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Abstract—The periodic nature of voiced speech is often
exploited to restore speech harmonics and to increase inter-
harmonic noise suppression. In particular, a recent paper pro-
posed to do this by manipulating the speech harmonic frequencies
in the cepstral domain. The manipulations were carried out on
the cepstrum of the excitation signal, obtained by the source-
filter decomposition of speech. This method was termed Cepstral
Excitation Manipulation (CEM). In this contribution we further
analyse this method, point out its inherent weakness and propose
means to overcome it. First of all, it will be shown by both
illustrative examples and theoretical analysis that the existing
method underestimates the excitation, especially at low signal
to noise ratio (SNR) conditions. This inherent weakness leads
to speech harmonic weakening and vocoding due to the insuf-
ficient noise suppression in the inter-harmonic regions. Then,
we propose two modifications to improve the robustness and
performance of CEM in low SNR cases. The first modification is
to use an instantaneous amplifying factor adapted to the signal,
instead of a pre-defined constant, for the excitation cepstrum.
The second modification is to smooth the excitation cepstrum to
preserve additional fine structure, instead of discarding it. These
modifications result in better preservation of speech harmonics,
more refined fine structure and higher inter-harmonic noise
suppression. Experimental evaluations using a range of standard
instrumental metrics conclusively demonstrate that our proposed
modifications clearly outperform the existing method, especially
in extremely noisy conditions.

Index Terms—speech enhancement, harmonic synthesis, cep-
stral smoothing, cepstral excitation manipulation.

I. INTRODUCTION

Single channel speech enhancement is widely used in
several communications applications to suppress background
noise and improve speech quality. Many efforts have been
made in the topic and this is still an active field of research.
The majority of statistical speech enhancement algorithms ap-
ply a gain function to the short time-frequency representation
of speech. Based on the estimation of the power spectral
density of the noise and the underlying speech, the so-called
a priori SNR and a posteriori SNR are, typically, the two
crucial parameters required for the gain function calculation.

Under individual independent Gaussian assumptions of
noise and speech spectral coefficients, Ephraim and Malah
derived the classical Minimum-Mean Square Error Short-
Time Spectral Amplitude (MMSE-STSA) estimator [1]
and Minimum-Mean Square Error Log-Spectral Amplitude
(MMSE-LSA) estimator [2], where the a priori SNR is
estimated by the Decision-Directed (DD) approach. One well-
known drawback of MMSE estimator is musical noise in
the enhanced audio. The recursive smoothing of the DD

approach tackles it to some degree, but also leads to speech
distortions. This drawback has been handled in various ways
in the literature. For example, [3] proposed the Two-Step
Noise Reduction (TSNR) technique to not only solve the
one-frame delay introduced by the bias of a priori SNR
estimation but also combined it with harmonic regeneration
noise reduction (HRNR) to restore the distorted harmonics by
applying a non-linearity in the time domain. Cepstro-temporal
smoothing has been proposed in [4] to reduce the musical
tones. It essentially applies a post-filter to the MMSE gain
estimate in the cepstrum domain. The recursive smoothing of
high-order cepstral coefficients of the gain function reduces
abrupt changes in its fine structure, thereby lowering musical
noise. This technique can also be applied to the cepstral
coefficients of the enhanced spectrum directly. For instance,
a selective cepstro-temporal smoothing scheme was proposed
in [5]. Typically, these approaches target a better enhancement
of the speech harmonics in voiced speech regions.

On the other hand, the speech production process can be
abstracted as a source-filter model that captures the harmonic
structure in speech with low mathematical complexity [6].
Thereby, the speech signal is decomposed into an envelope
and an excitation signal. There have been analysis-synthesis
speech enhancement frameworks based on this decomposition,
leading to learning-based envelope enhancement solutions,
e.g., [7]–[9]. In addition to the envelope enhancement, a syn-
thetic excitation signal is also introduced in [8], [9], to address
the musical noise problem. But it has also been reported
that synthetic speech lacks naturalness. For this reason, and
since the source-filter decomposition is sensitive to noise,
the approaches are usually combined with the aforementioned
spectral amplitude estimators, resulting in a TSNR framework.

More recently, there have been attempts to improve speech
quality by directly manipulating the excitation signal. In [10],
[11], the cepstral representation of the excitation signal is
adopted to highlight the periodic structure of speech. Using
this representation, it is possible to get a clearer speech
estimation and even to restore low-amplitude or lost harmonics
by amplifying the periodic structure of voiced speech in
the cepstral domain. Consequently, this approach is termed
Cepstral Excitation Manipulation (CEM). A benchmark of
CEM against the relevant state-of-the-art in [10] indicated the
potential of this approach to further improve the enhanced
speech quality. This method was, further, combined with
envelope estimation methods in [11], thereby integrating the
benefits of envelope and excitation improvement for speech
enhancement. This demonstrated that in addition to being used
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as a stand-alone component, CEM could also be piggy-backed
onto other speech enhancement frameworks – which makes
this idea versatile.

In [10], the excitation of speech is replaced by either
an idealised, synthetic excitation or by selecting one from
pre-trained cepstral excitation templates. The non-template
method has the advantage that it is capable of recovering lost
harmonics in a relatively simple manner: all but two of the
cepstral coefficients of the excitation signal are set to zero
(the process termed ‘cepstral nulling’). The zeroth coefficient,
corresponding to the energy term, is preserved, along with
the cepstral coefficient that has maximum amplitude within
the range of allowed speech fundamental frequencies. This
latter coefficient is further amplified by a pre-determined
constant, thereby implicitly emphasising the spectral peaks
at the fundamental frequency and its harmonics. However, as
discussed in [10], this method shares the disadvantage of the
lack of naturalness in the enhanced audio with the analysis-
synthesis framework. This is due to the fact that most of the
cepstrum has been discarded, which means the loss of speech
fine structure. The amendment provided by [10] is to introduce
cepstral excitation templates in either a speaker-dependent or
a speaker-independent manner. However, this solution adds to
the complexity of the system because of the template training
and extra models required. Another problem of this method
comes from the constant pitch amplifying factor. When the
harmonics are corrupted by noise, the dynamic range of the
boosted speech excitation signal is insufficient with a pre-
determined amplifying factor. In such cases, the noise at the
inter-harmonic frequencies is poorly suppressed, which results
in a vocoder-like effect. Thus, classical CEM fails to maintain
the sharpness of harmonics in the enhanced output signals,
especially in low SNR conditions.

