Received: 2 May 2022 Revised: 17 June 2022

Accepted: 20 June 2022

| IET Information Security

DOT: 10.1049/ise2.12077

ORIGINAL RESEARCH

—
| The Instituti f
I — I Engineering and Technology VW ILIEY

Characteristic automated search of cryptographic algorithms for
distinguishing attacks (CASCADA)

Adrian Ranea |

imec-COSIC, KU Leuven, Leuven, Belgium

Correspondence

Adridn Ranea, imec-COSIC, KU Leuven,
Kasteelpark Arenberg 10, Leuven 3001, Belgium.
Email: adrian.ranea@esat.kuleuven.be

Funding information

Fonds Wetenschappelijk Onderzoek, Grant/Award
Number: 11E1921IN

Vincent Rijmen

Abstract

Automated search methods based on Satisfiability Modulo Theory (SMT) problems are
being widely used to evaluate the security of block ciphers against distinguishing attacks.
While these methods provide a systematic and generic methodology, most of their
software implementations are limited to a small set of ciphers and attacks, and extending
these implementations requires significant effort and expertise. In this work, the authors
present cryptographic algorithms for distinguishing attacks (CASCADA), an open-source
Python library to evaluate the security of cryptographic primitives, specially block ci-
phers, against distinguishing attacks with bit-vector SMT solvers. The tool CASCADA
implements the bit-vector property framework herein proposed and several SMT-based
automated search methods to evaluate the security of ciphers against differential, related-
key differential, rotational-XOR, impossible-differential, impossible-rotational-XOR,
related-key impossible-differential, linear and zero-correlation cryptanalysis. The library
CASCADA is the result of a huge engineering effort, and it provides many functionalities,

1 | INTRODUCTION

Automated tools have gained significant traction in the last
decade in the security evaluation of cryptographic algorithms,
specially block ciphers. In the design and cryptanalysis of a
block cipher, the security is evaluated by verifying that no
known attacks cannot efficiently recover the secret key of the
cipher. Most cipher attacks include an initial distinguishing
attack, where a non-random property of the cipher is exploited
to distinguish the cipher from a random permutation. The
distinguishing step is followed by a key-recovery step, but
finding the exploitable property of the cipher is the hardest
part to mount the attack.

Well-known examples of powerful cipher attacks including
a distinguishing step are differential [1], related-key differential
[2], impossible-differential [3] and rotational-XOR (RX) [4]
cryptanalysis, and also linear [5] and zero-correlation crypt-
analysis [6]. The properties exploited by (related-key) differ-
ential and (related-key) impossible-differential cryptanalysts are
(related-key) differential objects, by RX cryptanalysis are RX
difference pairs, and by linear and zero-correlation

a modular design, an extensive documentation and a complete suite of tests.

cryptanalysis are linear approximations. In the next section, we
will introduce these properties in more detail.

While these properties were traditionally searched for ad-
hoc and manually, recent studies proposed the use of auto-
mated tools based on constraint satisfaction problems, such as
Satisfiability Modulo Theories (SMTs) or Mixed Integer Linear
Programing (MILP) [7, 8]. Automated methods model these
searches as constraint satisfaction problems and solve them
with powerful off-the-shelf solvers available nowadays [9-11],
freeing designers and cryptanalysts from the effort of imple-
menting and optimising the search.

Unfortunately, most automated methods published in the
literature do not provide software implementations [12—18] or
provide narrow implementations that are specific to a cipher
and a distinguishing attack [7, 8, 19, 20], and extending these
implementations to other ciphers or attacks require significant
effort and expertise.

The notable exceptions are the SMT-based tools, Cryp—
toSMT [21] and ArxPy [22]. Both libraries support many block
ciphers and several distinguishing attacks, namely differential
and linear cryptanalysis in CryptoSMT and (related-key)

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

propetly cited.

