 | 85.03 | 70.29 | 76.99 | 81,52 | 70.04 | 95.42
2. Grass Stressed | (365/0) | (0/4888) | 62.54|39.73 | 93.00 | 61.87 | 64.22 | 39.50 | 75.98 | 26.47 | 31.94 [ 29.09 | 94.66 | 67.92 | 77.50 | 45.62 | 68.73 | 77.62 | 32.51 | 43.80 | 35.80 | 41.49
3. Trees (365/0) | (0/2007) | 17.90|77.91 | 53.90 | 88.36 | 17.82 | 77.48 | 63.12 | 22.05 | 75.85 | 57.09 | 66.96 | 79.79 | 74.55 | 88.03 | 52.82 | 78.45 | 10.91 | 58.64 | 66.37 | 59.83
4. Water (285/0) | (0/22) |100.00|100.00{100.00|100.00|100.00{100.00|100.00|100.00|100.00|100.00|100.00{100.00|100.00|100.00/100.00{100.00|100.00{100.00|100.00| 100.00
5. Commercial (319/0) | (0/5347) | 48.34|10.08 | 66.02 | 76.73 | 47.95 | 9.73 |85.52| 1.95 | 65.49 | 55.17 | 63.96 | 25.81 | 3.53 |65.92 | 79.65 | 84.89 | 3.53 |65.92|79.65| 84.89
6. Noncommercial | (408/0) | (0/32459) | 91.43 | 88.37 | 72.56 | 65.12 | 91.38 | 88.65 | 13.53 | 4.16 | 49.92|54.76 | 67.76 | 71.80 | 91.92 | 86.64 | 84.37 | 83.5291.92 | 86.64 | 84.37 | 83.52
7. Roads (443/0) | (0/6365) | 19.43 | 78.15 | 64.62 | 12.16 | 18.49 | 85.60 | 75.24 | 89.58 | 76.95 | 86.11 | 60.75 | 82.31 | 72.58 | 39.28 | 15.87 | 88.31 | 72.58 [39.28 | 15.87 | 88.31
OA 7223 | 7448 72.24 [ 61.71 | 72.19 | 74.26 | 38.16 | 19.61 | 55.39 | 57.48 | 69.28 | 68.98 | 71.54 | 73.37 | 70.00 | 79.45 | 71.54 | 73.37|70.00 | 79.45
AA 62.78 | 70.09 | 76.76 | 71.72 | 62.81 | 69.63 | 70.30 | 49.17 | 69.69 | 68.86 | 76.22 | 74.02 | 55.49 | 67.97 | 64.59 | 79.07 | 55.49 | 67.97 | 64.59 | 79.07
Kappa 49.60 | 56.32 | 56.99 | 41.24 | 49.46 | 55.87 0.3057|0.1356/0.3989(0.4189]0.5362|0.5262| 47.23 | 56.67 | 48.61 | 67.55 | 47.23 | 56.67 | 48.61 | 67.55

in Fig. 7(f) and (g), the features from source and target do-
mains are gathered and show better discrimination. Compared
with the GAN-based unsupervised domain adaptation (UDA)
models, the proposed SSDA gains 5% improvements shown in
quantitative evaluations.

D. Experimental Results and Comparison

To validate the effectiveness of the proposed FrF-SSDA,
experimental results on three cross-domain multisource data
are compared with other competitive classifiers. The compared
methods include support vector machine (SVM) [13], STL [36],
Coral [35], joint distribution adaptation (JDA) [30], manifold
embedded distribution alignment (MEDA) [31], joint geomet-
rical and statistical alignment (JGSA) [32], deep subdomain
adaptation network (DSAN) [50], Topological structure and
Semantic information Transfer network [51], and GAN [37].
The experimental setups of compared methods are optimized as
suggested. All compared methods use original image patches of
HSI and LiDAR data as inputs without data augmentation.

The proposed FrF-SSDA is adapted to align the source
and target scenes, and then uses the trained classifier to
predict the labels of target samples. The first experiment is
a cross-temporal task that trains the classifiers on Houston13
and tests on Houstonl8. The second and third tasks are
cross-site classification, which is trained using the Nashua