In this contribution, we focus on the above shortcomings
of CEM and propose means to address them. First, instead
of using a fixed pitch amplifying factor, the dynamic range
of the synthetic excitation is instantaneously and adaptively
estimated based on the input signal spectrum. Second, the
excitation signal cepstrum is selectively averaged along the
quefrency, which preserves the spectral fine structure better
and results in a more natural estimate of the underlying speech
spectrum. This can serve as an alternative to speaker excitation
templates trained on large corpora as in [10]. Lastly, these two
improvements can be combined to yield a robust, improved
CEM approach with better performance in all SNR conditions.

The paper is structured as follows: the baseline CEM
method, together with the speech enhancement framework,
is introduced in Section II. Representative examples are first
shown in Section III to demonstrate the weakness of clas-
sical CEM in excitation synthesis and its consequence. Our
modifications aimed at addressing these shortcomings are next
presented. The proposed methods are thoroughly evaluated in
Section IV and the conclusions are presented in Section V.

II. CEPSTRAL EXCITATION MANIPULATION (CEM)
BASELINE

We consider an additive mixture of an underlying speech
signal s(n) mixed with the background noise signal v(n). The

goal of speech enhancement is to get a clean speech estimate
s̃(n) of better quality and/or intelligibility given the noisy
observation y(n) = s(n) + v(n). With an M -point windowed
Fourier Transform, the mixture can be represented in the short-
time Fourier Transform (STFT) domain as the summation of
the short term spectra of speech Sl and of noise Vl

1:

Yl(m) = Sl(m) + Vl(m) , (1)

where l is the frame index and m is the frequency bin index.
The gain function method is adopted in this framework

where, for each frame l, the estimate of the underlying clean
speech spectrum is obtained by multiplying the noisy input
spectrum with a gain function Gl(m):

S̃l(m) = Gl(m)Yl(m) . (2)

The Gl(m) are typically (see, e.g., [12]) obtained as functions
of the following two parameters: the a priori SNR ξl(m) and
the a posteriori SNR γl(m), respectively defined as:

ξl(m) =
λs,l(m)

λv,l(m)
, (3)

and

γl(m) =
|Yl(m)|2
λv,l(m)

, (4)

where λs,l(m) and λv,l(m) represent the power spectral
densities (PSDs) of the speech and noise signals, respectively.
However, since the true values of λs,l(m) and λv,l(m) are not
available, their estimates, λ̂s,l(m) and λ̂v,l(m), are substituted
into the above formulae to compute the a priori and a
posteriori SNRs for the calculation of the gain function.

A. Overview of CEM-based Speech Enhancement Framework

To improve the speech estimate λ̂s,l(m), especially for the
voiced speech segments, the two-stage speech enhancement
framework is proposed in [10], and is summarised below.

In the first stage, a preliminary noise reduction is applied,
resulting in an initial speech estimate Ŝl(m). This is obtained
by applying the MMSE-LSA gain function together with the
decision-directed (DD) approach [2]. The noise PSD λ̂v,l(m)
is estimated by the Minimum Statistics (MS) approach [13].

Using LPC analysis [6], Ŝl(m) is decomposed into the
envelope Ĥl(m) and the residual R̂l(m), which is also termed
the speech excitation signal.

The key idea of [10] lies in the manipulation of this
excitation signal in the cepstral domain. First, the excitation
signal R̂l(m) is converted to cepstrum where fundamental
frequency can be easily detected. The speech harmonics are
selectively boosted as detailed below. Applying the original
speech envelope |Ĥl(m)| to this enhanced excitation signal
|Rl(m)|, an idealised speech estimate |Sl(m)| can be obtained.
A new a priori SNR ξ̃l is then calculated from this harmonic-
enhanced estimate |Sl(m)| to obtain the final gain function

1We follow the standard convention: uppercase letters indicate quantities
in the spectral domain; lowercase variables are time-domain signals. Since
the cepstrum, defined as the inverse transform of the logarithmic spectrum,
is also a quasi-temporal representation and lowercase letters are adopted for
cepstral variables as well.

This article has been accepted for publication in IEEE/ACM Transactions on Audio, Speech and Language Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2022.3190725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. , NO. , NOVEMBER 2021 3

Noisy spectrum Y (m)

Noise power
estimator

Noise estimation
λ̂v(m)

Preliminary denoised
signal |Ŝ(m)| LPC
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Fig. 1: Block diagram of the gain function calculation in two-stage noise reduction. Dashed boxes represent manipulation
blocks whereas solid rectangular boxes indicate data contained. Please note that all terms are in the STFT domain, where the
frame index l has been dropped for conciseness.

for that frame. This method is named as CEMID because it
replaces the original excitation with an idealised one. Along
with the traditional MMSE-LSA approach, it forms a baseline
for our work. The signal flow graph of CEMID is graphically
illustrated in Fig. 1. The details of the cepstral manipulation
of CEM are now presented.

B. CEMID in detail: F0 Detection

To analyse the periodicity of voiced frames, the excitation
signal amplitude |R̂l(m)| is transformed into the cepstral
domain by a Q-point Discrete Cosine Transformation of type
II (DCT-II):

cl(q) = DCT{ln(|R̂l(m)|)}

=

M/2∑

m=0

ln(|R̂l(m)|) · cos
[
πq

Q
(m+ 0.5)

] , (5)

where q = {0, 1, . . . , Q− 1} denotes the quefrency bin index.
Since the amplitude spectrum is symmetric, only half of the
residual spectrum |R̂l(m)| is required for cepstrum calculation
and Q is set to M/2 + 1. The fundamental frequency and
its harmonics correspond to a peak in the cepstrum. For the
signal sampled at fs, the relationship between frequency f
and its corresponding quefrency bin is f = fs/q. Therefore,
the fundamental frequency F0 at frame l can be obtained
by finding its corresponding quefrency bin qF0

where the
excitation cepstrum cl(q) achieves its maximum in the allowed
quefrency range. The estimated fundamental frequency is then
given by

F0(l) =
fs

qF0(l)
, (6)

where
qF0(l) = argmax

q∈Q
{cl(q)} . (7)

Given that the fundamental frequency of human speech usually
falls in the range from 50 to 500 Hz [6], the search boundary
in the quefrency domain is constrained correspondingly as
Q = [qf=500, . . . , qf=50].

C. CEMID in detail: Excitation Manipulation

Following the identification of qF0(l), the original excitation
is completely replaced by a synthesised excitation cl(q):
cl(0), as an indication of energy level, is preserved in the

idealised excitation cl. The cepstral peak is amplified by a
pre-determined constant αc(> 1). The rest of the cepstrum is
discarded, i.e.,

cl(q) =





cl(0), q = 0

αc · cl(q), q = qF0
, αc > 1

0, otherwise
. (8)

This excitation manipulation helps with speech enhancement
in two ways. On the one hand, the speech harmonics are
emphasised by scaling up the harmonic-related cepstral peak.
On the other hand, the remaining noise is removed by nulling
the excitation cepstrum.

