
Engineering Applications of Artificial Intelligence 113 (2022) 104964

P
N
P
a

b

c

A

K
R
E
E
T
F

1

c
i
t
i
h
t
w
m
(
2
b
c
o
o
t
E

p

h
R
A
0

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

yRCN: A toolbox for exploration and application of Reservoir Computing
etworks

eter Steiner a,∗,1, Azarakhsh Jalalvand b,c,1, Simon Stone a, Peter Birkholz a

Institute of Acoustics and Speech Communication, Technische Universität Dresden, Dresden, Germany
IDLab, Ghent University–imec, Ghent, Belgium
Mechanical and Aerospace Engineering Department, Princeton University, NJ, USA

R T I C L E I N F O

eywords:
eservoir Computing
xtreme Learning Machine
cho State Network
oolbox
ramework

A B S T R A C T

Reservoir Computing Networks (RCNs) belong to a group of machine learning techniques that project the
input space non-linearly into a high-dimensional feature space, where the underlying task can be solved
linearly. Popular variants of RCNs are capable of solving complex tasks equivalently to widely used deep
neural networks, but with a substantially simpler training paradigm based on linear regression. In this paper,
we show how to uniformly describe RCNs with small and clearly defined building blocks, and we introduce
the Python toolbox PyRCN (Python Reservoir Computing Networks) for optimizing, training and analyzing
RCNs on arbitrarily large datasets. The tool is based on widely-used scientific packages and complies with the
scikit-learn interface specification. It provides a platform for educational and exploratory analyses of RCNs,
as well as a framework to apply RCNs on complex tasks including sequence processing. With a small number
of building blocks, the framework allows the implementation of numerous different RCN architectures. We
provide code examples on how to set up RCNs for time series prediction and for sequence classification tasks.
PyRCN is around ten times faster than reference toolboxes on a benchmark task while requiring substantially
less boilerplate code.
. Introduction

Reservoir Computing Networks (RCNs) summarize a variety of ma-
hine learning techniques that use random, non-linear projections of
nputs into a high-dimensional feature space. This often greatly facili-
ates classification tasks, because classes that are not linearly separable
n the original input space, may become linearly separable in the
igh-dimensional space. The simplest Reservoir Computing architec-
ure is the Extreme Learning Machine (ELM) (Huang et al., 2006),
hich is similar to a conventional Feed-Forward neural network. The
ore common RCN architectures, however, are Echo State Networks

ESNs) (Jaeger, 2001) and Liquid State Machines (LSMs) (Maass et al.,
002), which are variants of Recurrent Neural Networks (RNNs). The
asic idea of RCNs is rather simple: The input nodes are randomly
onnected to a single hidden layer, the so-called ‘‘reservoir’’, consisting
f non-linear neurons. Only connections from the hidden layer to the
utput are trained, typically using linear regression. In case of ELMs,
he neurons in the hidden layer are not inter-connected and the basic
LM is thus closely related to Multilayer Perceptrons (MLPs). In case

∗ Corresponding author.
E-mail addresses: peter.steiner@tu-dresden.de (P. Steiner), azarakhsh.jalalvand@ugent.be (A. Jalalvand), simon.stone@tu-dresden.de (S. Stone),

eter.birkholz@tu-dresden.de (P. Birkholz).
1 Equal contribution.

of ESNs, the hidden layer is a pool of randomly interconnected non-
linear neurons. LSMs are essentially ESNs with spiking neuron models.
Based on the number of citations of their landmark papers, RCNs are
not as commonly used as other types of neural networks, such as MLPs,
Convolutional Neural Networks (CNNs) or networks consisting of Long-
Short-Term-Memory (LSTM) cells, but they have achieved results that
rival those and other popular deep-learning architectures. For example,
ESNs have been successfully used for speech (Triefenbach et al., 2013),
images (Jalalvand et al., 2018), radar (Jalalvand et al., 2019), plasma
control (Jalalvand et al., 2021), music (Steiner et al., 2020, 2021), time-
series prediction (Trierweiler Ribeiro et al., 2021; Moreno et al., 2020),
electrical load and energy (consumption) forecasting (Mansoor et al.,
2021; da Silva et al., 2021; Wang et al., 2018) and for robot control
(Salmen and Ploger, 2005; Oubbati et al., 2006; Schrauwen et al., 2007;
Antonelo et al., 2008; Antonelo and Schrauwen, 2015). ELMs have been
successfully used for image classification (Huang et al., 2006), gesture
recognition (Katılmış and Karakuzu, 2021), pressure prediction (Cocco
Mariani et al., 2019), heartbeat classification (Ding et al., 2014), and
for non-linear regression (Tang et al., 2016).
ttps://doi.org/10.1016/j.engappai.2022.104964
eceived 11 October 2021; Received in revised form 7 February 2022; Accepted 10
vailable online 30 May 2022
952-1976/© 2022 Elsevier Ltd. All rights reserved.
May 2022

https://doi.org/10.1016/j.engappai.2022.104964
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2022.104964&domain=pdf
mailto:peter.steiner@tu-dresden.de
mailto:azarakhsh.jalalvand@ugent.be
mailto:simon.stone@tu-dresden.de
mailto:peter.birkholz@tu-dresden.de
https://doi.org/10.1016/j.engappai.2022.104964

P. Steiner, A. Jalalvand, S. Stone et al. Engineering Applications of Artificial Intelligence 113 (2022) 104964

s
f
t
t
T
M
t
R
w
t
h

a
R
t
t
O
a
c
e
i
e
c
w
b
H
l
s
o
t
t
b
i
T
t
s
F
o

D
u
t

Table 1
Overview of important RCN toolboxes, download links, the year of the last major update and whether the toolboxes provide a high-level
interface. The implementation of LSMs is currently under development (UD).

Toolbox Online source Supported RCNs Last High-level

ELM ESN LSM updated interface

ESNToolbox (Jaeger, 2001) ESNToolbox (2009) – ✓ – 2009 –
DeepESN Toolbox (Gallicchio et al., 2017) DeepESN (2019) – ✓ – 2019 –
EchoTorch (Schaetti, 2018) EchoTorch (2021) – ✓ – 2021 –
PyTorch-ESN (Gallicchio et al., 2017) PyTorch-ESN (2021) – ✓ – 2021 –
ReservoirPy (Trouvain et al., 2020) ReservoirPy (2022) – ✓ – 2022 ✓

HP-ELM (Akusok et al., 2015) HP-ELM (2018) ✓ – – 2018 ✓

Python-ELM Python-ELM (2019) ✓ – – 2019 ✓

LSM LSM (2020) – – ✓ 2020 –

OGER (Verstraeten et al., 2012) Oger (2013) ✓ ✓ ✓ 2013 –

PyRCN (This work) PyRCN (2022) ✓ ✓ UD 2022 ✓
One important obstacle for RCNs on their way towards the main-
tream could be the lack of a framework that allows a fair and straight-
orward comparison of RCNs with other machine learning architec-
ures. RCNs are neither part of any widely used Machine/Deep Learning
oolbox for Python, such as scikit-learn (Pedregosa et al., 2011), Py-
orch (Paszke et al., 2019) or Tensorflow (Abadi et al., 2016), nor of
atlab. While specialized toolboxes have been developed in the past

o optimize, train and evaluate RCNs, a side-by-side comparison of
CN models and traditional machine learning or deep-learning models
as laborious. Interested users needed to change significant parts of

heir code or data structure, because many toolboxes neither provide a
igh-level interface nor utilize a common data structure.

Table 1 summarizes various RCN toolboxes and the proposed PyRCN
long with important aspects, such as download links, which kind of
CNs are implemented, the year of the last major update and whether

he toolboxes provide a high-level interface. In general, most of the
oolboxes are developed for only one specific type of RCN. In fact,
GER (Verstraeten et al., 2012) was the only toolbox that implemented
ll important variants of RCNs. However, it is now out-of-date, espe-
ially because it was implemented in Python 2, which has reached its
nd of life in 2020. Only a few ESN toolboxes provide a high-level
nterface, which helps users to quickly try out ESNs. Unfortunately,
ven if an ESN toolbox provides a high-level interface, it is often not
ompatible with the commonly used Machine/Deep Learning frame-
orks, such as scikit-learn, PyTorch or Tensorflow. The ELM toolboxes
oth provide a high-level interface that is compatible with scikit-learn.
owever, only the HP-ELM (Akusok et al., 2015) is scalable towards

arge datasets and high-performance clusters, for which it provides
pecialized implementations. The Python-ELM (Python-ELM, 2019) can
nly be used for classification tasks. Compared to the other presented
oolboxes in Table 1, PyRCN is the only actively maintained toolbox
hat efficiently implements both ESNs and ELMs. While ReservoirPy
y Trouvain et al. (2020) provides a high-level interface to its ESN
mplementation, it does not adhere to any established specification.
herefore, PyRCN is the only toolbox that provides an RCN implemen-
ation with a high-level interface that complies with the scikit-learn
pecification. Herbert Jaeger,2 Claudio Gallicchio3 and the IEEE Task
orce on Reservoir Computing4 provide more details about these and
ther ESN toolboxes. Guang Bin Huang5 also collected a coherent

summary of ELM implementations and there are many more individual
projects accessible on GitHub.6

A likely reason that RCNs are not yet officially included in leading
eep Learning toolkits, such as PyTorch or TensorFlow, is that their
nderlying training paradigm is very different from the one of conven-
ional neural networks. Instead of using some kind of optimizer that

2 https://www.ai.rug.nl/minds/research/esnresearch/.
3 https://sites.google.com/site/cgallicch/resources.
4 https://sites.google.com/view/reservoir-computing-tf/resources.
5 http://www.extreme-learning-machines.org/.
6 https://github.com/topics/reservoir-computing.
2

requires a large number of iterations and a lot of electrical power, RCNs
have only very few hyperparameters and are trained very efficiently
using linear regression.

With this paper, we introduce PyRCN (Python Reservoir Comput-
ing Network), a new toolbox for RCNs that is based on widely used
scientific Python packages, such as numpy or scipy, and complies with
the interface specification of the popular machine learning platform
scikit-learn (Pedregosa et al., 2011). As one original contribution of
this work, this allows the seamless integration of PyRCN and scikit-
learn its extensive list of features, such as model selection tools and
alternatives to linear regression for training the output weights of RCNs.
The designed models can also be easily compared with scikit-learns’
built-in estimators, such as MLPs or Support Vector Machines (SVMs).

The second original contribution of this work is the definition of the
‘‘Building blocks of Reservoir Computing’’ as outlined in Section 2. By
factoring ELMs, ESNs and LSMs in these building blocks, almost any
conceivable RCN architecture can be constructed. Since the internal
structure of PyRCN is based on these building blocks, a large amount
of RCN architectures can be constructed in only a few lines of code.
This is a significant advantage of PyRCN over other active toolboxes
for RCNs, which are specifically developed to provide only one specific
type of RCN.

Another unique feature of PyRCN is the support for the hyper-
parameter search strategy introduced in Steiner et al. (2021), which
requires far fewer model fits than the conventional approach.