© 2022 The Authors. IET Information Security published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

470 | IET Inf. Secur. 2022;16:470-481.

wileyonlinelibrary.com/journal /ise2

85U80]7 SUOWILLOD BA81D 3ded!|dde ayy Aq pausenob a2 seoile O ‘8sn JO sa|ni 1o} A%eld8UUO 8|1 UO (SUORIPUOD-PUR-SWBIALIO" A3 1M AeIq 1 Bul [UO//:SdNY) SUOHIPUOD Pue SWs | 8U18eS *[220z/TT/2T] uo ARiqiauluo AM ‘WNID T3 - IV IONIAIAT Aq 2202T 288 1/670T 0T/I0p/W00" A8 | 1M Akeid||pul [UO"Yo Jeasa. e //:Scy oy pepeoiumoq 9 ‘2202 ‘LT/8TSLT

https://doi.org/10.1049/ise2.12077
https://orcid.org/0000-0002-8697-7423
mailto:adrian.ranea@esat.kuleuven.be
https://orcid.org/0000-0002-8697-7423
https://ietresearch.onlinelibrary.wiley.com/journal/17518717

RANEA anp RIJMEN

| 471

differential, RX, and (related-key) impossible-differential in
ArxPy, and they have been used in multiple studies, for
example, Refs. [23-26] or [27-30]. However, these two libraries
present severe limitations. For example, CryptoSMT lacks
code documentation and tests, and adding a new cipher in
CryptoSMT requires significant expertise and effort as one
needs to implement the differential and linear SMT models of
the cipher. The tool ArxPy does not suffer from these limita-
tions, but only supports Addition-Rotation-XOR (ARX) ciphers
and does not support linear or zero-correlation cryptanalysis.

Contributions. In this work we present CASCADA [31]
(Characteristic Automated Search of Cryptographic Algo-
rithms for Distinguishing Attacks), an open-source Python li-
brary to evaluate the security of block ciphers and other
cryptographic primitives against several distinguishing attacks
by searching for exploitable properties using bit-vector SMT
solvers. CASCADA is available at https://github.com/ranea/
CASCADA.

The library CASCADA is based on ArxPy, but only a third
of CASCADA's source code detives from ArxPy, and CAS-
CADA implements more automated methods and distinguish-
ing attacks, supports a wider class of block ciphers and
primitives, and improves the code, documentation and tests.

The tool CASCADA implements the search for differen-
tials, RX difference pairs and linear approximations to be used
in differential, related-key differential, impossible-differential,
related-key impossible-differential, RX, impossible-RX, linear,
and zero-correlation cryptanalysis. The automated search for
these properties is implemented in CASCADA following the
bit-vector property framework herein proposed so that other
distinguishing attacks can be easily added.

Four automated search methods based on bit-vector SMT
problems are implemented in CASCADA. Three of these
methods are the generalisation of previous work [7, 15, 30] to
the bit-vector property framework, and the fourth method is a
new automated search method based on quantified SMT
problems.

The open-source library CASCADA is the result of a huge
engineering effort aiming to provide a state-of-the-art tool to
evaluate a wide class of cryptographic algorithms against many
distinguishing attacks. To this end, CASCADA features a
modular design, an extensive documentation and a complete
suite of tests so that CASCADA is not only easy to use but also
to extend by designers and cryptanalysts.

Outline. In Section 2, the preliminaries are introduced, and
in Section 3, the bit-vector property framework is presented.
Automated methods based on bit-vector SMT problems are
explained in Section 4, and Section 5 describes the function-
ality and implementation of CASCADA.

2 | PRELIMINARIES
2.1 | Bit-vector SMT problems

A bit-vector expression is a bit-vector constant, a bit-vector
variable or a bit-vector operation with bit-vector expressions

as inputs. Bit-vector constants are interpreted as unsigned in-
tegers in base 2; the 7-bit vector x = by_1-+-b1b, denotes the
non-negative integer by + 2by + - + 2"7'b,,_;. The ith bit of
x, b;, is also denoted by x [i], where x [0] = by denotes the
Least Significant Bit (LSB) and x [z — 1] = b,,_; denotes the
Most Significant Bit (MSB). We consider here the following
bit-vector operations and notations:

— The concatenation and extraction of bit-vectors.

— The bit-wise logical operations: negation -, conjunction A,
disjunction V, and exclusive-or (XOR) .

— The shift operations: left shift < (logical) right shift >,
circular left rotation << and circular right rotation >>.

— The arithmetical operations: modular addition F, modular
subtraction H, modular multiplication, [X] unsigned trun-
cated division operation [and unsigned remainder
(modulus) operation 7.

— The relational operations: =, <, >, < and 2.

— The if-then-else operator Tte(b, x, v), returning x if bis equal
to the bit 0 and otherwise returning y.