The new speech residual amplitude |Rl(m)| spectrum can
be acquired by the inverse DCT-II (iDCT) of the idealised
excitation cepstrum cl:

|Rl(m)| = exp(iDCT{cl})

= exp

(
cl(0)

Q
+

2

Q

Q−1∑

q=1

cl(q) · cos
[
πq

Q
(m+ 0.5)

])
. (9)

The synthesis procedure described by Eq. (9) could lead to
false peaks or an undesired rising tendency at the edges of the
spectrum |Rl(m)|. This is addressed by a cosine decay in [10]
at the spectral edges to avoid these artefacts in the enhanced
signal, namely by linearly extending the spectrum from the
trough before the first peak and from the trough following the
peak of the last harmonic to the respective edges.

D. Speech Estimation
With the idealised excitation |Rl(m)| and the speech enve-

lope |Ĥl(m)|, the speech amplitude spectrum is synthesised
as |Sl(m)| = |Rl(m)| · |Ĥl(m)|. Instead of directly using this
synthetic spectrum as clean speech estimate, it is proposed to
use this idealised spectrum to re-estimate the a priori SNR
ξ̃l(m) as:

ξ̃l(m) =
|Sl(m)|2
λ̂v,l(m)

. (10)

Using this ξ̃l(m) and the previously computed a posteriori
SNR γ̂l(m), the final gain function G̃l(m) is computed in
the standard manner (e.g., MMSE-LSA). Applying this gain
function yields the final clean speech spectrum estimate:
S̃l(m) = G̃l(m)Yl(m). The clean speech estimate in the
time domain is obtained by applying iDFT and overlap-add
synthesis.
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III. IMPROVED EXCITATION MANIPULATION

A. Analysis of the drawbacks of CEM

Fig. 2 presents the residual spectrum and speech estimation
by CEMID of a voiced frame corrupted by white noise at SNRs
of 15 dB (Fig. 2a) and of −5 dB (Fig. 2b). The speech exci-
tation idealisation is reasonably accurate when SNR = 15 dB;
however, CEMID is clearly influenced by residual noise for the
same speech segment when SNR = −5 dB. Since CEMID is
driven by the excitation manipulation and the envelopes are not
modified, the deterioration of CEMID at −5 dB comes solely
from the (insufficient) excitation synthesis. Compared with the
clean speech spectrum, the estimated speech spectrum (green
curve) at −5 dB (Fig. 2b) is strongly overestimated between
the harmonics. From the upper panel, it can be observed that
the idealised excitation is even less clear than the excitation
spectrum of the preliminary denoised signal (orange curve).
As the result, the enhanced spectrum loses the ‘sharpness’
of its harmonics in voiced frames, especially for the first
few harmonics (e.g., the harmonics inside the red square of
Fig. 2b). When being used to calculate the new a priori
SNR, this weakened periodic structure results in poorer inter-
harmonic noise suppression, leading to a vocoding effect in
the final speech estimate.

To understand this inherent weakness of CEM from an
analytic perspective, we take a closer look at the enhanced
excitation spectrum, which is written in the log domain as

ln(|Rl(m)|) = iDCT{cl}

=
cl(0)

Q
+

2

Q

Q−1∑

q=1

cl(q) · cos[
πq

Q
(m+ 0.5)]

=
cl(0)

Q
+

2

Q
cl(qF0

) · cos[πqF0

Q
(m+ 0.5)]+

2

Q

q ̸=qF0∑

q∈[1,2,...,Q−1]

cl(q) · cos[
πq

Q
(m+ 0.5)]

=
cl(0)

Q
+ iDCT{F(cpitch)}+ iDCT{G(crest)}

,

(11)
where cpitch = [0, 0, . . . , 0, cl(qF0

), 0, . . . , 0] and crest =
[0, cl(1), cl(2), . . . , cl(qF0

− 1), 0, cl(qF0
+ 1), . . . , cl(qF0

)].
F(·) and G(·) are the manipulating functions on the respective
cepstrum components. The three terms correspond to the log-
spectrum energy, the harmonics, and the fine structure of the
excitation. Accordingly, different manipulations are applied
to the three terms in CEMID: the log-spectrum energy term
remains untouched, F(·) amplifies the harmonic term with a
constant factor αc to emphasise the periodic structure, and
G(·) sets the fine structure term to [0, 0, . . . , 0] for extra noise
suppression and to reduce musical noise.

In [10], CEMID was designed to overestimate harmonic
amplitudes by a fixed, pre-determined amplifying factor αc.
However, as demonstrated by the performance degradation
of CEMID from the high-SNR condition to the low-SNR
condition in Fig. 2, the αc suggested by the authors could
be insufficient in certain cases. To understand this, recall
that cepstral coefficients are obtained by the inner product

(a) With white noise, SNR = 15 dB

(b) With white noise, SNR = −5 dB

Fig. 2: Speech enhancement by CEM on a voiced frame
corrupted by white noise at different SNRs. In each figure, the
clean reference, the preliminary denoised result ( ·̂ ), the syn-
thesised result ( · ), and the final estimate ( ·̃ ) are presented.
The upper panel of each sub-figure compares the synthetic
excitation spectrum with that of the preliminary denoised and
the clean speech, whereas the lower panel compares the final
clean speech estimate based on the idealised excitation with
that of the preliminary denoised and the clean signal. The
method suffers from vocoding, especially in the frequency
region delineated by the red square. The artefact results from
the amplitude underestimation of the synthetic excitation. This
vocoding effect reduces when SNR increases.

of the logarithmic amplitude spectrum and cosine basis func-
tions, computed over the entire spectrum. However, when
the harmonics are less pronounced (e.g., due to noise), the
excitation signal loses its periodic structure in these regions.
In such a case, the cepstral coefficient corresponding to F0

can still stand out because of the recognisable harmonics
(typically in the lower frequency regions); however, its value
is attenuated because the harmonic regions are averaged with
the unstructured ones. This issue becomes more prominent
for wideband speech since harmonic structure is typically
more compromised at the higher frequencies regions, leading
to more distorted STFT bins that attenuate the F0-related
coefficient. Thus, no matter what constant value is chosen as
the amplifying factor, there is always the risk of insufficient
excitation in CEMID.

The other problem of CEMID is that cepstrum nulling leads
to artificiality in the enhanced speech, as has been noticed
in [10]. Eq. (8) has showed that CEMID does not preserve
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any fine spectral structure. It is therefore proposed in [10]
to improve the naturalness of the enhanced speech by the
template method, where each template is particular to a range
of fundamental frequencies. From the perspective of Eq. (11),
this modification replaces the nulling function G(·) of CEMID
by the F0-related templates which introduces more coefficients
into crest.