The remainder of this paper is structured as follows: In Section 2, we
briefly review the main concepts of RCNs and show how to decompose
them into basic building blocks. Section 3 introduces the proposed
PyRCN toolbox with all included modules and shows a simple example
of how to get started with PyRCN. In Section 4, we show how to con-
struct different RCNs from these components. Section 5 demonstrates
how to construct a custom RCN for a handwritten digit recognition
task using PyRCN. Section 6 compares PyRCN with the reference
toolboxes PyESN and HP-ELM by re-implementing parts of the recent
work by Trierweiler Ribeiro et al. (2021). Finally, we summarize our
work and outline future work in Section 7.

2. Building blocks of Reservoir Computing

A conventional Reservoir Computing Network (RCN) consists of
various weight matrices that describe how input data is transported in
and processed by a hidden layer, which is typically a pool of non-linear
neurons. In order to provide a framework that implements existing
architectures but retains the desired customizability, we need to design
components that can be mixed and matched to create many different
kinds of architectures instead of only offering static closed implementa-
tions of existing topologies. We postulate that all RC architectures can
essentially be built by three main components (See Fig. 1):

1. ‘‘Input-to-Node’’: A combination of input weights and a non-
linear input activation function

https://www.ai.rug.nl/minds/research/esnresearch/
https://sites.google.com/site/cgallicch/resources
https://sites.google.com/view/reservoir-computing-tf/resources
http://www.extreme-learning-machines.org/
https://github.com/topics/reservoir-computing

P. Steiner, A. Jalalvand, S. Stone et al. Engineering Applications of Artificial Intelligence 113 (2022) 104964

𝐖
i
a

f
a
e

b
a
n
‘

2

i
n
𝑁
o

𝐫

w
d
w
t

r

s
o

Fig. 1. Main outline of basic RCNs: In case of ELMs and ESNs, the input features are fed into a hidden layer, which is called the ‘‘reservoir’’ using the fixed input weight matrix
in. The reservoir consists of non-linear neurons. In case of the ESN, the neurons are inter-connected via the fixed reservoir matrix 𝐖res. For both, ESNs and ELMs, the output 𝐲[𝑛]

s a weighted combination of the reservoir states 𝐫[𝑛] based on the output weight matrix 𝐖out . LSMs are closely related to ESNs. However, they need additional spike encoding
nd decoding utilities.
2. ‘‘Node-To-Node’’: The recurrent reservoir weights and a non-
linear reservoir activation function

3. ‘‘Node-to-Output’’: The trainable output weights, often referred
to as the linear model.

Since LSMs use spiking neural networks, additional building blocks
or spike encoding and decoding are required (see Fig. 1(c))7 and
re currently under development. However, the remaining blocks are
ssentially the same as for the ESN.

Note that the black arrows in Figs. 1(b) and 1(c) between the
uilding blocks all indicate one-by-one connections. E.g., the first black
rrow of the ESN between ‘‘Input-to-Node’’ and ‘‘Node-to-Node’’ de-
otes that the first neuron in ‘‘Input-to-Node’’ is also the first neuron of

‘Node-to-Node’’.

.1. Input-to-Node

The ‘‘Input-to-Node’’ component describes the connections from the
nput features to the reservoir and the activation functions of the input
eurons. Normally, the input weight matrix 𝐖in has the dimension of
res ×𝑁 in, where 𝑁 res and 𝑁 in are the size of the reservoir and length

f the input feature vector 𝐮[𝑛] with the time index 𝑛, respectively. With

′[𝑛] = 𝑓 ′(𝐖in𝐮[𝑛] + 𝐰bi) , (1)

e can describe the projection of the input features 𝐮[𝑛] into the high-
imensional reservoir space 𝐫′[𝑛] via the input activation function 𝑓 ′(⋅),
hich can be any non-linear function for the ELM (see Section 4.1) or

he identity function for the standard ESN (see Section 4.2).
The values inside the input weight matrix are usually initialized

andomly from a uniform distribution on the interval [−1, 1] and are

7 For a simple notation, we assume that the sampling rate before and after
pike en-/decoding is the same. In reality, the sampling rate after encoding is
bviously much higher.
3

afterwards scaled using the input scaling factor 𝛼u. In case of a high-
dimensional input feature space and/or large reservoir sizes 𝑁 res, this
would lead to a huge input weight matrix and expensive computations
to feed the feature vectors into the reservoir. As was shown in Jaeger
(2001), Jalalvand et al. (2015), however, it is sufficient to have only a
very small number of connections from the input nodes to the nodes
inside the reservoir. Each node of the reservoir may therefore be
connected to only 𝐾 in (≪ 𝑁 in) randomly selected input entries. This
makes 𝐖in typically very sparse and feeding the feature vectors into
the reservoir potentially more efficient.

The bias weights 𝐰bi with dimension 𝑁 res are typically initialized
by fixed random values from a uniform distribution between ±1 and
multiplied by the hyper-parameter 𝛼bi.

1 from pyrcn.base.blocks import InputToNode
2 from sklearn.datasets import make_blobs
3
4 # Generate a toy dataset
5 U, y = make_blobs(n_samples=100, n_features=10)
6 # _ _ _ _ _ _ _ _
7 # | |
8 # ----| Input-to-Node |------
9 # u[n]|_ _ _ _ _ _ _ _|r’[n]

10 # U R_i2n
11
12 # Initialize , fit and apply an InputToNode
13 input_to_node = InputToNode(hidden_layer_size=50,
14 k_in=5, input_activation= " tanh " ,
15 input_scaling=1.0, bias_scaling=0.1)
16
17 R_i2n = input_to_node.fit_transform(U)
18 print(U.shape, R_i2n.shape)

Listing 1: Minimal example for the ‘‘Input-to-Node’’ block.

Listing 1 gives an example of how to use ‘‘Input-to-Node’’. The toy
dataset with 𝑁 in = 10 is transformed in a 𝑁 res = 50-dimensional space
via sparse input weights. Due to the input scaling factor 𝛼u = 1, the
non-zero weights are uniformly distributed on the interval [−1, 1]. The
non-zero bias scaling factor 𝛼bi leads to an additional constant bias
input.

P. Steiner, A. Jalalvand, S. Stone et al. Engineering Applications of Artificial Intelligence 113 (2022) 104964

e

2.2. Node-to-Node

The ‘‘Node-to-Node’’ component describes the connections inside
the reservoir. The output of ‘‘Input-to-Node’’ 𝐫′[𝑛] together with the
output of ‘‘Node-to-Node’’ from the previous time step 𝐫[𝑛−1] are used
to compute the new output of ‘‘Node-to-Node’’ 𝐫[𝑛] using

𝐫[𝑛] = (1 − 𝜆)𝐫[𝑛 − 1] + 𝜆𝑓 (𝐫′[𝑛] +𝐖res𝐫[𝑛 − 1]) , (2)

which is a leaky integration of the time-dependent reservoir states 𝐫[𝑛].
𝑓 (⋅) acts as the non-linear reservoir activation function of the neurons
in ‘‘Node-to-Node’’. The leaky integration is equivalent to a first-order
lowpass filter. Depending on the leakage 𝜆 ∈ (0, 1], the reservoir states
are globally smoothed.

The reservoir weight matrix 𝐖res is a square matrix of the size
𝑁 res. These weights are typically initialized from a standard normal
distribution. The Echo State Property (ESP) requires that the states
of all reservoir neurons need to decay in a finite time for a finite
input pattern. In order to fulfil the ESP, the reservoir weight matrix
is typically normalized by its largest absolute eigenvalue and rescaled
to a spectral radius 𝜌, because it was shown in Jaeger (2001) that the
ESP holds at least as long as 𝜌 ≤ 1 but can also hold longer for specific
hyper-parameter combinations (Gallicchio, 2019). The spectral radius
and the leakage together shape the temporal memory of the reservoir.
Similar as for ‘‘Input-to-Node’’, the reservoir weight matrix gets huge
in case of large reservoir sizes 𝑁 res, it can be sufficient to only connect
ach node in the reservoir only to 𝐾 rec (≪ 𝑁 res) randomly selected

other nodes in the reservoir, and to set the remaining weights to zero.
Listing 2 gives an example of how to use ‘‘Node-to-Node’’. As before,
the toy dataset with 𝑁 in = 10 is transformed in a 𝑁 res = 50-dimensional
space via ‘‘Input-to-Node’’. Afterwards, the output is transformed in
a dense ‘‘Node-to-Node’’ with recurrent connections (spectral radius
𝜌 = 1, leakage 𝜆 = 0.9).

1 from pyrcn.base.blocks import NodeToNode
2 # Here goes the content of Listing 1
3 # _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
4 # | | | |
5 # ----| Input-to-Node |------| Node-to-Node |------
6 # u[n]|_ _ _ _ _ _ _ _|r’[n] |_ _ _ _ _ _ _ |r[n]
7 # U R_i2n R_n2n
8
9 # Initialize , fit and apply NodeToNode

10 node_to_node = NodeToNode(hidden_layer_size=50,
11 reservoir_activation= " tanh " ,
12 spectral_radius=1.0, leakage=0.9,
13 bidirectional=False)
14 R_n2n = node_to_node.fit_transform(R_i2n)
15 print(U.shape, R_n2n.shape)

Listing 2: Minimal example for the ‘‘Node-to-Node’’ block.

To incorporate information from the future inputs, bi-directional
RCNs have been introduced, e.g. in Triefenbach and Martens (2011).
The paradigm is realized when the output of ‘‘Node-to-Node’’ is com-
puted in four steps:

1. 𝐫fw[𝑛] is computed using 𝐫′[𝑛] forward with Eq. (2).
2. 𝐫bw[𝑛] is computed using 𝐫′[𝑛] reversed in time with Eq. (2).
3. Reverse 𝐫bw[𝑛] again in time to obtain the original temporal

order.
4. Stack 𝐫fw[𝑛] and 𝐫bw[𝑛] to obtain the final reservoir state 𝐫[𝑛] that

includes future information.

Utilizing ‘‘Node-to-Node’’ in the bi-directional mode would double
the size of the reservoir state vector 𝐫[𝑛] to 2 ×𝑁res.

2.3. Node-to-Output

The ‘‘Node-to-Output’’ component is the mapping of the reservoir
state 𝐫[𝑛] to the output 𝐲[𝑛] of the network. In conventional RCNs, this
mapping is trained using (regularized) linear regression. To that end, all
reservoir states 𝐫[𝑛] are concatenated into the reservoir state collection
matrix 𝐑. As linear regression usually contains an intercept term, every

reservoir state 𝐫[𝑛] is expanded by a constant of 1. All desired outputs

4

𝐝[𝑛] are collected into the desired output collection matrix 𝐃. Then,
the mapping matrix 𝐖out can be computed using Eq. (3), where 𝜖 is a
regularization parameter.

𝐖out =
(

𝐑𝐑T + 𝜖𝐈
)−1 (𝐃𝐑T) (3)

The size of the output weight matrix 𝑁out × (𝑁 res + 1) or 𝑁out × (2 ×
𝑁 res+1) in case of a bidirectional ‘‘Node-to-Node’’ determines the total
number of free parameters to be trained in the neural network. After
training, the output 𝐲[𝑛] can be computed using Eq. (4).