dataset and tested on Hanover dataset, trained using the
Houston13 dataset, and tested on Trento dataset, respectively.
The number of training samples is shown in Tables II-IV. For
comprehensive information extraction from the source scene,
all the samples with corresponding labels are used. Parameters
of the competitive algorithms are optimized and the same
training and testing samples are used for a fair comparison.
The qualitative results of competitive methods and proposed
FrF-SSDA are shown in Figs. 8—10(f)—(h) with corresponding
accuracies in Tables II-IV. From the comparison between classi-
fication using the original HSI scenes and the fused scenes, there
is an improvement of about 10%. The fractional fusion stage
preserves the spatial information and reduces the spectral shift
between scenes, which improves the generalization of the pro-
posed classifier. The traditional method: SVM is susceptible to
spectral shift and variation, which further leads to unacceptable
results. Specifically, in Fig. 8(d), it can be seen that the lack of
information fusion and DA makes it difficult for SVM to predict
the label of target samples, which leads to low accuracies in
Table II. Classical statistical DA methods, e.g., STL and Coral,
rely on model and lead to unstable performance. Without accu-
rately learned models using HSI and LiDAR, the information
loss results in a negative effect on the feature discrimination.
Based on the GANs, GAN and proposed FrF-SSDA can en-
hance the alignment between source and target domains. By
incorporating source label information into the target domain,
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TABLE III
COMPARISON OF THE CLASSIFICATION ACCURACY (%) USING THE NASHUA-HANOVER SCENES

Samples (Train/ Tes)] SVM [13] | STL [36] | Coral [35] | MEDA [31] | JGSA [32] | JDA [30] | DSAN [50] | TsTNet [51]| GAN [37] | FrF-SSDA
Class | Source: | Target: | pyoy [ g | sy | Gs | st | Gs | HS1 | GS | HSI | Gs | Hsi | Gs | Hs1 | Gs | Hst | Gs | HSI | Gs | HSI [Proposed
Nashua | Hanover
T Trees (1271310)| (18605/0) | 98.20 | 88.74 | 94.85 | 95.37 | 81.17 | 92.72 | 56.21 | 67.12 | 40.46 | 42.32 | 94.00 | 94.54 | OT.11 | 98.22 | 83.64 | 91.25 | 96.00 | 93.81 | 89.43 | 98.09
2. Grass (7528/0) | (4410/0) |60.27 [100.00| 50.48 [100.00| 43.06 [100.00| 75.71 | 95.62 | 91.34 | 89.73 | 57.44 | 99.98 |100.00| 61.07 [100.00| 92.22 | 40.29 | 96.64 | 97.51 | 100.00
3. Water  |(16323/0)| (5425/0) (100.00|100.00|100.00| 99.98 |100.00[100.00| 11.01 [100.00| 99.98 | 99.54 | 99.93 | 99.96 |100.00|100.00|100.00|100.00{100.00| 89.13 {100.00| 100.00
4. White roof| (698/0) | (860/0) |28.0263.95|30.12 | 67.67|27.67 | 61.86 | 84.65 | 96.63 | 90.93 | 95.23 | 44.53 | 83.14 | 49.49 | 51.40 | 63.26 | 73.95 | 97.44 | 71.40 | 29.53 | 29.53
5. Grey roof | (3417/0) | (4338/0) |84.26|88.31 |77.89|84.00 | 86.40 | 86.70 | 436 | 1.38 | 73.72|75.40 | 67.61 | 79.16 | 81.17 | 75.93 | 89.03 | 90.69 | 7.05 |62.47|92.55| 87.51
6. Roads  |(17476/0)| (4955/0) |93.42|67.49 |51.93 79.07|41.39|73.18 | 11.58 | 15.30 | 46.76 | 85.11 | 51.10 | 72.51 | 89.69 | 94.03 | 80.03 | 89.45 | 7.47 |80.67|29.81| 79.31
7. Bare soil | (8821/0)| (764/0) |23.56|16.75|27.49 | 18.19]19.50 | 19.63 | 98.95 | 79.32 | 25.13 | 29.06 | 27.75 | 26.18 | 45.93 | 27.23 | 45.63 | 56.81 | 56.41 | 28.80 | 17.02| 27.62
OA 88.8286.50 | 80.14 | 90.91 | 72.06 | 89.07 | 43.01 | 61.07 | 58.68 | 64.65 | 79.62 | 89.61 | 81.92 | 88.66 | 87.00 | 91.02 | 67.89 | 86.56 | 81.49 | 91.99
AA 69.68 | 75.04 | 61.82 | 77.76 | 57.03 | 76.30 | 48.93 | 65.05 | 66.90 | 73.77 | 63.21 | 79.35 | 66.20 | 72.55 | 78.94 | 84.91 | 57.81 | 74.70 | 65.12 | 74.58
Kappa 0.8383(0.8139|0.7138/0.8719/0.6096/0.8475|0.2761|0.4908|0.4953|0.5631/0.7086|0.8542|0.8083(0.8363(0.8027|0.8754/0.5309/0.80840.7440| 0.8861
TABLE IV
COMPARISON OF THE CLASSIFICATION ACCURACY (%) USING THE HOUSTON13-TRENTO SCENES
Samples (Train/ Tesy)] SVM [13] | STL [36] | Coral [35] | MEDA [31] | JGSA [32] | JDA [30] | DSAN [50] | TsTNet [51]| GAN [37] | FrF-SSDA
Class | Source: | Target: | por | o | sy | Gs | Hs1 | Gs | HST | Gs | HST | Gs | Hs1 | Gs | Hst | Gs | Hs1 | Gs | Hst | Gs | HSI |Proposed
Houston13| Trento
T Trees (365/0) | (0/9123) |100.00{100.00|100.00|100.00]100.00|100.00| 12.57 | 99.87 | 98.89 | 99.79 |100.00|100.00| 34.44 | 71.46 | 92.20 | 89.07 | 69.63 | 78.92 | 78.24 | 99.74
2. Buildings| (319/0) | (0/2903) | 0.17 [92.56|69.51{98.07 | 0.17 |92.39 |92.63 | 75.71 | 55.43 | 77.09 | 50.67 | 95.83 | 93.90 | 97.21 | 59.31 | 80.22 | 91.94 | 90.87 | 0.17 | 95.97
3. Ground | (650/0) | (0/479) |77.24 | 0.00 | 0.00 | 0.00 |70.98 | 0.00 |97.08 |96.66 | 92.69 | 96.24 | 0.00 | 0.00 [100.00| 97.29 [93.94 | 2.08 |99.38 |92.48 | 99.16 | 93.11
4. Roads | (443/0) | (0/3174) | 61.06 | 67.77 | 38.31 | 51.89 | 74.04 | 68.46 | 76.97 | 11.12| 40.45 | 68.62 | 65.91 | 56.62 | 20.60 | 42.03 | 4.47 | 69.65 | 0.41 |67.23|81.60| 83.03
OA 72.94 | 89.04 | 78.81 | 86.85 | 75.37| 89.15 | 43.01 | 77.33 | 78.83 | 89.17 | 80.91 | 87.39 | 42.56 | 71.14 | 73.27 | 82.53 | 62.49 | 79.13 | 67.79 | 97.14
AA 59.62 |65.08 | 51.96 | 62.49 [ 61.30 | 65.21 | 69.81 | 70.84 | 71.87 | 85.44 | 54.15 | 63.11 | 62.24 | 76.99 | 62.48 | 60.26 | 65.34 | 82.37| 64.79 | 94.21
Kappa 0.5448|0.8042(0.6266/0.7661]0.5827|0.8061/0.3395/0.6145|0.6377/0.8157|0.6649|0.7760/0.2844/0.5341/0.3989/0.6761]0.4275|0.6391/0.4570| 0.9432
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Houston13-Houston18 cross-domain classification maps. (a) Source HSI (Rband:25, Gband: 14, Bband:6). (b) Source LiDAR. (c) Target HSI (Rband:25,