By reformulating the speech excitation signal synthesis into
three individual, interpretable components in the above analy-
sis, it is easier to understand and appreciate the two limitations
of CEMID when used for speech harmonic enhancement. In the
following sections, we will propose our modifications targeting
these two shortcomings. We will leave the energy term intact,
and enhance the other two terms separately.

B. Residual Amplitude Estimation (RAE)

The first modification is to replace the constant scaling
factor αc of CEMID with a data-adaptive factor. Since the
energy of voiced speech is typically concentrated in the
low-frequency region, as shown in Fig. 2b, the preliminary
noise reduction performs better in the first few low-frequency
harmonics, where the SNR is higher. Therefore, we propose to
deduce the speech excitation dynamic range from these clearer
harmonics. The other consequence of this energy distribution
is the decay of the excitation dynamic range as frequency
increases. Therefore, one amplifying factor that suits low-
frequency harmonics will overestimate the high-frequency har-
monics and lead to annoying artefacts in the enhanced audio.
Motivated by these observations, we propose the residual
amplitude estimation (RAE) for F(cpitch) in Eq. (11). Our RAE
consists of three components: an adaptive amplifying factor τ
for the excitation dynamic range, an amplitude decay function
ω(m) to avoid overestimation in the high-frequency region,
and a cosine function to model the harmonic structures. Based
on these three components, the harmonic term of the synthetic
excitation can thus be written in the log-domain as:

iDCT{F(cpitch)} = τ · ω(m) · cos[πqF0

Q
(m+ 0.5)] . (12)

1) Adaptive Amplifying Factor τ : From Section III-A,
we see that the height of the cepstral peak cl(qF0

), which
may be seen as an analogue of the signal energy at the
harmonics of F0, is affected by the noise, especially in the
higher frequencies. Since speech energy for voiced segments
is typically concentrated in the lower frequency regions, an
analysis of the harmonic peaks in these regions would provide
a better basis for estimating the amplification factor. Therefore,
we introduce topographic prominence [14], which provides
local information of peaks, for a data-dependent estimate of
the scaling factor. A peak is defined as a local maximum and
its prominence describes how much the peak stands out from
its neighbourhood. The prominence is defined as the vertical
distance between the peak and its lowest contour line. Given
the excitation spectrum |R̂l(m)|, the set of local peaks is
first identified. Then, a set of prominences P = {p1, p2, . . . }
can be obtained by calculating the prominence for each peak.
Fig. 3 shows an example to calculate the ith prominence pi
according to the following steps:

• Extend the peak value horizontally until it crosses the
signal or reaches the analysis interval boundary.

• Define the bases of the peak as the lowest values of the
signal on each side.

• Define the maximum of the two bases as the contour line.
• The prominence pi of the ith peak is defined by the

vertical difference between the contour line and the peak.

Fig. 3: Topographic prominence: the local peak is extended
horizontally to both sides until crossing the signal (the left
end) or reaching the pre-determined analysis interval boundary
(the right end). Since the left base is higher than the right one,
it is used as the contour line to calculate prominence.

Prominence measures the ‘local height’ of each peak. Since
Eq. (12) models the periodic structure by a cosine function,
the prominence of the excitation signal is twice the amplitude
of this cosine (i.e., the dynamic range of the excitation) in an
ideal case. Due to the energy concentration of speech in low
frequencies, we assume a high SNR in the first few harmonics
and thus true excitation can be recovered after preliminary
denoising. The scaling factor τ is then deduced from the
prominences whose corresponding peak frequencies are below
1000 Hz:

τ =
max(pi|pi ∈ P, fpi

≤ 1000Hz)

2
, (13)

where fpi
is the frequency of the ith peak. The analysis

interval of prominence is set to 2 · F0(l) to ensure that the
prominence pi measures the true local height of the harmonics.

We note that in practice noisy fluctuations in the excitation
could be recognised as false peaks. However, only peaks at
speech harmonics and their vicinity are desired. To ensure
this, the minimum distance between two detected peaks is set
as 0.8·MF0(l), where MF0(l) is the frequency bin index of the
fundamental frequency of the current frame. In this distance,
only one major peak can be identified.

2) Amplitude Decay ω(m): An extra weighting rule in
the frequency domain is introduced to ensure that residual
amplitudes are properly tapered down in low-energy bands to
generate more natural speech. Intuitively, the dynamic range of
harmonics in low-energy bands should be small as well. The
speech envelope |Ĥl(m)| from LPC, which captures speech
formants, is a good indicator of the spectral amplitude trend.
Therefore, we introduce the weighting rule ω(m) based on
|Ĥl(m)| to address the mismatch between the synthetic har-
monic dynamic range and the speech spectral energy. We first
calculate the peak-following envelope Hl,p(m) of |Ĥl(m)| by
linear interpolation between two adjacent peaks of |Ĥl(m)| in
the linear domain as shown in Fig. 4. Then, max normalisation
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and clipping as shown in Eq. (14) are applied to convert
the peak following envelope Hl,p(m) into the weighting rule
ω(m). The excitation will be decayed below fundamental
frequency after cosine edge decay, so no weighting rule is
applied to these frequencies, i.e., ω(m) = 1. When frequency
exceeds F0, the lower boundary of ω(m) is set as 0.1 to
prevent a total harmonic suppression.

ω(m) =





1, m ≤ MF0(l)

max

{
Hl,p(m)

max
m∈{0,...,M/2}

Hl,p(m)
, 0.1

}
, m > MF0(l)

.

(14)

(a) An speech active frame, clean

(b) The same speech active frame with pub noise, SNR = 5 dB

Fig. 4: Examples of the peak following envelope for the same
speech segment under different SNRs.

For the same reason described in section II-C, extra spec-
trum decay at the excitation spectrum edges is also required
in our modification.

Fig. 5 compares enhanced speech spectra by the proposed
model (Eq. (12) – Eq. (14)) and the baseline method CEMID.
It can be observed that CEMID blurs the initial four harmonics
due to the insufficient excitation, while the proposed modifica-
tion is able to suppress the inter-harmonic noise to a satisfac-
tory level. This indicates that the proposed method is able to
restore sharpened harmonics even in adverse conditions, which
is beneficial to speech quality.

C. Cepstrum Smoothing (CC)

Given the transformation between spectrum and cepstrum
in Eq. (5) and Eq. (9), we see that the low-quefrency cep-
stral coefficients describe the coarse structure (envelope) of
the spectrum, while the high-quefrency coefficients include
both speech fine structure and noise-related fluctuations. By
nulling all the cepstral coefficients in crest, musical noise is
clearly reduced in CEMID. However, as discussed in [10], this
improvement comes at the cost of speech naturalness, because
the excitation fine structure is lost in this operation.