𝐲[𝑛] = 𝐖out𝐫[𝑛] (4)

Note that, in general, other training methodologies could be used
to compute output weights. For example, in Triefenbach and Martens
(2011) it has been shown that a non-linear ‘‘Node-to-Output’’ can
improve the performance of an RCN when limiting 𝑁 res. Since solving
Eq. (3) is computationally expensive for large 𝑁 res, PyRCN provides an
incremental regression as proposed in Liang et al. (2006).

1 from sklearn.linear_model import Ridge
2 # Here goes the content of Listing 2
3 # _
4 # | | | | | |
5 # ----|Input-to-Node |-----|Node-to-Node |-----|Node-to-Output |
6 # u[n]| _ _ _ _ _ _ _|r’[n]|_ _ _ _ _ _ _|r[n] | _ _ _ _ _ _ _ |
7 # U R_i2n R_n2n |
8 # |
9 # y[n] | y_pred

10
11 # Initialize , fit and apply NodeToOutput
12 y_pred = Ridge().fit(R_n2n, y).predict(R_n2n)
13 print(y_pred.shape)

Listing 3: Minimal example for the ‘‘Node-to-Output’’ block.

Listing 3 gives an example of how to use ‘‘Node-to-Output’’. As
before, the toy dataset with 𝑁 in = 10 is transformed in a 𝑁 res = 50-
dimensional space via ‘‘Input-to-Node’’ and ‘‘Node-to-Node’’. Finally,
Eq. (3) is solved using sklearn.linear_model.Ridge with default settings.

3. PyRCN

With PyRCN, we introduce a unified toolbox for implementing
and developing different kinds of RCNs that is transparent and easy
to use. PyRCN is built on scikit-learn and is fully compatible with
its interface specification, allowing full interoperability between the
toolkits. PyRCN is structured as shown in Figure Fig. 2.

3.1. Overview of PyRCN

The module pyrcn.base.blocks provides classes that implement the
two building blocks ‘‘Input-to-Node’’ (InputToNode) and ‘‘Node-to-Node’’
(NodeToNode) that are introduced in Section 2. The module pyrcn.base

provides base classes to facilitate the implementation of user-defined
building blocks. In addition, we provide trainable variants of both
blocks, e.g. using BIP (BatchIntrinsicPlasticity) or Hebbian Learning
(HebbianNodeToNode) (Munakata and Pfaffly, 2004), and fully customizable
variants (PredefinedWeights...), where weight matrices can be set from
outside. This offers the possibility to quickly define a standard RCN or
to create very custom RCNs with user-defined weight matrices such as
in Rodan and Tino (2011).

As we explained in Section 2, the building block ‘‘Node-to-Output’’
is typically a linear regression model, although any regressor pro-
vided by scikit-learn can be used for this task. Since these cannot
be trained incrementally, training on large datasets or training large
networks becomes memory-expensive. To reduce the required memory,
we provide a linear regression module based on Liang et al. (2006) in
pyrcn.linear_model.IncrementalRegression. Since the correlation matrices are
updated incrementally, our linear regression model is capable of online

learning, i.e., with the presentation of each new training sample.

P. Steiner, A. Jalalvand, S. Stone et al. Engineering Applications of Artificial Intelligence 113 (2022) 104964

.

p
t
E

t

Fig. 2. Overview of the most important modules included in PyRCN. The blue modules include modules that are entirely new, whereas the orange modules can be treated as an
extension of scikit-learn’s built-in modules.
In pyrcn.extreme_learning_machine and pyrcn.echo_state_network, we pro-
vide classes to build ELMs and ESNs for classification and regression
following the scikit-learn API. In the various listings of Sections 2 and
4, we show that these classes can be used to build a large variety of
models.

To deal with sequence-to-value problems, we implemented the mod-
ule pyrcn.projection that allows the projection of a matrix to values in
different ways. This allows PyRCN to deal with sequential data while
still staying as close as possible to the scikit-learn API (which does not
natively support sequences).

In pyrcn.model_selection, we developed the estimator SequentialSearchCV

as an extension for the existing model selection tools provided by
scikit-learn.

In pyrcn.metrics, we have re-implemented most of the metrics from
scikit-learn to handle sequence-to-sequence and sequence-to-label tasks.
Using these metrics, all model selection techniques provided by scikit-
learn can be applied to sequence learning tasks (not limited to using
RCNs).

Thanks to the scikit-learn interface, all modules can easily be cus-
tomized and integrated. Furthermore, we steadily extend the library
with new modules.

3.2. Getting started with PyRCN

PyRCN can be installed with the command pip install pyrcn or by
cloning it from our Github repository8 and installing it with python setup

py install. For more information, we refer to our website.9
In Listing 4, we show how to set up and train vanilla RCNs for

redicting the Mackey-Glass time series (Glass and Mackey, 2010) with
he same settings as used in Jaeger (2001) to introduce ESNs. The
SNRegressor object connects the building blocks ‘‘Input-to-Node’’, ‘‘Node-
o-Node’’ and ‘‘Node-to-Output’’, i.e., pyrcn.linear_model. Incremental

8 https://github.com/TUD-STKS/PyRCN.
9 www.pyrcn.net.
5

Regression, and the ELMRegressor object connects the building blocks
‘‘Input-to-Node’’ and ‘‘Node-to-Output’’. This minimum working exam-
ple demonstrates two important aspects of PyRCN:

1. Simplicity: it needs only four lines of code to load the Mackey-
Glass dataset that is part of PyRCN and only two lines to fit the
different RCN models, respectively.

2. Interoperability with scikit-learn: Instead of the default incre-
mental regression, we have customized the ELMRegressor by using
Ridge from scikit-learn.

1 from sklearn.linear_model import Ridge as skRidge
2 from sklearn.metrics import mean_squared_error
3 from pyrcn.echo_state_network import ESNRegressor
4 from pyrcn.extreme_learning_machine import ELMRegressor
5 from pyrcn.datasets import mackey_glass
6
7 # Load the dataset
8 X, y = mackey_glass(n_timesteps=5000)
9 # Define Train/Test lengths

10 trainLen = 1900
11 X_train, y_train = X[:trainLen], y[:trainLen]
12 X_test, y_test = X[trainLen:], y[trainLen:]
13
14 # Initialize and train an ELMRegressor and an ESNRegressor
15 esn = ESNRegressor().fit(X=X_train.reshape(-1, 1), y=y_train)
16 y_pred = esn.predict(X_test.reshape(-1, 1))
17 print(mean_squared_error(y_test, y_pred))
18 elm = ELMRegressor(regressor=skRidge()).fit(X=X_train.reshape(-1,

1), y=y_train)
19 y_pred = elm.predict(X_test.reshape(-1, 1))
20 print(mean_squared_error(y_test, y_pred))

Listing 4: Minimal example for setting up an ESN and an ELM to
predict the Mackey-Glass time-series (Glass and Mackey, 2010)

4. Build Reservoir Computing Networks with PyRCN

By combining the building blocks introduced above, a vast number
of different RCNs can be constructed. In this section, we build two
important variants of RCNs, namely ELMs and ESNs.

https://github.com/TUD-STKS/PyRCN
http://www.pyrcn.net

P. Steiner, A. Jalalvand, S. Stone et al. Engineering Applications of Artificial Intelligence 113 (2022) 104964
4.1. Extreme Learning Machines

The vanilla ELM as a single-layer feedforward network consists of
an ‘‘Input-to-Node’’ and a ‘‘Node-to-Output’’ module and is trained in
two steps:

1. Compute the high-dimensional reservoir states 𝐑′, which is the
collection of reservoir states 𝐫′[𝑛] from Eq. (1).

2. Compute the output weights 𝐖out using Eq. (3) with 𝐑′.

Listing 5 shows how to construct such a standard ELM with PyRCN.
The ELMRegressor internally passes the input features through ‘‘Input-
to-Node’’ and trains ‘‘Node-to-Output’’ by solving Eq. (3) via pyrcn.

linear_model.IncrementalRegression.

1 # Here goes the content of Listing 3
2 from pyrcn.extreme_learning_machine import ELMRegressor
3
4 # Vanilla ELM for regression tasks with input_scaling
5 # _ _ _ _ _ _ _ _ _ _ _ _ _ _
6 # | | | |
7 # ----|Input-to-Node |-----|Node-to-Output |------
8 # u[n]| _ _ _ _ _ _ _|r’[n]| _ _ _ _ _ _ _ |y[n]
9 # y_pred

10 #
11 vanilla_elm = ELMRegressor(input_scaling=0.9)
12 vanilla_elm.fit(U, y)
13 print(vanilla_elm.predict(U))

Listing 5: Example of how to construct a vanilla ELM with PyRCN.

When a custom ‘‘Input-to-Node’’ or ‘‘Node-to-Output’’ needs to
be utilized, it is necessary to explicitly pass these to the ELM via
input_to_node or regressor, respectively. This is, for example, necessary if
the input weights should be pre-trained e.g. by Batch Intrinsic Plasticity
(BIP) (Neumann and Steil, 2011) or other unsupervised pre-training
methods, such as in Steiner et al. (2022). An example for an ELM with a
BIP ‘‘Input-to-Node’’ and a specific ‘‘Node-to-Output’’ is given in Listing
6. Here, Eq. (3) is solved using sklearn.linear_model.Ridge instead of the
built-in regression tool of PyRCN.

1 # Here goes the content of Listing 3
2 from pyrcn.base.blocks import BatchIntrinsicPlasticity
3 from pyrcn.extreme_learning_machine import ELMRegressor
4
5 # Custom ELM with BatchIntrinsicPlasticity
6 # _ _ _ _ _ _ _ _ _ _ _ _ _ _
7 # | | | |
8 # ----| BIP |-----|Node-to-Output |------
9 # u[n]| _ _ _ _ _ _ _|r’[n]| _ _ _ _ _ _ _ |y[n]

10 # y_pred
11 #
12 bip_elm = ELMRegressor(input_to_node=BatchIntrinsicPlasticity(),
13 regressor=Ridge(alpha=1e-5))
14
15 bip_elm.fit(U, y)
16 print(bip_elm.predict(U))

Listing 6: Example of how to construct an ELM with a BIP
‘‘Input-to-Node’’ ELMs with PyRCN.

Hierarchical or Ensemble ELMs can then be built using multiple
‘‘Input-to-Node’’ modules in parallel or in a cascade. As can be seen
in Listing 7, this is possible when using scikit-learn’s sklearn.pipeline.

Pipeline (cascading) or sklearn.pipeline.FeatureUnion (ensemble).