A bit-vector formula or constraint is a bit-vector expres-
sion returning a single bit, where the bit O denotes the truth
value False and the bit 1 denotes True. A bit-vector for-
mula is satisfiable if there is an assignment of the variables that
makes the formula True.

SMT refers to the problem of determining whether a first
order formula is satisfiable with respect to some logical theory
[9, 10]. SMT problems can be seen as a generalisation of SAT
problems; the latter problems are expressed in propositional
logic, and SMT problems are given in richer logics such as the
theory of integers or the theory of bit-vectors.

An SMT problem defined in the bit-vector theory, or
simply a bit-vector SMT problem, is given by a list of bit-
vector variables, each one associated with the existential 3 or
for-all V quantifier, and a list of bit-vector constraints including
these variables. An SMT problem where the quantifiers are not
specified is called a quantifier-free problem, and it is equi-
satisfiable to the same SMT problem with existential quanti-
fiers. On the other hand, SMT problems combining existential
and for-all quantifiers are called quantified problems, and these
are much harder to solve [32].

For example, given the function f(x,y) = (((x>>7)
Hy @k (y<2)® (((x>>7)Hy) ®k)) with x, y, k €
{0,1}'°, the decision problem of determining whether there
exists an assignment of k such that f;, (0, 0) = (0, 0) can be
written as the following bit-vector SMT problem

Ax,y, k,x',y €{0,1}'°:
¥=((x>7)Hy &k
Y=()<2)®x
0=xVvyvx Vvy.

Software tools that determine the satisfiability of SMT
problems are called SMT solvers. In the past 2 decades, SMT
solvers have grown in popularity due to technological advances

85U80]7 SUOWILLOD BA81D 3ded!|dde ayy Aq pausenob a2 seoile O ‘8sn JO sa|ni 1o} A%eld8UUO 8|1 UO (SUORIPUOD-PUR-SWBIALIO" A3 1M AeIq 1 Bul [UO//:SdNY) SUOHIPUOD Pue SWs | 8U18eS *[220z/TT/2T] uo ARiqiauluo AM ‘WNID T3 - IV IONIAIAT Aq 2202T 288 1/670T 0T/I0p/W00" A8 | 1M Akeid||pul [UO"Yo Jeasa. e //:Scy oy pepeoiumoq 9 ‘2202 ‘LT/8TSLT

https://github.com/ranea/CASCADA
https://github.com/ranea/CASCADA

472 |

RANEA anp RIJMEN

and industrial applications in software engineering, optimisa-
tion, and many other areas [33]. On top of that, many state-of-
the-art and open-source SMT solvers are available nowadays
such as Boolector [34] or STP [35], among others.

SMT solvers not only can determine the satisfiability of an
SMT problem but also find an assignment of the variables that
satisfies the problem. This feature allows SMT solvers to be
used in search problems. Following our previous bit-vector
SMT example, by using an SMT solver supporting the bit-
vector theory, we could first check whether the problem is
satisfiable, and in that case, find a value of that makes f;, (0, 0)
= (0, 0).

Most SMT solvers supporting the bit-vector theory sup-
port the bit-vector core theory of the SMT-LIB Standard 2.0
[36]. This standard includes most of the bit-vector operations
herein considered, and the ones that are not included (e.g. Ite)
can be easily defined from the operations in the standard.
Thus, we consider here bit-vector SMT problems built from
our list of bit-vector operations, and these SMT problems can
be given to any SMT solver supporting SMT-LIB Standard 2.0,
such as Boolector or STP.

2.2 |
ciphers

Distinguishing attacks on block

A block cipher is a family of permutations {E}, para-
metrised by a key k£ € K, where E; maps n-bit plaintexts to
n-bit ciphertexts, and both Ej, and E' can be efficiently
computed. In an iterated block cipher, the encryption func-
tion E} is built as the composition of round functions, that
is, Ep = fr_q © fy_5 © ==+ © fo, where a list of round keys are
derived from a key-scheduling algorithm KS(k) = (ky, &1, ..,
k,_1) and the ith round key k; is injected in the ith round
function f;.

Informally, the security of a block cipher is argued by
showing that known attacks cannot efficiently recover the key.
Most of the powerful attacks against block ciphers contain a
distinguishing attack, where a non-random property of the
cipher is exploited to distinguish the cipher from a random
permutation. The distinguishing attack is usually followed by a
key-recovery attack, but finding the exploitable property for
the distinguishing attack is the crucial part and the focus of this
work.

