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A B S T R A C T

Spiking neural networks (SNNs) have recently gained large interest for edge-AI applications due to their low
latency and ultra-low energy consumption. Unlike DNNs, SNNs communicate information using spike trains.
As the derivative of spike trains are highly ill-defined, the use of surrogate gradients has been proposed as
an efficient method for training SNNs. Still, the lack of open-source SNN softwares and the limited range
of demonstrated SNN applications slows down a wider SNN adoption. We release our ConvSNN framework,
demonstrating the novel applicability of quantized-weight SNNs for radar gesture recognition. Our framework
will facilitate future research in the SNN area.

Code metadata

Current code version 1.0
Permanent link to code/repository used for this code version https://github.com/SoftwareImpacts/SIMPAC-2021-111
Permanent link to Reproducible Capsule https://codeocean.com/capsule/6192245/tree/v1
Legal Code License MIT License
Code versioning system used git
Software code languages, tools, and services used Python
Compilation requirements, operating environments & dependencies pytorch v.1.5.1, sklearn, matplotlib, numpy
If available Link to developer documentation/manual
Support email for questions Ali.Safa@imec.be

1. Introduction

In recent years, spiking neural networks (SNNs) have emerged as a
new event-based computing paradigm (as opposed to classical frame-
based networks). SNNs have gained significant interest due to their
low inference latency, low energy consumption and their compatibility
with the growing number of massively parallel neuromorphic computing
architectures (investigated by companies such as Intel [1]), making
them attractive choices for edge-AI applications [2]. In contrast to
the continuous activation functions (e.g., ReLU) used in classical deep
neural networks (DNNs), SNNs make use of discontinuous, spiking acti-
vation function, which code information as spike trains (Dirac combs).
This leads to ill-defined gradients throughout the network, prohibiting
the direct use of error back-propagation (backprop). To circumvent this
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problem and enable backprop, the use of surrogate gradients [3] with
back-propagation through time (BPTT) [4] has been recently proposed,
and quickly gained popularity due to its remarkable efficiency [5].

Still, a greater adoption of SNNs has been slowed down, mainly
due to (1) the small number of open-source SNN frameworks, and (2)
the limited number of demonstrated applications. In this paper, we
address both problems by releasing our convolutional SNN (ConvSNN)
framework, targeting the novel use-case of SNN-based radar gesture
recognition. In addition, our framework also differs from previous
SNN works due to its use of quantization-aware training. Our release
software demonstrate the applicability of a resource-constrained Con-
vSNN with 4-bit weights (typical bit width in neuromorphic processors
[7]) on two different radar gesture recognition dataset [6,8], achiev-
ing more than 91% of accuracy. The proposed system is therefore
https://doi.org/10.1016/j.simpa.2021.100131
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Fig. 1. Confusion matrix for the 12-class radar gesture recognition of [6]. Generated by running the file SNN_12_class_test.py. The recognition accuracy is 91% ± 2%.

ready for implementation in the growing number of ultra-low-power
neuromorphic processors [1].

2. Description

The ConvSNN framework is written in Python and relies on the
PyTorch library [9] for automatic differentiation and for the definition
of a custom spiking neuron class called ActFun in the file eNetworks.py.
The ActFun class behaves as a leaky integrate and fire (LIF) neu-
ron in the forward pass and uses a Gaussian surrogate in the back-
prop pass [3]. Users can easily experiment with different surrogate
models by writing their custom mathematical model in the backward
method of the ActFun class. The LIF decay parameter decay_neu and
the Gaussian surrogate parameters can be modified in the top lines
of eNetworks.py. The ConvSNN is defined by the class mini_eCNN in
eNetworks.py and can be easily modified by users (e.g., to experiment
with more layers). The file SNN_12_class_train.py trains the ConvSNN on
the 12-class radar dataset. The function low_precision is used to quantize
the network weights to a settable bit width. The same description
holds for the file SNN_5_class_train.py, which trains the network on
the second radar dataset (5-class). The files SNN_12_class_test.py and
SNN_5_class_test.py test the accuracy of the saved models on their
corresponding datasets. Fig. 1 shows the confusion matrix obtained by
running SNN_12_class_test.py. Models saved during training are stored in
the folders saved_models_12_class and saved_models_5_class and are loaded
from there by the test files SNN_12_class_test.py and SNN_5_class_test.py.
The datasets are stored in the folders dataset_5_class and dataset_12_class.

3. Impact

Our ConvSNN framework has enabled the development of a novel
radar gesture recognition system with implementation-ready 4-bit
weights [10], targeting the ultra-low-power edge-AI and IoT domains.
The framework proposed in this paper is modular and can be easily
modified by other researchers to suit their custom needs (as it mostly
relies on standard PyTorch functions [9]). Our ConvSNN framework
is one of the few state-of-the-art SNN softwares publicly released for
the greater machine learning community, and will help researchers to
quickly evaluate and extend SNNs, enabling a faster adoption of the
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