1 # Here goes the content of Listing 3
2 from sklearn.pipeline import Pipeline , FeatureUnion
3 from pyrcn.extreme_learning_machine import ELMRegressor
4
5 # ELM with cascaded InputToNode and default regressor
6 # _
7 # | (bip) | | (base) | | |
8 # ----|Input-to-Node1|-----|Input-to-Node2|-----|Node-to-Output |
9 # u[n]| _ _ _ _ _ _ _| | _ _ _ _ _ _ _|r’[n]| _ _ _ _ _ _ _ |

10 # |
11 # |
12 # y[n] | y_pred
13 #
14 i2n = Pipeline([(’bip’, BatchIntrinsicPlasticity()),
15 (’base’, InputToNode(bias_scaling=0.1))])
16 casc_elm = ELMRegressor(input_to_node=i2n).fit(U, y)
17
18 # Ensemble of InputToNode with activations
19 # _ _ _ _ _ _ _
20 # | (i) |
21 # |----|Input-to-Node1|-----|
22 # | | _ _ _ _ _ _ _| | _ _ _ _ _ _ _
23 # | -----| |
24 # -----o r’[n]|Node-to-Output |------

25 # u[n] | _ _ _ _ _ _ _ |-----| _ _ _ _ _ _ _ |y[n]

6

26 # | | (th) | | y_pred
27 # |----|Input-to-Node2|-----|
28 # | _ _ _ _ _ _ _|
29 #
30 i2n = FeatureUnion([(’i’,InputToNode(input_activation= " identity ")

),
31 (’th’,InputToNode(input_activation= " tanh "))])
32 ens_elm = ELMRegressor(input_to_node=i2n)
33 ens_elm.fit(U, y)
34 print(casc_elm, ens_elm)

Listing 7: Examples for implementing cascaded or Ensemble-ELMs
with PyRCN.

4.2. Echo State Networks

The Context Reverberation Network (CRN) (Kirby, 1991) is a very
early variant of Reservoir Computing that was later generalized to the
ESN in Jaeger (2001). CRNs and ESNs, as variants of RNNs, conse-
quently consist of an ‘‘Input-to-Node’’, a ‘‘Node-to-Node’’ and a ‘‘Node-
to-Output’’ module and are trained in three steps.

1. Compute the neuron input states 𝐑′, which is the collection of
reservoir states 𝐫′[𝑛] from Eq. (1). Note that here the activation
function 𝑓 ′(⋅) is typically linear.

2. Compute the reservoir states 𝐑, which is the collection of reser-
voir states 𝐫[𝑛] from Eq. (2). Note that here the activation
function 𝑓 (⋅) is typically non-linear.

3. Compute the output weights 𝐖out using

(a) Eq. (3) with 𝐑 when considering an ESN.
(b) Gradient descent or other optimization algorithms when

considering a CRN or when using an ESN with non-linear
outputs, e.g. in Triefenbach and Martens (2011).

An example of how to construct such a vanilla ESN with PyRCN is
given in Listing 8, where the ESNRegressor internally passes the input fea-
tures through ‘‘Input-to-Node’’ and ‘‘Node-to-Node’’, and trains ‘‘Node-
to-Output’’ by solving Eq. (3) via pyrcn.linear_model. IncrementalRegression.

1 # Here goes the content of Listing 3
2 from pyrcn.echo_state_network import ESNRegressor
3
4 # Vanilla ESN for regression tasks with spectral_radius and

leakage
5 # _
6 # | | | | | |
7 # ----|Input-to-Node |-----|Node-to-Node |-----|Node-to-Output |
8 # u[n]| _ _ _ _ _ _ _|r’[n]|_ _ _ _ _ _ _|r[n] | _ _ _ _ _ _ _ |
9 # |

10 # |
11 # y[n] | y_pred
12 #
13 vanilla_esn = ESNRegressor(spectral_radius=1, leakage=0.9)
14 vanilla_esn.fit(U, y)
15 print(vanilla_esn.predict(U))

Listing 8: Example of how to construct a vanilla ESN with PyRCN.

As for ELMs in Listing 6, various unsupervised learning techniques
can be used to pre-train ESNs (Basterrech et al., 2011; Schrauwen
et al., 2008; Lazar et al., 2009). For a summary, we refer to Steiner
et al. (2022). An example is given in Listing 9, in which we use a BIP
‘‘Input-to-Node’’ and a Hebbian ‘‘Node-to-Node’’.

1 # Here goes the content of Listing 3
2 from pyrcn.base.blocks import BatchIntrinsicPlasticity ,

HebbianNodeToNode
3 from pyrcn.echo_state_network import ESNRegressor
4
5 # Custom ESN with BatchIntrinsicPlasticity and HebbianNodeToNode
6 # _
7 # | (bip) | | (hebb) | | |
8 # ----|Input-to-Node |-----|Node-to-Node |-----|Node-to-Output |
9 # u[n]| _ _ _ _ _ _ _|r’[n]|_ _ _ _ _ _ _|r[n] | _ _ _ _ _ _ _ |

10 # |
11 # |
12 # y[n] | y_pred
13 #
14 bip_esn = ESNRegressor(input_to_node=BatchIntrinsicPlasticity(),
15 node_to_node=HebbianNodeToNode(),
16 regressor=Ridge(alpha=1e-5))
17
18 bip_esn.fit(U, y)
19 print(bip_esn.predict(U))

Listing 9: Example of how to construct an ESN with a BIP
‘‘Input-to-Node’’ and a Hebbian ‘‘Node-to-Node’’ with PyRCN.

P. Steiner, A. Jalalvand, S. Stone et al. Engineering Applications of Artificial Intelligence 113 (2022) 104964

o
e
M
s

4.3. Deep Echo State Networks

The term ‘‘Deep ESN’’ can refer to different approaches of hierar-
chical ESN architectures:

• The Deep ESN as described in Gallicchio et al. (2017) is a se-
quence of ‘‘Input-to-Node’’ and ‘‘Node-to-Node’’ combinations:
the states of the 𝑚 − 1-th reservoir are the input for the 𝑚th
reservoir. The states of all reservoirs are stacked and based on
the stacked states, the output weights are computed.

• The stacked ESN as used in Steiner et al. (2020) is a sequence
of ‘‘Input-to-Node’’, ‘‘Node-to-Node’’ and ‘‘Output-to-Node’’ com-
binations: the outputs of one reservoir serve as the inputs for the
next reservoir.

• The Modular Deep ESN as described in Carmichael et al. (2018)
are multiple parallel ‘‘Input-to-Node’’ and ‘‘Node-to-Node’’ com-
binations: the output weights are computed over all parallel
reservoir states.

With the proposed building blocks, we can build different variants
f deep ESNs and many more customized variants. One rather complex
xample is given in Listing 10, where we have a layer that mimicks the
odular Deep ESN in the first layer. On top of that, we have stacked a

econd reservoir that receives the output of the first layer as input.
1 # Here goes the content of Listing 3
2 from pyrcn.base.blocks import InputToNode , NodeToNode
3 from pyrcn.echo_state_network import ESNRegressor
4
5 # Multilayer ESN
6 # u[n]
7 # |
8 # |
9 # _________o_________

10 # | |
11 # _ _ _ | _ _ _ _ _ _ | _ _ _
12 # | (i) | | (i) |
13 # |Input-to-Node1| |Input-to-Node2|
14 # | _ _ _ _ _ _ _| | _ _ _ _ _ _ _|
15 # |r1’[n] | r2’[n]
16 # _ _ _ | _ _ _ _ _ _ | _ _ _
17 # | (th) | | (th) |
18 # | Node-to-Node1| | Node-to-Node2|
19 # | _ _ _ _ _ _ _| | _ _ _ _ _ _ _|
20 # |r1[n] | r2[n]
21 # |_____ _____|
22 # | |
23 # _ | _ _ _ | _
24 # | |
25 # | Node-to-Node3 |
26 # | _ _ _ _ _ _ _ |
27 # |
28 # r3[n]|
29 # _ _ _ | _ _ _
30 # | |
31 # |Node-to-Output |
32 # | _ _ _ _ _ _ _ |
33 # |
34 # y[n]|
35
36 l1 = Pipeline([(’i2n1’, InputToNode(hidden_layer_size=100)),
37 (’n2n1’, NodeToNode(hidden_layer_size=100))])
38
39 l2 = Pipeline([(’i2n2’, InputToNode(hidden_layer_size=400)),
40 (’n2n2’, NodeToNode(hidden_layer_size=400))])
41
42 i2n = FeatureUnion([(’l1’, l1),
43 (’l2’, l2)])
44 n2n = NodeToNode(hidden_layer_size=500)
45 layered_esn = ESNRegressor(input_to_node=i2n,
46 node_to_node=n2n)
47
48 layered_esn.fit(U, y)
49 print(layered_esn.predict(U))

Listing 10: Example of how to construct a rather complex ESN
consisting of two layers. It is built out of two small parallel reservoirs
in the first layer and a large reservoir in the second layer.

4.4. Liquid State Machines

Basic Liquid State Machines (LSMs) can be built in a similar way as
ESNs. The main difference is that 𝐮[𝑛] is a spike train sequence, hence,
we need spiking neuronal models, and additional tools for spike coding
and decoding as proposed in Schrauwen and Campenhout (2003),
which are currently under development.
7

4.5. Complex example: Optimize the hyper-parameters of RCNs

In Lukoševičius (2012), Trouvain et al. (2020) it is discussed that the
different hyper-parameters of RCNs are often tuned jointly using grid,
random search or Bayesian Optimization (Mockus and Mockus, 1991).
However, this requires a lot of iterations, e.g., 1000 for the ESN model
in Trouvain et al. (2020). Other strategies, such as Jalalvand et al.
(2015), Steiner et al. (2021, 2020) proposed a half-guided sequential
optimization procedure that can significantly reduce the number of
iterations.

While scikit-learn already provides utilities for performing grid
and random searches, some effort is required to perform a sequential
optimization. As can be seen in Listing 11, we simplify this in PyRCN
by introducing pyrcn.model_selection.SequentialSearchCV, which is derived
from the base search utilities of scikit-learn and is inspired by the
sklearn.pipeline.Pipeline. Essentially, a model with initial parameters is
defined, followed by defining the different search steps. Similar to
a sklearn.pipeline.Pipeline, SequentialSearchCV receives a list of searches
(optimization steps), which are then sequentially performed.

Since internally, nothing else but the standard model selection
tools provided by scikit-learn are evaluated, a particular advantage
of SequentialSearchCV is that it is not restricted to sequentially optimize
PyRCN models but it can also be used to optimize any model that
provides a scikit-learn interface. This shows how closely PyRCN and
scikit-learn interact, and how it is possible to extend existing scikit-
learn model selection tools. Note that it is furthermore possible to
flexibly define an new optimization strategy, e.g., by changing the order
of the optimization steps.