The properties exploited in differential cryptanalysis are
differentials (o, f) over the encryption function Ej with high
expected differential probability. Given a differential (@, f)
over f, its differential probability is given by

#x:fxaa)vfx)=p}/2", (1)

where usually A = @ = v. The Vv operator computes the
difference of a pair of values (x, x'), and the A operator takes as
input a value x and a difference @ and outputs the value x’ such
that the pair (x, x') have difference a.

The expected differential probability p is the differential
probability averaged over the key space I,

» :‘,%'Z{x Sxaa)vf@x)=p}/2",

kek

and the complexity of differential cryptanalysis is O(1/p) [1].
Related-key differential cryptanalysis is a vatriant of differential
cryptanalysis that exploits related-key differentials (a, &,)
with high expected related-key differential probability, where
the related-key differential probability is given by

#{x : Epax(x 8 a) v Eg(x) = f}/2". (2)

We refer the reader to Ref. [37] for a formal introduction to
the notions of differential and differential probability.

Impossible-differential cryptanalysis exploits differentials
with zero differential probability for all keys, and similarly
related-key impossible-differential cryptanalysis exploits related-
key differentials with zero probability. While the complexity of
(related-key) impossible-differential cryptanalysis is roughly the
cardinality of the input space, this can be significantly reduced by
using multiple zero-probability (related-key) differentials [38].

In RX cryptanalysis, the properties exploited are RX dif-

ference pairs (Ay, A;,) with high expected RX probability, where
the RX probability over an n-bit function fis defined as [20]

So#{x: () < @f(rr) @) =2} /2"

Since an RX difference pair (@, f) is equivalent to a dif-
ferential (@,) with {v, A} defined as
XYvx=x®(x<«l), xaa=(x<kl)®a, (3)
in this paper we will call RX difference pairs RX differentials,
and differentials with A = @ = v will be called XOR
differentials.
On the other hand, linear cryptanalysis exploit linear ap-
proximations (&, ff) over the encryption function Ej with high

expected linear probability or potential. Let Cr(a,) be the
correlation of (a,) over an n-bit function f defined as

Crla,p)=2x (#{x:{a,x)=(B.f(x))} / 2") -1, (4)

where (-, -) denotes the inner product. The potential p is the
linear probability (square of the correlation) averaged over the
key space K,

_ 1 2
p= |IC| ZCEk(a’ﬂ) ;

kex

and the complexity of linear cryptanalysis is O(1/p) [5]." We
refer the reader to Ref. [37, 39] for a formal introduction to the
notions of linear approximations and correlations.

]Follow»up studies of Ref. [5] (e.g., [39, 78]) provide a more accurate estimation of the
complexity of linear cryptanalysis.

85U80]7 SUOWILLOD BA81D 3ded!|dde ayy Aq pausenob a2 seoile O ‘8sn JO sa|ni 1o} A%eld8UUO 8|1 UO (SUORIPUOD-PUR-SWBIALIO" A3 1M AeIq 1 Bul [UO//:SdNY) SUOHIPUOD Pue SWs | 8U18eS *[220z/TT/2T] uo ARiqiauluo AM ‘WNID T3 - IV IONIAIAT Aq 2202T 288 1/670T 0T/I0p/W00" A8 | 1M Akeid||pul [UO"Yo Jeasa. e //:Scy oy pepeoiumoq 9 ‘2202 ‘LT/8TSLT

RANEA anp RIJMEN

| 473

Lastly, zero-correlation cryptanalysis exploit linear ap-
proximations with zero correlation for all keys. Similar to
impossible-differential cryptanalysis, the complexity of zero-
correlation cryptanalysis is roughly the cardinality of the
plaintext space, and it can be reduced by using multiple zero-
correlation linear approximations [40].

3 | BIT-VECTOR PROPERTY
FRAMEWORK

To systematically model the search for (related-key) XOR
differentials, RX differentials and linear approximations with
bit-vector SMT problems, we will introduce the bit-vector
property framework containing the notions of bit-vector
property, bit-vector characteristic, bit-vector property model
and bit-vector characteristic model. Other frameworks unifying
block cipher cryptanalysis have also been proposed [41, 42],
but our simple framework (implemented in CASCADA) easily
models the search for exploitable properties as bit-vector
automated methods.