Aiming at more naturalness, we propose to improve the
CEMID by preserving more cepstral coefficients. Instead of
cepstrum nulling during excitation synthesis, the excitation

Fig. 5: Demonstration of the benefit of an adaptive pitch
amplification factor. The top panel shows the improved speech
excitation, and the bottom one shows the benefit of the
improved excitation on the final speech estimate for CEMID
and RAE. For comparison, the result of the preliminary
denoising and the noisy input frame are also provided. The
input is the same voiced frame as in Fig. 2, mixed with
white noise at 0 dB. Apart from the clean reference and the
preliminary denoising results, the signals enhanced by CEMID
are also provided for comparison. In generating the synthetic
excitation, all cesptral coefficients except bin 0 and the bin
corresponding to fundamental frequency are discarded. The
cepstral value corresponding to the fundamental frequency is
scaled up by a constant pitch amplifying factor αc = 2 for
CEMID (from [10]) and by an adaptive factor, computed as
proposed in Eq. (12) – (14) for the RAE.

cepstrum is smoothed along the quefrency-axis so that more
details are preserved while noise is suppressed. We choose to
leave coefficients whose quefrencies are lower than a certain
threshold quefrency qlow unchanged – thereby preserving the
general shape – and to average the remaining coefficients
with rectangular moving-average windows whose lengths are
proportional to the bit-length of quefrency bin index q:

crest,l(q) =





crest(q), q ≤ qlow
q+n∑

i=q−n

n− |q − i|+ 1

n2
crest(q), q > qlow

,

(15)
where n = ⌊log2(q)⌋. By choosing a window size proportional
to the quefrency index, we maintain the averaging interval
(for a given sampling rate) even if the DFT analysis window
length changes. Rather than define arbitrary functions for
window sizes based on the quefrency index, the choice of
using the bitlength was an empirical solution that gave the
best results based on several trials. We term this method as
cepstral convolution (CC).

Fig. 6 compares the proposed cepstral smoothing scheme
with CEMID. It can be observed that our method retains more
spectral structure, especially in low frequencies. Another ad-
vantage of preserving more cepstral coefficients is to partially
compensate for the quantisation error of the pitch detection
and the attenuation of the cepstral coefficient corresponding
to F0 in low SNRs.

The two modifications (RAE and CC) enhance speech
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Fig. 6: Demonstration of the benefit of preserving cepstral
fine structure. The input is the same voiced frame as in
Fig. 2, mixed with white noise at 0 dB SNR. To generate the
synthetic excitation with harmonic enhancement, a constant
amplification factor of 2 is applied to cpitch. The crest is set to
zeros as proposed for CEMID; or smoothed by Eq. (15) for
the CC approach.

harmonics from complementary aspects. The result of the
combined estimation is shown in Fig. 7, where the peaks at
the harmonics follow that of the clean speech and the valleys
are well accentuated, resulting in a better inter-harmonic noise
suppression. Please also refer to Fig. 8 for an appreciation of
how these modifications help with the final goal of speech
enhancement.

Fig. 7: Demonstration of the benefit of the combined method
(applying RAE and CC) to generate the enhanced excitation.
The input is the same voiced frame as in Fig. 2, mixed with
white noise at 0 dB SNR.

IV. EVALUATION

The examples in Fig. 5 – Fig. 7 were chosen to visually
demonstrate the benefits of the proposed modifications within
the framework of CEMID. Now we present a more rigorous
evaluation of the proposed improvements.

We use the MMSE-LSA gain function with the DD ap-
proach as preliminary noise reduction. The four different
excitation manipulation methods discussed previously (sum-
marised in Table I) are systematically compared. The baseline
approach, CEMID, is implemented as proposed in [10] with
cepstrum nulling and a constant harmonic amplifying factor
of αc = 2. The first variant is Residual Amplitude Estima-
tion (RAE) which replaces the constant harmonic amplifying

factor by a data-adaptive factor. Our second variant, Cepstral
Convolution (CC), still adopts the constant amplifying factor,
but smooths cepstral coefficients, i.e., retaining more spectral
information, as explained in section III-C. Compared with
the baseline CEMID, the results of these two methods show
the respective improvement accrued due to each individual
modification. Finally, the joint benefit of combining both
modifications is evaluated.

TABLE I: Evaluated methods

Method crest manipulation Harmonic synthesis
CEMID Eq. (8) (nulling) Eq. (8) with αc = 2
RAE Eq. (8) (nulling) Eq. (12) – (14), adaptive estimation
CC Eq. (15) (smoothing) Eq. (8) with αc = 2
Comb Eq. (15) (smoothing) Eq. (12) – (14), adaptive estimation

A. Experimental Setup
The four methods were evaluated on the PTDB-TUG

database [15]. The database contains clean utterances from
20 speakers (10 males and 10 females). For each speaker,
five sentences were randomly chosen from the corpus.
Five different signals from the ETSI noise database [16]
were mixed with the clean speech at six different SNRs:
{−5 dB, 0 dB, 5 dB, 10 dB, 15 dB, 20 dB}. The noise sig-
nals were: white noise, car (stationary, low-frequency noise),
highway (non-stationary, low-frequency noise), buccaneer 1
(narrow-band noise), and pub (babble noise). All the speech
and noise signals were down-sampled to 16 kHz. To mix the
signals at the chosen SNR, the level of the clean speech was
measured by the active speech level (according to ITU-T P.56
[17]), and that of noise by the long-term root-mean-square
(RMS) value.

For all methods, the frame length is 512 points with a 50%
overlap between frames. A square-root von Hann window
is used for the analysis and the synthesis. The DFT length
is M = 512 samples. As the benchmark approach, the
parameters of CEMID are identical to [10]. The order of
LPC and the parameter qlow for our proposed method CC
in Eq. (15) are set to 20 and 10, respectively.

To avoid gain function overflow, the a posteriori SNR is
limited between −40 dB and 40 dB, and the lower boundary
of a priori SNR is −25 dB. For both preliminary denoising and
final speech estimation, the gain function is limited between
−15 dB and 0 dB. The smoothing factor α of the DD approach
is 0.98 for preliminary noise reduction.

B. Noise estimation
Instead of using the MS noise estimator as proposed in [10],

the Speech Presence Probability Minimum Mean-Square Error
(SPP-MMSE) approach with fixed priors [18] is adopted in
our work. It has been noted in [18] that MS suffers from
noise floor overestimation and delay, while SPP-MMSE is
capable of un-biased and fast noise tracking. Note that this
noise estimator is used for all the evaluated approaches in
Table I. As suggested in [18], we assume an equal a priori
probability for speech presence and absence P (H0) = P (H1)
without prior knowledge, and the optimal a priori SPP is set
to 15 dB for SPP-MMSE.
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C. Quality Measures

First, the same measures as in [10] are employed for a di-
rect comparison, namely noise attenuation, speech-to-speech-
distortion ratio, and ∆SNR.