1 from sklearn.metrics import make_scorer
2 from sklearn.metrics import mean_squared_error
3 from sklearn.model_selection import TimeSeriesSplit
4 from sklearn.model_selection import RandomizedSearchCV , \
5 GridSearchCV
6 from scipy.stats import uniform
7 from pyrcn.echo_state_network import ESNRegressor
8 from pyrcn.model_selection import SequentialSearchCV
9 from pyrcn.datasets import mackey_glass

10
11 # Load the dataset
12 X, y = mackey_glass(n_timesteps=5000)
13 X_train, X_test = X[:1900], X[1900:]
14 y_train, y_test = y[:1900], y[1900:]
15
16 # Define initial ESN model
17 esn = ESNRegressor(bias_scaling=0, spectral_radius=0, leakage=1,
18 requires_sequence=False)
19
20 # Define optimization workflow
21 scorer = make_scorer(mean_squared_error , greater_is_better=False)
22 step_1_params = {’input_scaling’: uniform(loc=1e-2, scale=1),
23 ’spectral_radius’: uniform(loc=0, scale=2)}
24 kwargs_1 = {’n_iter’: 200, ’n_jobs’: -1, ’scoring’: scorer,
25 ’cv’: TimeSeriesSplit()}
26 step_2_params = {’leakage’: [0.2, 0.4, 0.7, 0.9, 1.0]}
27 kwargs_2 = {’verbose’: 5, ’scoring’: scorer, ’n_jobs’: -1,
28 ’cv’: TimeSeriesSplit()}
29
30 searches = [(’step1’, RandomizedSearchCV , step_1_params , kwargs_1

),
31 (’step2’, GridSearchCV , step_2_params , kwargs_2)]
32
33 # Perform the search
34 esn_opti = SequentialSearchCV(esn, searches).fit(X_train.reshape

(-1, 1), y_train)
35 print(esn_opti)

Listing 11: Example for a sequential parameter optimization with
PyRCN. Therefore, a model with initial parameters and various search
steps are defined. Internally, SequentialSearchCV will perform the list of
optimization steps sequentially.

5. Sequence processing with PyRCN

ESNs are a variant of RNNs and, due to their recurrent connections,
able to implicitly model temporal dependencies in the feature vector
sequence, as it was discussed in Section 4.2. By default, scikit-learn does
not support sequence handling. However, our incremental regression
allows to deal with sequences of arbitrary lengths. With the following
example, we show how to modify the programming pattern when
dealing with sequences instead of instances.

P. Steiner, A. Jalalvand, S. Stone et al. Engineering Applications of Artificial Intelligence 113 (2022) 104964

H

i

w

g
w
i

s

1 from sklearn.base import clone
2 from sklearn.model_selection import train_test_split
3 from sklearn.model_selection import ParameterGrid
4
5 from pyrcn.echo_state_network import ESNClassifier
6 from pyrcn.metrics import accuracy_score
7 from pyrcn.datasets import load_digits
8
9 # Load the dataset

10 X, y = load_digits(return_X_y=True, as_sequence=True)
11 print(" Number of digits: {0} " .format(len(X)))
12 print(" Shape of digits {0} " .format(X[0].shape))
13 # Divide the dataset into training and test subsets
14 X_tr, X_te, y_tr, y_te = train_test_split(X, y, test_size=0.2,
15 random_state=42)
16 print(" Number of digits in training set: {0} " .format(len(X_tr)))
17 print(" Shape of the first digit: {0} " .format(X_tr[0].shape))
18 print(" Number of digits in test set: {0} " .format(len(X_te)))
19 print(" Shape of the first digit: {0} " .format(X_te[0].shape))
20
21 # These parameters were optimized using SequentialSearchCV
22 esn_params = {’input_scaling’: 0.1,
23 ’spectral_radius’: 1.2,
24 ’input_activation’: ’identity’,
25 ’k_in’: 5,
26 ’bias_scaling’: 0.5,
27 ’reservoir_activation’: ’tanh’,
28 ’leakage’: 0.1,
29 ’k_rec’: 10,
30 ’alpha’: 1e-5,
31 ’decision_strategy’: " winner_takes_all " }
32
33 b_esn = ESNClassifier(**esn_params)
34
35 param_grid = {’hidden_layer_size’: [50, 100, 200, 400, 500],
36 ’bidirectional’: [False, True]}
37
38 for params in ParameterGrid(param_grid):
39 esn = clone(b_esn).set_params(**params).fit(X_tr, y_tr)
40 acc_score = accuracy_score(y_te, esn.predict(X_te))

Listing 12: Sequence processing with PyRCN.

5.1. Handwritten digits dataset

For this task, we utilized the test set from the small handwritten
digit dataset10 that is hosted by the UCI Machine Learning Reposi-
tory (Dua and Graff, 2017) and included in scikit-learn. It consists of
1797 8x8 pixel gray-scale images of handwritten digits from 0 to 9. We
normalized all pixels to fall in a range from −1 to 1. For the following
experiment, we treat each image of the dataset as an independent
sequence that can, in general, have an arbitrary length. Therefore, we
scan the image from left to right as in Jalalvand et al. (2015, 2018) and
thus present one column of eight pixels in one time step to the model.

Programming pattern for sequence processing

Listing 12 shows the script for this experiment. This complex use-
case requires a serious hyper-parameter tuning. To keep the code
example simple, we did not include the optimization in this paper
and refer the interested readers to the Jupyter Notebook11 that was
developed to produce these results.

With pyrcn.datasets.load_digits, we provide a wrapper function around
the scikit-learn equivalent to load the digits dataset. Specifically, we
added the option as_sequence. If this option is set to True, the dataset is
returned as a numpy array of objects with a length of 1797 (number
of images in the dataset). Each object itself is an 8 × 8 numpy array
representing the image as a sequence. This can be validated with the
print statements from line 11 to 20 in Listing 12.

Two particular advantages of this data structure are:

1. We can use model selection utilities from scikit-learn to split our
dataset in training and test sequences;

2. Each sequence can have an arbitrary number of samples as long
as the number of features is always the same.

10 https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+
andwritten+Digits.
11 https://github.com/TUD-STKS/PyRCN/blob/master/examples/digits.

pynb.
8

Table 2
Partitioning the dataset in training, validation and test time series.

Fold Training Validation Test

1 CAT EBAY MSFT
2 EBAY MSFT CAT
3 MSFT CAT EBAY

A disadvantage of this data structure is the break with scikit-learn’s
paradigm. However, since the number of features in every sequence
is the same, we can simply reproduce e.g. the scikit-learn-compatible
feature matrix via numpy.concatenate(X_train). This is important if one

ould compare ESNs with models provided by scikit-learn.
To ensure that the objects of PyRCN do not break with the pro-

ramming pattern of scikit-learn when dealing with multiple sequences,
e internally convert the new data structure in a scikit-learn compat-

ble format and pyrcn.echo_state_network.ESNClassifier can take the afore-
mentioned data structure as well as the scikit-learn compatible data
structure. Since scikit-learn does not provide any metrics for evaluating
sequence processing tasks, we provide metrics, such as the accuracy
score, for these tasks. These metrics can easily be combined with default
model selection tools provided by scikit-learn.

5.2. Final results

With the last few lines of code in Listing 12, we evaluate models
with different reservoir sizes from 50 to 500 neurons and compare uni-
and bidirectional ESNs. As demonstrated in Steiner et al. (2021, 2020),
this is an important aspect of many experiments with RCNs, because
these two steps significantly influence the final performance of RCN
models. This is demonstrated in Fig. 3, where the mean validation and
the test accuracy strongly increases up to a reservoir size of 200 neurons
and then slowly reaches saturation areas.

6. Comparison of different toolboxes

As it was stated in the introduction, RCNs have a broad variety
of applications. As an example, we reproduce a part of the results
by Trierweiler Ribeiro et al. (2021), where the stock price return
volatility was predicted using Echo State Networks. We compare the
performance of different RCN architectures included in PyRCN with the
toolboxes PyESN12 and HP-ELM by Akusok et al. (2015) using the scikit-
ELM13 (skELM) as the interface. All required data, pre-trained models
and code to repeat the experiments can be found in our repository.14

6.1. Dataset

We used the datasets provided by Trierweiler Ribeiro et al. (2021),
namely the stock price volatilities for the three Nasdaq companies
Caterpillar (CAT), eBay (EBAY) and Microsoft (MSFT), with each dataset
having a length of 2745 days. The input data was the original time
series and the output data the time series shifted by 1, 5 and 22 days,
respectively.

The time series were split in the same 3-fold cross validation scheme
as in Trierweiler Ribeiro et al. (2021) into training, validation and test
sets according to Table 2. For the hyper-parameter optimization, only
the training and validation sets of each fold were used. The test set of
each fold was solely used to report the final results.

12 https://github.com/cknd/pyESN.
13 https://github.com/akusok/scikit-elm.
14 https://github.com/TUD-STKS/PyRCN-Benchmark.

https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://github.com/TUD-STKS/PyRCN/blob/master/examples/digits.ipynb
https://github.com/TUD-STKS/PyRCN/blob/master/examples/digits.ipynb
https://github.com/cknd/pyESN
https://github.com/akusok/scikit-elm
https://github.com/TUD-STKS/PyRCN-Benchmark

P. Steiner, A. Jalalvand, S. Stone et al. Engineering Applications of Artificial Intelligence 113 (2022) 104964

o
f
s
p
w
t
p

a
n
w
o
g
T
P
a
E

i
h
A
s
e

w
i
f
a

Fig. 3. Validation and test accuracy for the ESN model in uni- and bidirectional mode. The performance strongly increases until a reservoir size of 200 and remains almost constant
afterwards.
6.2. Input and target preparation

As in Trierweiler Ribeiro et al. (2021), we compared two dif-
ferent input data: The original time series and the Heterogeneous
Autoregressive (HAR) feature set (Corsi, 2009), which expands the
one-dimensional time series to three dimensions by adding moving-
average filtered representations with filter lengths of five and 22 days,
respectively. Since the description of the HAR feature set by Corsi
(2009, Eqs. (4)–(7)) and Trierweiler Ribeiro et al. (2021, Eq. (4)) have
different temporal contexts for the moving average filter, we compared
both implementations. We use the description by Corsi (2009) in the
following, because the results were comparable to Trierweiler Ribeiro
et al. (2021), even though not equal.

Each input and target time series was separately scaled to the
interval [0, 1] before using it to train and test models. The constants
therefore were computed on the training dataset of each fold.

6.3. Hyperparameter optimization

In contrast to Trierweiler Ribeiro et al. (2021), we did not jointly
ptimize all hyper-parameters but used the sequential optimization
rom Section 4.5. When considering ELMs, we aimed to optimize input
caling 𝛼u, then bias scaling 𝛼𝐛𝐢, and, finally, jointly the regularization
arameter 𝛽 and the number of neurons 𝑁 res. When considering ESNs,
e aimed to jointly optimize input scaling 𝛼u and spectral radius 𝜌,

hen leakage 𝜆, bias scaling 𝛼bi, and, finally, jointly the regularization
arameter 𝛽 and the number of neurons 𝑁 res.

It is important to note that the different implementations did not
lways have the same hyper-parameters. The HP-ELM toolbox does
either provide a constant bias input nor support input scaling. Thus,
e could not optimize the two parameters 𝛼u and 𝛼bi, which we only
ptimized in PyRCN. The PyESN toolbox does not support leaky inte-
ration, and regularization, and does not provide a constant bias input.
hus, we could not optimize 𝜆 and 𝛼bi, which we only optimized in
yRCN. Instead of optimizing 𝛽 in PyESN, we optimized the noise level
dded to every neuron input. This is an alternative way to regularize
SNs (Jaeger, 2001).

One advantage of PyRCN is its compliance with the scikit-learn
nterface specification. This becomes noticeable when we optimize the
yper-parameters with model selection tools provided by scikit-learn.
lthough the HP-ELM interface does not comply with scikit-learn, the
cikit-elm15 adapter is available and we were able to use that for our
xperiments without any difficulties.