3.1 | Bit-vector properties and
characteristics

A (bit-vector) property over a function f is a pair of bit-
vectors (a,) with an associated propagation probability
PPr(a,p) €[0,1] C R. In this case, we also say that the input
property a propagates to the output property f with proba-
bility PP/(a, f).

For a function f;, depending on external values & = (ky, ko,
...), non-input but unknown fixed values such as round keys, a
bit-vector property over f can include an additional bit-vector
value k so that the propagation probability depends not only
on the input and output properties (@, f) but also on the
external property K.

We consider here three types of properties” the XOR dif-
ference property, the RX difference property and the linear mask
property. A difference property (a, 8) over a function fis defined
as the bit-vector property (a,) over [where the propagation
probability is given by Equation (1) or by Equation (2) and
averaged over K if f contains external values &£ € K. XOR dif-
ference properties consider A = @ = v, and RX difference
properties consider A and v given by Equation (3).

A linear mask property (@,) over fis a bit-vector property
(a, p) over f where the propagation probability is given by the
absolute value of the correlation Cr(a, f) given by Equation (4)
(averaged over K if f contains external values k € K).

While distinguishing attacks only require the global prop-
erty (a,) and its propagation probability, computing the

“The tool CASCADA also implements a fourth property type, the value property, where
the propagation probability of the value property (a,) over fis 1 if f = f(a) and

0 otherwise. The value property is not exploited by the distinguishing attacks herein
considered; it is implemented by CASCADA to mount straightforward SMT-based key-
recovery attacks.

propagation probability is a hard problem for complex func-
tions such as block ciphers. The main approach of dis-
tinguishing attacks is to analyse the local propagation
probabilities of the round functions, to obtain a trail of local
properties and to estimate the global propagation probability as
the product of the local propagation probabilities.

A (bit-vector) characteristic I over f=f,_j o f, 50 -0 fyis
a trail of properties (Yo, 71, - .-, Yx) Where (¥;, ¥iy1) is a bit-vector
property over f;. The bit-vectors (yo, 7,) are also called the input
and output property, respectively, of I'. The propagation
probability of I" is defined as

PPf(F) :pro(y()ayl) XPPﬁ(Yla}/Z) X oeee prﬁ_1(}/7_1,y?,),

A characteristic with XOR (resp. RX) properties is called
an XOR (RX) differential characteristic, and a characteristic
with linear mask properties is called a linear characteristic. A
related-key differential characteristic over a block cipher is a
pair of differential characteristics (FKS, FEk) with I'g defined
over the key-schedule function KS and I'g, over the encryption
function E} such that the (external) round key properties of
T'g, are set to the properties of I's.

Depending on the function and the property, the propa-
gation probability of a characteristic I' = (yo, 1, ..., ¥,) might
not accurately approximate the propagation probability of the
global property (¥o, 7,), see for example, Ref. [24]. Neverthe-
less, this approximation is widely used in the design and
cryptanalysis of block ciphers (particularly ARX ciphers) due to
the lack of other systematic approaches.

In practice, block ciphers are claimed secure against dis-
tinguishing attacks by showing that no high-probability char-
acteristics and zero-probability global properties can be found,
and most of the successful attacks against block ciphers have
exploited these objects as well. Thus, systematic methods
searching for these objects are crucial for the design and
analysis of block ciphers.

To search for high-probability characteristics and zero-
probability global properties using bit-vector SMT problems,
the propagation probabilities of characteristics and properties
need to be encoded as bit-vector constraints. To this end, we
will introduce the notions of bit-vector property model and
bit-vector characteristic model.

3.2 | Bit-vector property model

We say a property (@, f) over a function f is valid if its
propagation probability is non-zero. In this case, we define the
propagation weight of (@,) as the negative binary logarithm
of its propagation probability, that is,

PWf(a, ﬂ) = —log2 (PPf(a, ﬁ)) .

A (bit-vector) property model of fis a set of bit-vector
constraints that models the propagation weight of properties
over f- A property model of f is given by three bit-vector

85U80]7 SUOWILLOD BA81D 3ded!|dde ayy Aq pausenob a2 seoile O ‘8sn JO sa|ni 1o} A%eld8UUO 8|1 UO (SUORIPUOD-PUR-SWBIALIO" A3 1M AeIq 1 Bul [UO//:SdNY) SUOHIPUOD Pue SWs | 8U18eS *[220z/TT/2T] uo ARiqiauluo AM ‘WNID T3 - IV IONIAIAT Aq 2202T 288 1/670T 0T/I0p/W00" A8 | 1M Akeid||pul [UO"Yo Jeasa. e //:Scy oy pepeoiumoq 9 ‘2202 ‘LT/8TSLT

474

RANEA anp RIJMEN

constraints: the validity constraint, the probability-one
constraint and the weight constraint.