Additionally, noise attenuation and ∆SNR of the speech
active frames are also employed to highlight the benefits of the
excitation manipulation methods. The quality of the different
methods is evaluated by the white-box approach [19]. Having
obtained the gain function to denoise the observed noisy
signal, it is then separately applied to the noise component
v(n) and to the clean speech component s(n). The measures
are subsequently based on the filtered noise v̌(n) and the
filtered speech š(n).

The segmental noise attenuation (NA) is calculated as

NAseg = 10 log10

[
1

L

L−1∑

l=0

NA(l)

]
, (16)

with

NA(l) =

∑T−1
k=0 v(k + lT +∆)2
∑T−1

k=0 v̌(k + lT )2
, (17)

where T is the frame length, ∆ is to compensate the sample
delay of the filtered signal (after overlap-add synthesis) and L
is the total number of frames in the signal. Higher NA indicates
better noise reduction ability of the evaluated method.

The segmental speech-to-speech-distortion ratio (SSDR)
measures the distortion introduced by speech enhancement.
Higher SSDR suggests less distortion in speech. For frame l,
the speech distortion is defined as

e(k+ lT ) = š(k+ lT )−s(k+ lT +∆), k ∈ (0, T −1) . (18)

The single frame SSDR(l) is given by

SSDR(l) = 10 log10

[∑T−1
k=0 s(k + lT )2

∑T−1
k=0 e(k + lT )2

]
. (19)

Since the speech distortion should only be evaluated on the
speech active frames, the measured SSDR is the average
SSDR(l) on the set of speech active frames L1:

SSDR =
1

||L1||
∑

l∈{L1}

SSDR(l) , (20)

where ||L1|| is the cardinality of L1.
In addition, the difference between noisy signal SNR,

SNRin, and the denoised signal SNR, SNRout, provides us
with global information about the SNR improvement of the
methods. The speech level is calculated according to the active
speech level measure from ITU P.56 [17] and the noise level
is taken from the long-term RMS value of the noise signal.
SNRin is decided by the difference between the active levels of
its two components, s(n) and v(n). After the noise reduction,
SNRout is obtained in the same manner by the two filtered
components, š(n) and v̌(n).

∆SNR(l) = SNRout(l)− SNRin(l) . (21)

Further, to investigate the noise reduction ability in speech
active frames, NA of speech active frames NAact is calculated
on the set of speech active frames L1:

NAact = 10 log10


 1

||L1||
∑

l∈{L1}

NA(l)


 . (22)

Similarly, the SNR improvement in active frames ∆SNRact is
given by

∆SNRact =
1

||L1||
∑

l∈{L1}

[SNRout(l)− SNRin(l)] . (23)

The perceptual quality of the filtered clean speech compo-
nents š(n) and of the denoised signals s̃(n) are evaluated by
the wide-band Perceptual Evaluation of Speech Quality (WB-
PESQ) [20]. The output of this metric is the mean opinion
score - listening quality objective (MOS-LQO). PESQ MOS-
LQO scores range from 1.04 to 4.64 and a higher score
indicates better speech quality.Note that in the following we
drop ‘MOS-LQO’ in the metric notations for conciseness, but
the results are always on MOS-LQO scale rather than raw
PESQ scores.

Two metrics, PESQst and ∆PESQ can be derived from the
PESQ MOS-LQO score. ∆PESQ is defined as the PESQ score
improvement of the enhanced signal compared to the noisy
input. It is a comprehensive metric that takes all kinds of
artefacts in the processed signal into consideration. PESQst
is the score of the filtered speech component. It illustrates
the speech distortion introduced by the noise suppression gain
function. We can see from the definition that PESQst is unable
to detect insufficient noise reduction, e.g., it cannot reflect
the gain function overestimation of CEMID in inter-harmonic
frequencies; however, this overestimation indeed leads to a
noticeable vocoding effect. Therefore, we additionally intro-
duce ∆PESQact to compare the audio quality in speech active
frames. For this, the PESQ scores of the noisy input and
the enhanced signal s̃(n) are evaluated in the speech active
frames l ∈ L1. Before computing the PESQ, all the speech
inactive frames (l /∈ L1) in the noisy and the enhanced
signal are replaced by the silence from the clean utterance.
Thus, ∆PESQact= PESQs̃,act − PESQy,act reflects the speech
quality improvement by the tested methods in the speech active
frames.

It should be noted that PESQ was initially designed to
measure speech quality degradation in telecommunication [20]
and thus it is not, in general, a good metric to evaluate
speech quality after noise suppression. To have a better idea
of the speech quality, we also tested the methods by Percep-
tual Objective Listening Quality Analysis (POLQA) metric,
which is specifically designed for enhanced speech quality
evaluation [21]. It allows for predicting speech quality over
various distortions for wideband and super-wideband speech
signals. Lastly, short-time objective intelligibility (STOI) [22]
is employed to evaluate the intelligibility of the denoised
signal.
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(a) Noisy (b) MMSE-LSA with DD approach [2] (c) CEMID proposed in [10]

(d) Residual amplitude estimation (RAE) (e) Cepstral convolution (CC) (f) Comb

Fig. 8: Example spectra contrasting the different methods for speech harmonics enhancement in a white noise condition at
SNR = 0 dB. The spectra on the first row depict the noisy utterance and the results of the two baseline approaches. The spectra
on the second row present the results of the proposed methods. Dash dot square: this region shows the benefit of preserving
more fine structure. Solid square: this region highlights the effect of emphasising the fundamental and harmonic frequencies
properly. Oval: this region best illustrates the drawbacks of a fixed amplification factor and cepstral nulling followed in CEMID.
Detailed discussion can be found in Section IV-D.