Such an adapter is not available for PyESN. We implemented it,
hich, however, slightly limits the power of PyESN, such as providing

nput scalings and input shifts with multiple dimensions (not required
or this task c.f. Trierweiler Ribeiro et al., 2021). Implementing the
dapter requires (a) knowledge about the scikit-learn interface and its

15 https://github.com/akusok/scikit-elm.
9

Table 3
Average values of volatility prediction metrics for 1-day ahead. The results of all models
marked with a star symbol (*) are taken from Trierweiler Ribeiro et al. (2021), in which
the PyESN toolbox was used. The differences between the literature and the results
presented here arise from different parameter optimizations. Overall, the performance
of different toolboxes was similar.

Model 𝑅2
train 𝑅2

test MSEtrain MSEtest 𝑁 res

10−8 10−8

ESN*PyESN 0.634 0.632 5.74 5.81 –

ESNPyESN 0.646 0.619 5.81 5.92 –
ESNPyRCN 𝟎.𝟔𝟖𝟏 𝟎.𝟔𝟒𝟒 𝟓.𝟐𝟑 𝟓.𝟔𝟐 50

ELMskELM 0.598 0.571 6.58 6.69 50
ELMPyRCN 𝟎.𝟔𝟎𝟗 𝟎.𝟓𝟕𝟖 𝟔.𝟒𝟏 𝟔.𝟔𝟐 50

HAR* 0.650 0.633 5.78 5.81 –
HAR 0.653 0.636 5.69 5.73 –
HAR-ESN*PyESN 0.637 0.635 5.75 5.78 –

HAR-ESNPyESN 0.657 𝟎.𝟔𝟒𝟐 5.58 5.64 50
HAR-ESNPyRCN 𝟎.𝟔𝟔𝟑 0.639 𝟓.𝟓𝟐 5.67 50

HAR-ELMskELM 0.654 0.636 5.68 5.72 400
HAR-ELMPyRCN 𝟎.𝟔𝟓𝟓 0.636 𝟓.𝟔𝟔 5.72 50

underlying objects; (b) at least 64 unoptimized lines of code in accor-
dance with the PEP-8 guidelines for Python. This is a disadvantage of
PyESN (and other references in Table 1) compared to PyRCN. Alterna-
tively, it would have been possible to implement a custom randomized
search routine, which, however, would require even more effort and
would be less flexible than what sklearn.model_selection.RandomizedSearchCV

provides.

6.4. Benchmark test

In the Tables 3–5, the reference results from Trierweiler Ribeiro
et al. (2021) and the reproduced results by PyRCN and reference
toolboxes are summarized. Overall, the results are similar. It is worth
to note that Trierweiler Ribeiro et al. (2021) used a modified variant
of the PyESN toolbox for their experiments. However, in this paper,
we used the publicly available PyESN version and we used the same
optimization scheme as for PyRCN. For all forecasting horizons, the
results of PyESN and the ESN model in PyRCN are very similar. There is
hardly any difference in the results between the ELM implementation of
PyRCN and the HP-ELM. However, it can still be recognized that PyRCN
outperformed the references in a majority of cases. This is mostly
due to missing hyper-parameters such as leaky integration, a proper
regularization or the bias scaling. PyRCN supports all these features
and can thus be tuned for a task more thoroughly.

Interestingly, by limiting the optimization of the PyESN toolbox to
the aforementioned hyper-parameters, we slightly outperformed Tri-
erweiler Ribeiro et al. (2021) in many cases. This suggests that our
proposed way of sequential optimization from Steiner et al. (2021,
2022) is also applicable for this kind of tasks.

Finally, we compare the fit and inference (score) times during the
last step of the sequential hyper-parameter optimization, where we

https://github.com/akusok/scikit-elm

P. Steiner, A. Jalalvand, S. Stone et al. Engineering Applications of Artificial Intelligence 113 (2022) 104964

g

Fig. 4. Fit and score times for different RCN toolboxes. Especially for large ESNs, PyRCN requires less computational time than PyESN. Between PyRCN and HP-ELM, the difference
ets smaller but is still present.
J

Table 4
Average values of volatility prediction metrics for 5-days ahead. The results of all
models marked with a star symbol (*) are taken from Trierweiler Ribeiro et al. (2021),
in which the PyESN toolbox was used. The differences between the literature and
the results presented here arise from different parameter optimizations. Overall, the
performance of different toolboxes was similar.

Model 𝑅2
train 𝑅2

test MSEtrain MSEtest 𝑁 res

10−8 10−8

ESN*PyESN 0.485 0.480 8.27 5.81 –

ESNPyESN 0.500 0.476 8.25 8.35 50
ESNPyRCN 𝟎.𝟓𝟏𝟗 𝟎.𝟒𝟗𝟗 𝟕.𝟗𝟑 𝟖.𝟎𝟐 100

ELMskELM 0.432 0.406 9.37 9.55 50
ELMPyRCN 𝟎.𝟒𝟒𝟓 𝟎.𝟒𝟏𝟏 𝟗.𝟏𝟕 𝟗.𝟓𝟏 50

HAR* 0.499 0.481 8.33 5.81 –
HAR 0.509 0.490 8.11 8.17 –
HAR-ESN*PyESN 0.535 0.510 7.53 5.78 –

HAR-ESNPyESN 𝟎.𝟓𝟓𝟕 𝟎.𝟓𝟏𝟑 𝟕.𝟐𝟗 7.88 50
HAR-ESNPyRCN 0.524 0.502 7.85 𝟕.𝟗𝟔 50

HAR-ELMskELM 0.513 0.494 8.05 8.12 50
HAR-ELMPyRCN 0.513 𝟎.𝟒𝟗𝟓 𝟖.𝟎𝟒 𝟖.𝟏𝟏 50

Table 5
Average values of volatility prediction metrics for 21-days ahead. The results of all
models marked with a star symbol (*) are taken from Trierweiler Ribeiro et al. (2021),
in which the PyESN toolbox was used. The differences between the literature and
the results presented here arise from different parameter optimizations. Overall, the
performance of different toolboxes was similar.

Model 𝑅2
train 𝑅2

test MSEtrain MSEtest 𝑁 res

10−7 10−7

ESN*PyESN 0.268 0.264 1.18 1.19 –

ESNPyESN 0.286 0.269 1.19 1.17 50
ESNPyRCN 𝟎.𝟑𝟔𝟐 𝟎.𝟑𝟏𝟔 𝟏.𝟎𝟔 𝟏.𝟏𝟎 50

ELMskELM 0.236 0.195 1.27 1.29 50
ELMPyRCN 𝟎.𝟐𝟓𝟔 𝟎.𝟐𝟏𝟖 𝟏.𝟐𝟒 𝟏.𝟐𝟔 50

HAR* 0.256 0.224 1.25 1.27 –
HAR 0.295 0.261 1.17 1.19 –
HAR-ESN*PyESN 0.297 0.298 1.11 1.16 –

HAR-ESNPyESN 0.263 0.229 1.23 1.25 50
HAR-ESNPyRCN 𝟎.𝟑𝟓𝟕 𝟎.𝟑𝟏𝟎 𝟏.𝟎𝟕 𝟏.𝟏𝟏 50

HAR-ELMskELM 0.300 0.268 1.17 1.18 50
HAR-ELMPyRCN 𝟎.𝟑𝟎𝟔 𝟎.𝟐𝟕𝟐 𝟏.𝟏𝟔 𝟏.𝟏𝟕 50

evaluated models with reservoir sizes between 50 and 6400 neurons
and with different regularization methods. In Fig. 4, the mean values
and standard deviations of the fit and score times for different reservoir
sizes are summarized for the different considered toolboxes. In all cases
(ESNs and ELMs), the fit and score times of small models were similar.
However, in case of large models, the differences between PyRCN and
the reference toolboxes get larger and partially differ by more than one
order of magnitude, e.g. large ESNs (Fig. 4(a)). In fact, PyRCN is on
10
average ten times faster than PyESN. One possible reason is that PyESN
is typically trained with feedback connections back from the output
to the reservoir. Since this requires extra computations in each time
step, this is computationally more expensive, in particular for larger
reservoirs. In case of the HP-ELM, the differences are lower. However,
the required computational time of HP-ELM still increases with a larger
slope than the one of PyRCN (Fig. 4(b)). Overall, this shows that PyRCN
can be used for small and for large datasets and reservoirs.

7. Conclusion and outlook

We presented PyRCN, a new Python toolbox compatible with scikit-
learn that offers flexible components to design many kinds of RCNs such
as ESNs and ELMs. It is relatively light-weight with structured modules.
It allows for convenient hyper-parameter optimization using standard
scikit-learn model selection routines. An incremental regression as
implemented in the toolkit performs equivalently as default ridge re-
gression by scikit-learn while requiring less memory and decreasing the
training time in case of large reservoirs. The toolkit supports both basic
ESN models and sequence-to-sequence and sequence-to-label varieties
and provides functionalities to utilize basically all built-in model selec-
tion techniques provided by scikit-learn also for sequence-to-sequence
and sequence-to-label handling.

We have demonstrated how to use the toolbox on two widely
known tasks, namely time-series prediction with the Mackey-Glass
equation and handwritten digit classification using the handwritten
digits dataset. Based on a benchmark test, we have shown that we can
reproduce the results by Trierweiler Ribeiro et al. (2021) using PyRCN
with fewer lines of code, and that the sequential optimization scheme
proposed and used by Steiner et al. (2021, 2020, 2022) is applicable to
univariate time-series. By comparing PyRCN with reference toolboxes,
we have shown that the required computational time of PyRCN is
comparable in case of small reservoirs and outperforms the reference
toolboxes by decades in case of large reservoirs as PyRCN was in the
mean ten times faster than PyESN.

A current limitation is that PyRCN does not provide an interface
to other established machine learning frameworks, e.g., PyTorch or
Keras. In the future, we will continue to work on further optimizations
of the underlying methods of the toolbox, especially parallel sequence
processing, multi-layer ESN functionalities, and consider exposing addi-
tional interfaces to support other established machine learning frame-
works. We strongly encourage enthusiastic reservoir computing prac-
titioners and researchers to try out the toolbox and we welcome any
feedback and contribution to improve it.

CRediT authorship contribution statement

Peter Steiner: Conceptualization, Methodology, Software, Evalua-
tion, Writing - Original Draft, Writing - Review & Editing. Azarakhsh
alalvand: Validation, Writing - Review & Editing. Simon Stone: Con-

ceptualization, Methodology, Validation, Writing - Review & Editing.

Peter Birkholz: Writing - Review & Editing, Supervision.

P. Steiner, A. Jalalvand, S. Stone et al. Engineering Applications of Artificial Intelligence 113 (2022) 104964
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

Thanks to Michael Schindler for his valuable contribution to PyRCN
during his diploma thesis about Extreme Learning Machines. Thanks to
Gabriel Trierweiler-Robeiro for sharing the datasets used in Trierweiler
Ribeiro et al. (2021).