Gband: 14, Bband:6). (d) Target LiDAR. (e) Ground truth. (f) SVM [13] (74.48%). (2) GAN [37] (73.37%). (h) FrF-SSDA(79.45%).

the GAN and FrF-SSDA improve the classification performance
significantly. However, the long-range dependencies are still not
adequately captured. In addition, the lack of ability to extract
sequential spectral information results in the loss of spectral
information, which limited the DA performance.

The proposed FrF-SSDA generalizes GAN by combining
GRU, which maintains complete spatial information and ac-
quires long-distance nonlocal dependencies between spectra.
With clearer spatial location information and more detailed se-
quential spectral information, the proposed FrF-SSDA reduces
spectral shift and aligns source and target domains at feature
level. In the cross-temporal task, the environmental conditions
vary, and part of the spatial distribution changes. For land
covers with similar spectral features in Table II, e.g., commercial
and noncommercial areas, the FrF-SSDA obtains promising
accuracies 84.89% and 83.52%. Although the classification
of these spectrally similar classes is much more difficult due

to the presence of disparities between source and target do-
mains, the proposed method performs well for most land covers.
Furthermore, even in the cross-scene classification task with
completely different land covers, the proposed FrF-SSDA per-
forms best among the competitive methods.

1) Robustness to Number of Training Samples: A robust
method is capable of adapting to various conditions. In real
cross-domain HSI classification tasks, the training set in source
scenes is difficult to obtain, which results in the small sample
size problem. To verify the robustness of proposed FrF-SSDA
to training sample size, we test the three groups of cross-domain
classification experiments using different numbers of training
samples, as shown in Fig. 11. In the experiment, the per-class
numbers of training samples are set to 50-300. With a small
sample size in the source scene, the proposed FrF-SSDA
reflects the best performance among all the compared methods.
In Fig. 11(c), using 50 training pixels, the proposed method still
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Gband: 14, Bband:6). (d) Target LiDAR. (e) Ground truth. (f) SVM [13] (89.04%). (g) GAN [37] (79.13%). (h) FrF-SSDA(97.14%).
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Classification performance of the proposed FrF-SSDA using different number of training samples. (a) Train on Houston13 and test on Houston18. (b)

Train on Nashua and test on Hanover. (c) Train on Houston13 and test on Trento.

provides 95% OA while those of other methods are all below
90%.