— The validity constraint with inputs (a, f) is True if and
only if the property (a, B) is valid.

— The probability-one constraint with inputs (a, f) is True if
and only if the propagation probability of the propetty (a, f)
is 1.

— The weight constraint with inputs (w, @, #) is True if and
only if the bit-vector w is equal to the propagation weight of

the property (a,).

The weight constraint is only defined for inputs (a,) with
non-zero propagation probability; the truth value of the weight
constraint for invalid (@, f) does not matter. While the
probability-one constraint is equivalent to the logical AND of
the validity constraint and the weight constraint with input
w = 0, for many functions it is possible to specifically model
the probability-one constraint with a simpler formula rather
than with the combination of the wvalidity and weight
constraint.

In bit-vector SMT problems, the multiplication [X] is more
expensive than the addition 4. To avoid modelling the propa-
gation probability of gof as the multiplication of the local
probabilities of fand g, a property model includes the weight
constraint rather than a probability constraint (a constraint with
inputs (p, a, p) being True if p is equal to the propagation
probability of (@,). Thus, the propagation weight of g © fcan be
efficiently modelled as the sum of the local propagation weights
of fand g.

By default, the 7,,-bit input w of the weight constraint is
interpreted as the non-negative integer w[0] + 2w[1]
+++r + 2% lp[n,, — 1]. However, since the propagation
weight can be a non-integer value for some properties and
functions, we consider weight constraints where the input w is
interpreted as the rational value 277(w[0] + 2w[1]+
«+ + 2% lgy[n,, — 1)) for a given fixed number £ of fractional
bits. Moreover, we also consider weight constraints that are
True if and only if |w — PWy(a, f)| < € for a fixed error
bound e.

A property model with respect to the XOR difference, RX
difference or linear mask property is called an XOR differen-
tial, RX differential or linear model, respectively. To the best of
our knowledge, the models for these properties published this
far are the following:

— XOR differential models. Given a @-linear bit-vector
function f, an XOR differential model of f is given by
the validity and probability-one constraint # = fla) and the
weight constraint w = 0. XOR differential models of the
modular addition f (x, x") = x H x’ were implicitly ob-
tained in Refs. [43, 44], and an XOR differential model of
the modular addition with a constant [H.(x) = x FH ¢ was
proposed in Refs. [29]. For the round function of the
block cipher Simon [45], f;5.(%) = (x <K€ 2) A (x <& b) A
(x < ¢), an XOR differential model was obtained in Ref.
[23].

- RX diﬁrerential models. Given a @-linear bit-vector
function f that commutes with <&, an RX differential
model of f is given by the validity and probability-one
constraint f = f{a) and the weight constraint @ = 0. An
RX differential model of the modular addition was pro-
posed in Ref. [4] and an RX differential of the Simon
round function, in Ref. [20].

— Linear models. For a @-linear function f given by the binary
matrix M, a linear model of f'is given by the validity and
probability-one constraint @ = M(f) and the weight
constraint w = 0. Linear models of the modular addition were
implicitly obtained in Ref. [13, 44|, and a linear model of the
Simon round function was proposed in Ref. [23].

For a bit-vector function f with small input and output
bitsize, one can store the propagation weights of all properties
(@, f) in a table and derive the property model of f from this
table. This approach has been originally used for XOR dif-
ferential models [14, 19, 24, 46], and it can easily be generalised
for any bit-vector property.

Given a function with no efficient property model, one can
also model with simple and efficient constraints a simplified
variant of its propagation probability, where the truth value of
the simple constraints is not accurate for some inputs (a, f).
We consider here two types of simplified models: weak and
branch-based models.

A weak model simplifies the propagation probability by
considering only four possible propagation probabilities
depending on whether a or f§ ate zero ot non-zero. A branch-
based model is similar to a weak model but with the additional
rule that a non-zero property (a, f) is considered invalid if the
number of non-zero words in a and f is strictly lower than a
given fixed number B. Usually, B is chosen as the branch
number of f, that is, the minimum number of active words
among all non-zero properties over /- These simplified models
were originally used in Ref. [8] for the XOR difference and the
linear mask properties, where weak models were used for the
S-boxes and branch-based models were used for the linear
layers.