This research was supported by Europäischer Sozialfonds (ESF), the
Free State of Saxony (Application number: 100327771) and Ghent Uni-
versity under the Special Research Award number BOF19/PDO/134.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G.,
Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X.,
2016. TensorFlow: A system for large-scale machine learning. In: 12th USENIX
Symposium on Operating Systems Design and Implementation. OSDI 16, USENIX
Association, Savannah, GA, pp. 265–283, URL https://www.usenix.org/conference/
osdi16/technical-sessions/presentation/abadi.

Akusok, A., Björk, K.-M., Miche, Y., Lendasse, A., 2015. High-performance extreme
learning machines: A complete toolbox for big data applications. Access, IEEE 3,
1011–1025. http://dx.doi.org/10.1109/ACCESS.2015.2450498.

Antonelo, E.A., Schrauwen, B., 2015. On learning navigation behaviors for small mobile
robots with reservoir computing architectures. IEEE Trans. Neural Netw. Learn.
Syst. 26 (4), 763–780. http://dx.doi.org/10.1109/TNNLS.2014.2323247.

Antonelo, E.A., Schrauwen, B., Stroobandt, D., 2008. Event detection and local-
ization for small mobile robots using reservoir computing. Neural Netw. 21
(6), 862–871. http://dx.doi.org/10.1016/j.neunet.2008.06.010, Computational and
Biological Inspired Neural Networks, selected papers from ICANN 2007.

Basterrech, S., Fyfe, C., Rubino, G., 2011. Self-organizing maps and scale-invariant
maps in echo state networks. In: 2011 11th International Conference on Intelligent
Systems Design and Applications. pp. 94–99. http://dx.doi.org/10.1109/ISDA.2011.
6121637.

Carmichael, Z., Syed, H., Burtner, S., Kudithipudi, D., 2018. Mod-DeepESN: Modular
deep echo state network. CoRR, arXiv:1808.00523.

Cocco Mariani, V., Hennings Och, S., dos Santos Coelho, L., Domingues, E., 2019.
Pressure prediction of a spark ignition single cylinder engine using optimized
extreme learning machine models. Appl. Energy 249, 204–221. http://dx.doi.org/
10.1016/j.apenergy.2019.04.126.

Corsi, F., 2009. A simple approximate long-memory model of realized volatility. J.
Financ. Econom. 7 (2), 174–196. http://dx.doi.org/10.1093/jjfinec/nbp001, arXiv:
https://academic.oup.com/jfec/article-pdf/7/2/174/2543795/nbp001.pdf.

DeepESN, 2019. DeepESN2019a: Deep echo state network (DeepESN) toolbox v1.1.
https://www.mathworks.com/matlabcentral/fileexchange/69402-deepesn, last vis-
ited 2021-08-24.

Ding, S., Xu, X., Nie, R., 2014. Extreme learning machine and its applications. Neural
Comput. Appl. 25 (3), 549–556.

Dua, D., Graff, C., 2017. UCI machine learning repository. URL http://archive.ics.uci.
edu/ml.

EchoTorch, 2021. EchoTorch: Reservoir computing with PyTorch. https://github.com/
nschaetti/EchoTorch, last visited 2021-08-24.

ESNToolbox, 2009 https://www.ai.rug.nl/minds/uploads/ESNToolbox.zip, last visited
2021-08-24.

Gallicchio, C., 2019. Chasing the echo state property. In: 27th European Symposium
on Artificial Neural Networks, ESANN 2019, Bruges, Belgium, April 24-26, 2019.
pp. 667–672, URL http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-
76.pdf.

Gallicchio, C., Micheli, A., Pedrelli, L., 2017. Deep reservoir computing: A crit-
ical experimental analysis. Neurocomputing 268, 87–99. http://dx.doi.org/10.
1016/j.neucom.2016.12.089, URL http://www.sciencedirect.com/science/article/
pii/S0925231217307567 Advances in artificial neural networks, machine learning
and computational intelligence.

Glass, L., Mackey, M., 2010. Mackey-glass equation. Scholarpedia 5 (3), 6908.
HP-ELM, 2018. High performance toolbox for extreme learning machines. https://

github.com/akusok/hpelm, last visited 2021-08-24.
Huang, G.-B., Zhu, Q.-Y., Siew, C.-K., 2006. Extreme learning machine: Theory

and applications. Neurocomputing 70 (1), 489–501. http://dx.doi.org/10.1016/j.
neucom.2005.12.126, Neural Networks.

Jaeger, H., 2001. The ‘‘Echo State’’ Approach to Analysing and Training Recurrent
Neural Networks. Technical Report GMD Report 148, German National Research
Center for Information Technology, URL http://www.faculty.iu-bremen.de/hjaeger/
pubs/EchoStatesTechRep.pdf.
11
Jalalvand, A., Abbate, J., Conlin, R., Verdoolaege, G., Kolemen, E., 2021. Real-time
and adaptive reservoir computing with application to profile prediction in fusion
plasma. IEEE Trans. Neural Netw. Learn. Syst. 1–12. http://dx.doi.org/10.1109/
TNNLS.2021.3085504.

Jalalvand, A., Demuynck, K., Neve, W.D., Martens, J.-P., 2018. On the application of
reservoir computing networks for noisy image recognition. Neurocomputing 277,
237–248. http://dx.doi.org/10.1016/j.neucom.2016.11.100.

Jalalvand, A., Triefenbach, F., Demuynck, K., Martens, J.-P., 2015. Robust continuous
digit recognition using reservoir computing. Comput. Speech Lang. 30 (1), 135–158.
http://dx.doi.org/10.1016/j.csl.2014.09.006.

Jalalvand, A., Vandersmissen, B., Neve, W.D., Mannens, E., 2019. Radar signal
processing for human identification by means of reservoir computing networks.
In: 2019 IEEE Radar Conference (RadarConf). pp. 1–6. http://dx.doi.org/10.1109/
RADAR.2019.8835753.

Katılmış, Z., Karakuzu, C., 2021. ELM based two-handed dynamic turkish sign language
(TSL) word recognition. Expert Syst. Appl. 182, 115213. http://dx.doi.org/10.1016/
j.eswa.2021.115213.

Kirby, K., 1991. Context dynamics in neural sequential learning. In: Proceedings of the
Florida Artificial Intelligence Research Symposium FLAIRS. 1991, pp. 66–70.

Lazar, A., Pipa, G., Triesch, J., 2009. SORN: a self-organizing recurrent neural network.
Front. Comput. Neurosci. 3, 23. http://dx.doi.org/10.3389/neuro.10.023.2009, URL
https://www.frontiersin.org/article/10.3389/neuro.10.023.2009.

Liang, N., Huang, G., Saratchandran, P., Sundararajan, N., 2006. A fast and accurate
online sequential learning algorithm for feedforward networks. IEEE Trans. Neural
Netw. 17 (6), 1411–1423. http://dx.doi.org/10.1109/TNN.2006.880583.

LSM, 2020. Liquid state machine (LSM). https://github.com/IGITUGraz/LSM, last
visited 2021-08-24.

Lukoševičius, M., 2012. A practical guide to applying echo state networks. In:
Montavon, G., Orr, G.B., Müller, K.-R. (Eds.), Neural Networks: Tricks of the
Trade: Second Edition. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 659–686.
http://dx.doi.org/10.1007/978-3-642-35289-8_36.

Maass, W., Natschläger, T., Markram, H., 2002. Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural
Comput. 14 (11), 2531–2560. http://dx.doi.org/10.1162/089976602760407955.

Mansoor, M., Grimaccia, F., Leva, S., Mussetta, M., 2021. Comparison of echo state
network and feed-forward neural networks in electrical load forecasting for demand
response programs. Math. Comput. Simulation 184, 282–293. http://dx.doi.org/
10.1016/j.matcom.2020.07.011, ELECTRIMACS 2019 ENGINEERING - Modelling
and computational simulation for analysis and optimisation in electrical power
engineering.

Mockus, J.B., Mockus, L.J., 1991. BayesIan approach to global optimization and
application to multiobjective and constrained problems. J. Optim. Theory Appl.
70 (1), 157–172.

Moreno, S.R., da Silva, R.G., Mariani, V.C., dos Santos Coelho, L., 2020. Multi-step
wind speed forecasting based on hybrid multi-stage decomposition model and
long short-term memory neural network. Energy Convers. Manage. 213, 112869.
http://dx.doi.org/10.1016/j.enconman.2020.112869.

Munakata, Y., Pfaffly, J., 2004. Hebbian learning and development. Dev. Sci. 7 (2),
141–148. http://dx.doi.org/10.1111/j.1467-7687.2004.00331.x.

Neumann, K., Steil, J.J., 2011. Batch intrinsic plasticity for extreme learning machines.
In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (Eds.), Artificial Neural Net-
works and Machine Learning – ICANN 2011. Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 339–346.

Oger, 2013. Organic reservoir computing engine. https://github.com/neuronalX/Oger,
last visited 2021-08-24.

Oubbati, M., Schanz, M., Buchheim, T., Levi, P., 2006. Velocity control of an
omnidirectional RoboCup player with recurrent neural networks. In: Bredenfeld, A.,
Jacoff, A., Noda, I., Takahashi, Y. (Eds.), RoboCup 2005: Robot Soccer World Cup
IX. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 691–701.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.,
2019. PyTorch: An imperative style, high-performance deep learning library. In:
Wallach, H., Larochelle, H., Beygelzimer, A., dÁlché-Buc, F., Fox, E., Garnett, R.
(Eds.), Advances in Neural Information Processing Systems, vol. 32. Curran
Associates, Inc., pp. 1–12, URL https://proceedings.neurips.cc/paper/2019/file/
bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: Machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830.

PyRCN, 2022. Python reservoir computing networks. https://github.com/TUD-STKS/
PyRCN, last visited 2021-08-24.

Python-ELM, 2019. Python-ELM. https://github.com/masaponto/Python-ELM, last
visited 2021-08-24.

PyTorch-ESN, 2021. Pytorch-ESN. https://github.com/stefanonardo/pytorch-esn, last
visited 2021-08-24.

ReservoirPy, 2022. Reservoirpy (v0.3). https://github.com/reservoirpy/reservoirpy, last
visited 2021-08-24.

Rodan, A., Tino, P., 2011. Minimum complexity echo state network. IEEE Trans. Neural
Netw. 22 (1), 131–144. http://dx.doi.org/10.1109/TNN.2010.2089641.