D. Experimental Results and Discussion

We start with visual examples for an intuitive appreciation.
Fig. 8 shows the spectrograms of the noisy input, MMSE-
LSA baseline approach, the CEMID baseline and the proposed
excitation manipulation approaches. This is for the case when a
clean speech utterance is mixed with white noise at 0 dB. Gen-
erally speaking, all four approaches recover the harmonics to
a different degree. It can be observed when comparing Fig. 8d
and Fig. 8e with the preliminary denoising result Fig. 8b and
the original CEMID in Fig. 8c that our methods, adaptive
harmonic enhancement and cepstral convolution, effectively
address the previously discussed weaknesses of CEMID, and
the combination of the two (Fig. 8f) takes the advantages of
both proposed modifications to yield an even superior result.
For ease of exposition, three regions, where the respective
contributions and advantages of the proposed approaches can
be appreciated best, are highlighted. Dash dot square: this
region shows the benefit of preserving more fine structure in
the synthesised excitation. Compared to Fig. 8b, the second
and the third harmonics in Fig. 8c and Fig. 8d become weaker
and discontinuous in time, indicating the drawback of methods
purely focusing on the emphasising the F0 and its harmonics,
and neglecting the fine structure. In contrast, preserving this
structure by cepstral convolution (Fig. 8e) yields a more time-
continuous harmonic structure. The combination of adaptive
harmonic enhancement and cepstral convolution (Fig. 8f)
yields the best result by combining the advantages of the two
manipulations. Solid square: this region highlights the effect
of adequately emphasising the frequencies corresponding to
F0 and the harmonics. Whereas CEMID is able to boost the
low-amplitude harmonics to a certain extent, the benefit of an
adaptive amplification factor is evident (Fig. 8d and Fig. 8f).
Oval: this region best illustrates the drawbacks of a fixed
amplification factor and cepstral nulling followed in CEMID.
The insufficient inter-harmonic noise suppression is clearly
visible and leads to an audible vocoding effect. RAE shows

a slight improvement, while CC and the combined method
generate the best results. In the following, the baselines and
the proposed modifications are thoroughly evaluated by the
metrics introduced in section IV-C. The results are grouped
by SNRs of the input signals for detailed performance com-
parison.

1) Overall Average of Instrumental Metrics: Tables II
and III show the measures averaged over the whole test data.
Table II shows only the metrics employed in [10], whereas
Table III presents the metrics, additionally, on speech active
frames.

TABLE II: Evaluation results: instrumental metrics utilised
in [10], averaged on the whole test set

method NA[dB] SSDR[dB] ∆SNR[dB] PESQst
LSA 11.88 12.23 8.52 3.66
CEMID 12.20 12.89 8.44 3.67
RAE 11.72 13.59 8.36 3.66
CC 12.04 13.27 8.88 3.59
Comb 11.37 13.86 8.50 3.66

TABLE III: PESQ MOS-LQO and other instrumental metrics
on speech active frames, averaged on the whole test set

method NAact[dB] ∆SNRact[dB] ∆PESQ ∆PESQact
LSA 9.12 6.45 0.38 0.54
CEMID 8.91 5.97 0.39 0.55
RAE 8.58 5.98 0.41 0.60
CC 9.24 6.82 0.41 0.58
Comb 8.66 6.44 0.42 0.61

According to Table II, CEMID yields higher NA than the
other speech enhancement methods, and higher SSDR than
the preliminary noise reduction methods. However, a different
result is seen when focusing on the speech active frames
(Table III). Here CEMID does not provide benefit (in terms
of NA and SSDR) over the baseline MMSE-LSA approach.
This divergence indicates that, in terms of NA, CEMID benefits
mostly from the extra noise reduction ability in silent frames
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when discarding the majority of the cepstral coefficients of the
excitation signal. In terms of SSDR, this indicates the effect
of inadequate harmonic emphasis and discarding spectral fine
structure.

Comparing with CEMID, the proposed methods, RAE and
CC, introduce less speech distortion, as indicated by a higher
SSDR. Cepstral convolution provides good noise reduction in
both the global sense and speech active frames. The combined
method provides the best speech estimate in terms of speech
quality (PESQ MOS-LQO). It shows the lowest NA but similar
NAact to CEMID, which suggests the overall metrics of the
combined method are influenced by its performance in silent
regions. This trade-off is expected since we also enhanced
silent and unvoiced frames and thus generated false harmonics
in them.

We described the excitation dynamic range underestimation
of CEMID in section III-A with an example of Fig. 8c;
however, it is difficult to observe the degradation of this
vocoding effect from the metrics in Table II. The reason is that
SSDR and PESQst are both evaluated on the filtered speech
component, so insufficient inter-harmonic gain suppression
will not cause artefacts in the filtered speech component (in
contrast, it would actually be beneficial for these metrics!)
This weakness of CEMID is, however, reflected by the com-
prehensive PESQ metrics: ∆PESQ and PESQact. Compared to
the MMSE-LSA baseline, we see only a small benefit from
CEMID in these metrics, whereas the proposed methods yield
the best scores.

The SNRs of the test set lie in a wide range. To better
appreciate the contributions of the various methods we now
consider the results grouped by SNR.

2) ∆PESQ and ∆PESQact: Fig. 9 provides the results on
∆PESQ and ∆PESQact at different SNRs (mean improvement
and the 95% confidence intervals). We provide the results
in this manner because ∆PESQ indicates the overall perfor-
mance over the noisy utterance (factoring in, thereby, possible
degradations introduced by the methods due to errors in F0

estimation and over-estimation of the harmonic amplitudes),
whereas ∆PESQact is computed on speech-active frames.
Thereby, ∆PESQact can better highlight the benefits of the
proposed methods on the parts of the signal where they are
expected to contribute most prominently.

The following insights are obtained. Firstly, in terms of
overall quality, we may conclude that while CEMID yields
an average ∆PESQ improvement compared to the baseline
MMSE-LSA approach, this is only true for high SNRs (10 dB,
15 dB and 20 dB). At lower SNRs, CEMID introduces more
distortion than this baseline. However, if we consider the
confidence intervals, it may be disputed whether this difference
is statistically significant. In contrast, each of our proposed
improvements consistently provides a better ∆PESQ com-
pared to MMSE-LSA and CEMID. Especially at SNRs from
5dB to 15dB, the difference may be considered statistically
significant.

When we restrict the metric evaluation to the speech active
frames (∆PESQact), CEMID shows a consistent improvement
over the MMSE-LSA baseline for a wider range of input
SNRs, but it is again debatable whether this difference is

significant (strongly overlapping confidence intervals). In con-
trast, again, our proposed modifications have higher scores,
with the differences being significant over the same SNR range
as for ∆PESQ. On the basis of the PESQ scores, however,
it is difficult to conclude whether the combination of RAE
and CC (which has the highest score in all conditions) is a
significant improvement over the two modifications considered
individually. But, this is at least a first indication that the RAE
and CC provide complementary improvements.

Meanwhile, the improvement in PESQ MOS-LQO of
CEMID gradually approaches that of RAE as SNR increases,
which indicates that the proposed RAE is a better candidate for
the synthesised excitation, since CEMID can provide a good
estimation under high SNRs.

(a) Average ∆PESQ at different SNRs

(b) Average ∆PESQact at different SNRs

Fig. 9: Improvements in PESQ MOS-LQO on the whole signal
(Fig. (a)), and on the speech active frames (PESQact) (Fig. (b))
for the different methods. The scores are averaged over the
different noise types at each SNR. The error bars represent
the 95% confidence interval.