3.3 | Bit-vector characteristic model

We say a characteristic I' = (yo, ¥1, ---, ¥,) of a function f=f,_; ©
50« o f is valid if the propagation probability of T" is non-
zero, and in this case, we define the propagation weight of I" as

PWy(T) = ~log, (PP (T)) = PW,(ve,71) + -
+PW]§,1 (7/7—1) yr) .

A (bit-vector) characteristic model of f=f,_1 0 f,_5 0+ o fis
a set of bit-vector constraints that models the propagation
weight of characteristics over f=f,_y © f,_50 -+ o fo. A charac-
teristic model is given by three bit-vector constraints: the validity
constraint, the probability-one constraint and the weight
constraint.

85U80]7 SUOWILLOD BA81D 3ded!|dde ayy Aq pausenob a2 seoile O ‘8sn JO sa|ni 1o} A%eld8UUO 8|1 UO (SUORIPUOD-PUR-SWBIALIO" A3 1M AeIq 1 Bul [UO//:SdNY) SUOHIPUOD Pue SWs | 8U18eS *[220z/TT/2T] uo ARiqiauluo AM ‘WNID T3 - IV IONIAIAT Aq 2202T 288 1/670T 0T/I0p/W00" A8 | 1M Akeid||pul [UO"Yo Jeasa. e //:Scy oy pepeoiumoq 9 ‘2202 ‘LT/8TSLT

RANEA anp RIJMEN

| 475

— The validity constraint with inputs (yo, ¥1, .., ¥) is True if
and only if the characteristic I' = (yq, 71..., ¥») is valid.

— The probability-one constraint with inputs (yo, 71, ..., ¥) is
True if and only if the propagation probability of the
characteristic I' = (yo, ¥1..., ¥») 1s 1.

— The weight constraint with inputs (w, ¥, 11, ..., ¥») 1s True
if and only if the bit-vector w is equal to the propagation
weight of the valid characteristic I' = (¥, 71..., ¥»)-

Given property models of the functions fp, /i, ... and f,_1,
the constraints of the characteristic model are obtained as
follows. Let VC; POC; and WC; denote the wvalidity,
probability-one and weight constraint, respectively, of the
property model of ﬁ Then, the constraints VC, POC and WC
of the characteristic model are given by

VC(J/(Ja "'77/7) = VCU (}/07}/1) Ao A VCV—1 (yr—b}/‘r)
POC(yO, ...,y,) = POC, (yo,yl) A ... NPOC,_, (77—1a7r)

W/C(w, Y05 ...7;/,) =3wy, ..., w1 : (w=w H - Hw,—1)A
WCO (’Z(’)o, 70 7/1) A AWCT—l(wﬁ Yr—1> 7/7)

Moteovet, £ = max (£, ..., £r—1) is the number of frac-
tional bits and € = €y + -+ + €,_1 is the error bound of WC,
where ; is the number of fractional bits and €; the error
bound of WC;. Note also that the bitsize of the weight vari-
ables in WC might need to be increased (by left concatenating
with zeros) to avoid overflows in w = w, [H--- H w,_;.

4 | BIT-VECTOR AUTOMATED
METHODS

In this section, we describe several systematic and automated
methods to search for high-probability characteristics and
zero-probability global properties by solving a sequence of bit-
vector SMT problems. Our methods generalise the SMT-based
search for differential characteristics of ARX ciphers by Mouha
and Preneel [7], the automated search for impossible differ-
entials of ciphers with small S-boxes by Sasaki and Todo [15],
and the SMT-based miss-in-the-middle search for related-key
impossible differentials of ARX ciphers by Azimi et al. [30].
Moreover, we propose a new automated method to search for
zero-probability global properties based of quantified bit-
vector SMT problems.

These systematic methods can be applied for an arbitrary
bit-vector property. In particular, for the properties previously
defined (XOR difference, RX difference and linear mask
properties), these systematic methods can be used to mount
the following cipher attacks (related-key) differential, RX
(related-key) impossible-differential, impossible-RX, linear and
zero-correlation cryptanalysis.