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
http://dx.doi.org/10.1109/ACCESS.2015.2450498
http://dx.doi.org/10.1109/TNNLS.2014.2323247
http://dx.doi.org/10.1016/j.neunet.2008.06.010
http://dx.doi.org/10.1109/ISDA.2011.6121637
http://dx.doi.org/10.1109/ISDA.2011.6121637
http://dx.doi.org/10.1109/ISDA.2011.6121637
http://arxiv.org/abs/1808.00523
http://dx.doi.org/10.1016/j.apenergy.2019.04.126
http://dx.doi.org/10.1016/j.apenergy.2019.04.126
http://dx.doi.org/10.1016/j.apenergy.2019.04.126
http://dx.doi.org/10.1093/jjfinec/nbp001
http://arxiv.org/abs/https://academic.oup.com/jfec/article-pdf/7/2/174/2543795/nbp001.pdf
http://arxiv.org/abs/https://academic.oup.com/jfec/article-pdf/7/2/174/2543795/nbp001.pdf
http://arxiv.org/abs/https://academic.oup.com/jfec/article-pdf/7/2/174/2543795/nbp001.pdf
https://www.mathworks.com/matlabcentral/fileexchange/69402-deepesn
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb10
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb10
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb10
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://github.com/nschaetti/EchoTorch
https://github.com/nschaetti/EchoTorch
https://github.com/nschaetti/EchoTorch
https://www.ai.rug.nl/minds/uploads/ESNToolbox.zip
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-76.pdf
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-76.pdf
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2019-76.pdf
http://dx.doi.org/10.1016/j.neucom.2016.12.089
http://dx.doi.org/10.1016/j.neucom.2016.12.089
http://dx.doi.org/10.1016/j.neucom.2016.12.089
http://www.sciencedirect.com/science/article/pii/S0925231217307567
http://www.sciencedirect.com/science/article/pii/S0925231217307567
http://www.sciencedirect.com/science/article/pii/S0925231217307567
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb16
https://github.com/akusok/hpelm
https://github.com/akusok/hpelm
https://github.com/akusok/hpelm
http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://www.faculty.iu-bremen.de/hjaeger/pubs/EchoStatesTechRep.pdf
http://www.faculty.iu-bremen.de/hjaeger/pubs/EchoStatesTechRep.pdf
http://www.faculty.iu-bremen.de/hjaeger/pubs/EchoStatesTechRep.pdf
http://dx.doi.org/10.1109/TNNLS.2021.3085504
http://dx.doi.org/10.1109/TNNLS.2021.3085504
http://dx.doi.org/10.1109/TNNLS.2021.3085504
http://dx.doi.org/10.1016/j.neucom.2016.11.100
http://dx.doi.org/10.1016/j.csl.2014.09.006
http://dx.doi.org/10.1109/RADAR.2019.8835753
http://dx.doi.org/10.1109/RADAR.2019.8835753
http://dx.doi.org/10.1109/RADAR.2019.8835753
http://dx.doi.org/10.1016/j.eswa.2021.115213
http://dx.doi.org/10.1016/j.eswa.2021.115213
http://dx.doi.org/10.1016/j.eswa.2021.115213
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb25
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb25
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb25
http://dx.doi.org/10.3389/neuro.10.023.2009
https://www.frontiersin.org/article/10.3389/neuro.10.023.2009
http://dx.doi.org/10.1109/TNN.2006.880583
https://github.com/IGITUGraz/LSM
http://dx.doi.org/10.1007/978-3-642-35289-8_36
http://dx.doi.org/10.1162/089976602760407955
http://dx.doi.org/10.1016/j.matcom.2020.07.011
http://dx.doi.org/10.1016/j.matcom.2020.07.011
http://dx.doi.org/10.1016/j.matcom.2020.07.011
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb32
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb32
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb32
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb32
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb32
http://dx.doi.org/10.1016/j.enconman.2020.112869
http://dx.doi.org/10.1111/j.1467-7687.2004.00331.x
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb35
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb35
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb35
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb35
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb35
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb35
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb35
https://github.com/neuronalX/Oger
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb37
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb37
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb37
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb37
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb37
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb37
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb37
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb39
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb39
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb39
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb39
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb39
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb39
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb39
https://github.com/TUD-STKS/PyRCN
https://github.com/TUD-STKS/PyRCN
https://github.com/TUD-STKS/PyRCN
https://github.com/masaponto/Python-ELM
https://github.com/stefanonardo/pytorch-esn
https://github.com/reservoirpy/reservoirpy
http://dx.doi.org/10.1109/TNN.2010.2089641

P. Steiner, A. Jalalvand, S. Stone et al. Engineering Applications of Artificial Intelligence 113 (2022) 104964
Salmen, M., Ploger, P., 2005. Echo state networks used for motor control. In: Proceed-
ings of the 2005 IEEE International Conference on Robotics and Automation. pp.
1953–1958. http://dx.doi.org/10.1109/ROBOT.2005.1570399.

Schaetti, N., 2018. EchoTorch: Reservoir computing with pytorch. GitHub Repos.
GitHub https://github.com/nschaetti/EchoTorch.

Schrauwen, B., Campenhout, J.V., 2003. BSA, a fast and accurate spike train encoding
scheme. In: Proceedings of the International Joint Conference on Neural Networks,
vol. 4. pp. 2825–2830. http://dx.doi.org/10.1109/IJCNN.2003.1224019.

Schrauwen, B., Verstraeten, D., Campenhout, J.M.V., 2007. An overview of reservoir
computing: theory, applications and implementations. In: ESANN 2007, 15th
European Symposium on Artificial Neural Networks, Bruges, Belgium, April 25-
27, 2007, Proceedings. pp. 471–482, URL https://www.elen.ucl.ac.be/Proceedings/
esann/esannpdf/es2007-8.pdf.

Schrauwen, B., Wardermann, M., Verstraeten, D., Steil, J.J., Stroobandt, D., 2008.
Improving reservoirs using intrinsic plasticity. Neurocomputing 71 (7), 1159–1171.
http://dx.doi.org/10.1016/j.neucom.2007.12.020, URL http://www.sciencedirect.
com/science/article/pii/S0925231208000519 Progress in Modeling, Theory, and
Application of Computational Intelligence.

da Silva, R.G., Ribeiro, M.H.D.M., Moreno, S.R., Mariani, V.C., dos Santos Coelho, L.,
2021. A novel decomposition-ensemble learning framework for multi-step ahead
wind energy forecasting. Energy 216, 119174. http://dx.doi.org/10.1016/j.energy.
2020.119174.

Steiner, P., Jalalvand, A., Birkholz, P., 2022. Cluster-based input weight initialization
for echo state networks. IEEE Trans. Neural Netw. Learn. Syst. 1–12. http://dx.doi.
org/10.1109/TNNLS.2022.3145565.

Steiner, P., Jalalvand, A., Stone, S., Birkholz, P., 2020. Feature engineering and stacked
echo state networks for musical onset detection. In: 2020 25th International
Conference on Pattern Recognition. ICPR, pp. 9537–9544.
12
Steiner, P., Stone, S., Birkholz, P., Jalalvand, A., 2021. Multipitch tracking in music
signals using echo state networks. In: 2020 28th European Signal Processing Con-
ference. EUSIPCO, pp. 126–130. http://dx.doi.org/10.23919/Eusipco47968.2020.
9287638.

Tang, J., Deng, C., Huang, G., 2016. Extreme learning machine for multilayer percep-
tron. IEEE Trans. Neural Netw. Learn. Syst. 27 (4), 809–821. http://dx.doi.org/10.
1109/TNNLS.2015.2424995.

Triefenbach, F., Jalalvand, A., Demuynck, K., Martens, J.-P., 2013. Acoustic modeling
with hierarchical reservoirs. IEEE Trans. Audio Speech Lang. Process. 21 (11),
2439–2450. http://dx.doi.org/10.1109/TASL.2013.2280209.

Triefenbach, F., Martens, J.-P., 2011. Can non-linear readout nodes enhance the
performance of reservoir-based speech recognizers? In: 2011 First International
Conference on Informatics and Computational Intelligence. pp. 262–267. http:
//dx.doi.org/10.1109/ICI.2011.50.

Trierweiler Ribeiro, G., Alves Portela Santos, A., Cocco Mariani, V., dos Santos
Coelho, L., 2021. Novel hybrid model based on echo state neural network applied
to the prediction of stock price return volatility. Expert Syst. Appl. 184, 115490.
http://dx.doi.org/10.1016/j.eswa.2021.115490.

Trouvain, N., Pedrelli, L., Dinh, T.T., Hinaut, X., 2020. ReservoirPy: An efficient and
user-friendly library to design echo state networks. In: Farkaš, I., Masulli, P.,
Wermter, S. (Eds.), Artificial Neural Networks and Machine Learning – ICANN
2020. Springer International Publishing, Cham, pp. 494–505.

Verstraeten, D., Schrauwen, B., Dieleman, S., Brakel, P., Buteneers, P., Pecevski, D.,
2012. Oger: Modular learning architectures for large-scale sequential processing. J.
Mach. Learn. Res. 13, 2995–2998.

Wang, L., Lv, S.-X., Zeng, Y.-R., 2018. Effective sparse adaboost method with ESN
and FOA for industrial electricity consumption forecasting in China. Energy 155,
1013–1031. http://dx.doi.org/10.1016/j.energy.2018.04.175.

http://dx.doi.org/10.1109/ROBOT.2005.1570399
https://github.com/nschaetti/EchoTorch
http://dx.doi.org/10.1109/IJCNN.2003.1224019
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2007-8.pdf
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2007-8.pdf
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2007-8.pdf
http://dx.doi.org/10.1016/j.neucom.2007.12.020
http://www.sciencedirect.com/science/article/pii/S0925231208000519
http://www.sciencedirect.com/science/article/pii/S0925231208000519
http://www.sciencedirect.com/science/article/pii/S0925231208000519
http://dx.doi.org/10.1016/j.energy.2020.119174
http://dx.doi.org/10.1016/j.energy.2020.119174
http://dx.doi.org/10.1016/j.energy.2020.119174
http://dx.doi.org/10.1109/TNNLS.2022.3145565
http://dx.doi.org/10.1109/TNNLS.2022.3145565
http://dx.doi.org/10.1109/TNNLS.2022.3145565
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb52
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb52
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb52
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb52
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb52
http://dx.doi.org/10.23919/Eusipco47968.2020.9287638
http://dx.doi.org/10.23919/Eusipco47968.2020.9287638
http://dx.doi.org/10.23919/Eusipco47968.2020.9287638
http://dx.doi.org/10.1109/TNNLS.2015.2424995
http://dx.doi.org/10.1109/TNNLS.2015.2424995
http://dx.doi.org/10.1109/TNNLS.2015.2424995
http://dx.doi.org/10.1109/TASL.2013.2280209
http://dx.doi.org/10.1109/ICI.2011.50
http://dx.doi.org/10.1109/ICI.2011.50
http://dx.doi.org/10.1109/ICI.2011.50
http://dx.doi.org/10.1016/j.eswa.2021.115490
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb58
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb58
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb58
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb58
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb58
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb58
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb58
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb59
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb59
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb59
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb59
http://refhub.elsevier.com/S0952-1976(22)00171-3/sb59
http://dx.doi.org/10.1016/j.energy.2018.04.175

	PyRCN: A toolbox for exploration and application of Reservoir Computing Networks
	Introduction
	Building blocks of Reservoir Computing
	Input-to-Node
	Node-to-Node
	Node-to-Output

	PyRCN
	Overview of PyRCN
	Getting started with PyRCN

	Build Reservoir Computing Networks with PyRCN
	Extreme Learning Machines
	Echo State Networks
	Deep Echo State Networks
	Liquid State Machines
	Complex example: Optimize the hyper-parameters of RCNs

	Sequence processing with PyRCN
	Handwritten digits dataset
	Programming pattern for sequence processing
	Final results

	Comparison of different toolboxes
	Dataset
	Input and target preparation
	Hyperparameter optimization
	Benchmark test

	Conclusion and outlook
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