3) POLQA: We also evaluated the performance of the five
methods using POLQA, which is the new industry standard
metric for benchmarking the voice quality for voice communi-
cations applications. The evaluation was performed on a subset
of 500 gender- and noise-balanced samples with SNRs from
−5 dB to 15 dB, which we believe are the most essential SNRs
to observe the difference between methods according to the
results of PESQ and PESQact. As shown in Fig. 10, POLQA
shows a similar trend as PESQ MOS-LQO: CEMID degrades
speech quality in low SNRs, while the proposed methods are
able to improve it under all conditions. In terms of POLQA
we see that RAE and CC are consistently better than both
baselines: MMSE-LSA and CEMID, and this performance is
significant from an SNR of 5dB onwards. However, RAE
and CC, compared to each other, seem to offer the same
performance in terms of POLQA. It is now interesting to
see that the combined method is again better than both RAE
and CC, and this difference is significant. This is a strong
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indication of the complementary nature of the improvements
offered by RAE and CC. The results of POLQA analysis have
also been confirmed by a listening test by two experts. A
Spearman’s correlation coefficient of 0.91 between the expert
scores and those of POLQA was found. These results are more
reliable indicators of the quality improvements obtained, and
reinforce our conclusions based on the other metrics.

(a) Average POLQA at different SNRs

(b) Average ∆POLQA at different SNRs

Fig. 10: POLQA and ∆POLQA of signals enhanced by the
different methods, averaged over noise types at each SNR. The
proposed methods (RAE, CC and combined methods) are able
to improve speech quality in all cases. The combined method
shows the highest improvement. The error bars represent the
95% confidence interval.

4) NA and SSDR: Fig. 11 and Fig. 12 demonstrate the effect
of the proposed methods on the filtered individual components.
Higher NA indicates better noise suppression of the method
while higher SSDR indicates less distortion being introduced
on the resultant speech during the processing. As expected,
noise reduction as well as speech distortion decreases when
SNR increases for all methods. It should be noted that in
Fig. 11 NA decreases only 1 dB from the lowest SNR cases
to the highest SNR cases, while NAact decreases by 5 or 6 dB
from one extreme to another. This means a higher overall gain
function in the speech active frames, which is expected in
speech enhancement.

It is difficult to appreciate the difference among the methods
because Fig. 11 shows mainly the magnitude change. There-
fore, choosing the preliminary denoising approach (MMSE-
LSA) as the baseline, Fig. 12 illustrates the improvement of
NA, NAact and SSDR of all excitation manipulation methods
compared to this baseline. The performance difference on
NA (Fig. 12a) and NAact (Fig. 12b) indicates that CEMID
strongly benefits from extra noise reduction of speech inactive
frames at low SNRs, as observed from the overall average
of these metrics. However, this advantage of NA comes at
the cost of extra speech distortion (the lowest SSDR among
four methods), which is also more noticeable in low SNR

(a) Average SSDR-NA of each method at different SNRs

(b) Average SSDR-NAact of each method at different SNRs

Fig. 11: SSDR-NA relationship of signals enhanced by differ-
ent methods, averaged among all noise types at each SNR

cases. The combined method scores lower than other methods
in noise reduction. Note that CEMID or our modifications
are always carried out without explicit voiced and unvoiced
detection. The lower noise reduction score of the combined
approach may, therefore, be due to the over-amplification un-
der the harmonic structure assumption in unvoiced and speech
inactive frames. In terms of SSDR, the improvement of CEMID
increases sharply as the SNR increases. SSDR of CEMID at
−5 dB is even lower than MMSE-LSA, while our RAE yields
more than 1 dB higher SSDR than the LSA baseline in that
case. This comparison confirms our hypothesis that using a
constant amplifying factor leads to noticeable artefacts due to
the underestimation of residual dynamic range. In contrast,
both RAE and CC are able to reduce speech distortion.
The latter performs better in terms of noise reduction while
the former in terms of speech preservation. The combined
approach subsequently takes advantage of the complementary
nature of these improvements and yields the best result.

5) STOI: The STOI scores, grouped by SNRs, are shown in
Fig. 13. The proposed methods exceed CEMID, but compared
to noisy input, only the combined method is able to slightly
improve the score in extreme conditions (SNRs of −5 dB,
0 dB, and 5 dB).

V. CONCLUSIONS

In this paper we have investigated the CEM approach
proposed by [10] in detail. By reformulating the excitation
synthesis problem, we were able to get a better insight
into the inherent weakness of this approach, namely that
the enhanced audio may lose its harmonic sharpness due to
dynamic range underestimation and the loss of fine structure
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(a) NA (b) NA of the speech active frames (c) SSDR

Fig. 12: Average improvement on NA, NAact and SSDR of methods over preliminary denoising results (by decision-directed
approach). The difference between Fig. 12a and Fig. 12b suggests that CEMID benefits from extra noise reduction in silent
regions. Fig. 12c shows that the proposed methods successfully improve speech quality.

Fig. 13: STOI of noisy signals and enhanced signals, averaged
across different noise types at each SNR. The error bars
represent the 95% confidence interval.

in the synthesised excitation signal spectrum. Based on our
findings, we then proposed two modifications that are able
to enhance the harmonic structure of voiced speech in a
more natural and robust way. The proposed modifications
include residual amplitude estimation and cepstral convolution
smoothing. The evaluation results on multi-noise conditions
show that the proposed modifications are better able to restore
lost harmonics and sharpen the existing ones in voiced frames.
Each modification, individually, improves over CEMID. The
two modifications are, also, complementary. This is evident
from the fact that the combined method scores higher than
each modification individually. The improvement is still robust
at low SNRs.

There is still room for further improvement. For example, a
finer pitch estimation method could be beneficial. Current F0

estimation is based on peak-picking on the discrete quefrency
bins and then calculating the corresponding frequencies. This
could introduce a quantisation error when the actual funda-
mental frequency falls between the adjacent bins. Secondly,
since we assume a harmonic structure for all frames, there is
the risk of stronger musical noise, which has been reflected by
the difference between metrics on active frames and these on
the whole signal. This can be solved by introducing a voice

activity detection module, and applying the proposed method
to voiced speech frames only.

Lastly, we note that CEM need not be seen as a stand-alone
method. In our work, we consider a statistical noise suppres-
sion framework within which CEM is integrated. However,
in practice, CEM can be piggy-backed onto any denoising
framework which can output an estimate of the gain function
and noise floor. This also opens the possibility to integrate
CEM within DNN-based frameworks, allowing for a marriage
of model-based approaches and data-driven approaches, with
all the ensuing benefits thereof. These are directions we will
consider for the future.

We urge the reader to listen to the audio examples at
https://yanjuesong.github.io/Improved-CEM-samples/ .
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