2) Robustness to Noise: Actual multisensor remote sensing
datasets often suffer from various degradation, noise effects, or
variabilities in the process of imaging, which reduce the classi-
fication accuracy [52]. To verify the robustness of FrF-SSDA to
the noise that may exist in practice and compare it with other
comparison methods, we studied the impact of different degrees
of data noise on the classification results, as shown in Fig. 12.
In the experiment, signal-dependent Gaussian white noise with
different degrees of zero means is added satisfying the following

model:

E =E(1+0G) @)
where F and E' are the original and noisy datasets, respectively,
and G denotes the Gaussian white noise, with the power of noise
is 0dBW. ¢ denoting noisy level that varies from 0.1 to 0.7. In
Fig. 12, the FrF-SSDA shows robust classification performance
under the influence of different noise intensities. Even if affected
by a strong noise level of 0.7, the FrF-SSDA still obtains an OA
of more than 80% on the Nashua—Hanover dataset.
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TABLE V
MODEL S1ZES(M)

Total params (M)
GAN [37] 1.53
DSAN [50] 24.52
TsTNet [51] 7.78
FrF-SSDA 2.46
TABLE VI

ELAPSED TIME (SECONDS) OF METHODS

Methods Source | Houstonl3 | Nashua | Houstonl3

) Target | Houston18 | Hanover Trento

Train | 3.12 30.64 037

SYM 1 et 322 15.32 0.4
Train | 9.5 60.54 497

STL Test 9.04 63.41 5.02
Coal | Train |33 20.87 0.4
ora Test 3.43 19.64 0.50
Train | 45045 | 112855 | 237.95

MEDA | ot 3.59 20.49 3.58
Train | 8096 | 42021 | 7831

IGSA 1 gt 1276 | 40.89 10.95
Train | 18.63 | 99.74 15.82

DA Test | 1020 | 5327 9.78
Train | 9256 | 45135 | 61.03

GAN | gt 1.67 401 0.88
Train | 11249 | 657.82 | 7474

FrE-SSDA | pog 1.77 474 0.94

E. Computational Cost Analysis

To evaluate the computational cost of the proposed FrF-SSDA
and state-of-the-art (SOTA) deep learning methods, both the
model sizes and running time are analyzed. As listed in Table V,
the number of parameters is shown to evaluate the model sizes.
SOTA methods with deep layers are relatively complicated, cost-
ing more computational resources compared with the proposed
FrE-SSDA network. Further, replacing the convolutional layer
in GAN with GRU layers can achieve higher accuracy.

The training and testing costs of the competitive methods are
listed in Table VI to analyze the computational cost of the pro-
posed method. The same hardware and software configurations
are used to compare methods. As listed in Table VI, the training
process of the proposed FrF-SSDA is more time-consuming than
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testing the target scene for the training procedures of pretraining
on source scenes and DA. Because of the computation of large
correlation matrices of MEDA and JGSA, they cost more time
when the number of training samples in the source scenes
increases. The baseline network GAN and proposed FrF-SSDA
cost less time because only the researched samples are used for
training.

IV. CONCLUSION

Aiming at reducing data-level spectral shift using multimodal
data and improving cross-domain multimodal classification by
feature-level DA, an FrF-SSDA network is proposed. In the pro-
posed FrE-SSDA, first an FrDM operator is utilized to preserve
spatial information of HSI firs. Then, LiDAR is leveraged and
fused with HSI to reduce the spectral shift. The joint use of
HSI and LiDAR not only reduces the data-level spectral shift
but also utilizes the discriminative spectral feature of HSI and
the robust elevation feature of LiDAR data. Then, to improve
feature-level SSDA and generate domain-adaptive features, a
spatial-spectral adversarial network is designed. The designed
SSDA extracts discriminative features for classification while
reducing the domain shift. Finally, three multimodal datasets are
used for cross-domain classification experiments, and the results
are compared with competitive methods indicate the effective-
ness. However, the proposed method still need further research
because of specific limitations. For example, the performance
declines with extremely few training samples, which needs
more effort. Furthermore, extending the proposed FrF-SSDA for
few-shot learning of scenes with unknown land covers requires
more research.
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