While we focus here on block ciphers, it is worth
mentioning that these systematic methods can also be used to
search for exploitable properties over other cryptographic
primitives, as some of these distinguishing attacks have a

counterpart for Message Authentication Code (MAC) algo-
rithms or hash functions [1].

4.1 | Search for low-weight characteristics

In this section we describe an automated method to search for
low-weight characteristics for an arbitrary bit-vector property
by solving a sequence of bit-vector SMT problems. This
method generalises the SMT-based method to search for dif-
ferential characteristic of ARX ciphers by Ref. [7].

Let (VC, POC, WC) be the constraints of a characteristic
model of a function f = f,_; © f,_, o - o f. Finding a char-
acteristic with integer weight w can be done by solving the bit-
vector SMT problem with a bit-vector SMT solver

370,}’17 "'7y77w7w/ :
VC(%,}Q, --.77/7)

Wc(w/a YosV1s--os yr)
w = Truncate(w',)

(5)

where Truncate (w/, £) ignores the £ least significant bits by
extracting the 7, — ¢ most significant bits.

To search for a characteristic with the lowest integer weight,
the previous subroutine is simply repeated starting with integer
weight w = 0 and incrementing the integer weight if the current
SMT problem is unsatisfiable. If the error bound € of the chat-
acteristic model is zero, the first satisfiable problem leads to an
optimal characteristic, in the sense that there are no character-
istics with integer weight strictly smaller, and the search finishes.

Otherwise, let @ be the integer weight of the first char-
acteristic obtained. The search finishes after all characteristics
with integer weights in the interval [@, @ + €] are obtained,
and the one with the lowest weight (an optimal characteristic)
is returned. Note that given a characteristic I" = (y),7},
...,y/r) with integer weight w, obtaining another characteristic
with integer weight w can be done by solving the SMT
problem given by Equation (5) with the additional constraint

(70 #yé) \ (71 75)/'1) V...V (y, #y'r), and this can be
repeated to obtain all characteristics with integer weight w.

In practice, the search can be speeded up by first searching
for an optimal characteristic I'y over the simple function fo and
then using the integer weight of Iy as the starting weight of
the search over f; © fo; this process is iteratively repeated until
J=frm1°fr_z0 =+ © fo. This iterative process exploits the fact
that if all SMT problems for f; © f;_1° ++- © f; and for integer
weights {0, 1, ..., w} wete found unsatisfiable, then all SMT
problems for f;,1 © fio fiq -

.., w} are also unsatisfiable, as the characteristic weight is

° fo and for integer weights {0, 1,

defined as the sum of the non-negative local propagation
weights.

This automated method can be used to search for differ-
ential or linear characteristics of a block cipher simply by
setting f as the encryption function Ey. Related-key differential
characteristics can also be searched simply by extending
Equation (5) for a pair of characteristic models (FKS, FEk) and

85U80]7 SUOWILLOD BA81D 3ded!|dde ayy Aq pausenob a2 seoile O ‘8sn JO sa|ni 1o} A%eld8UUO 8|1 UO (SUORIPUOD-PUR-SWBIALIO" A3 1M AeIq 1 Bul [UO//:SdNY) SUOHIPUOD Pue SWs | 8U18eS *[220z/TT/2T] uo ARiqiauluo AM ‘WNID T3 - IV IONIAIAT Aq 2202T 288 1/670T 0T/I0p/W00" A8 | 1M Akeid||pul [UO"Yo Jeasa. e //:Scy oy pepeoiumoq 9 ‘2202 ‘LT/8TSLT

476 |

RANEA anp RIJMEN

constraining the sum of the propagation weight of I'kg and the
propagation weight of I'g, to the target integer weight w.
Moreover, additional constraints can be added to the SMT
problems. For example, the constraint ¥y # 0 # 7, can be added
to exclude trivial characteristics, or the probability-one
constraint of KS can be used (rather than the weight
constraint) to search for related-key differential characteristics
with key-schedule zero weight faster.

For some properties such as the difference properties, the
propagation probability of a global property (a, f) can be
estimated by summing the propagation probabilities of all
characteristics with input property @ and output property f. In
this case, the probability of (a, f) can be estimated with this
automated method by adding additional constraints fixing the
input and output property of the characteristic and searching
for all characteristics.

4.2 | Search for invalid properties

In this section, we explain how to search for zero-probability
global properties by describing three bit-vector SMT-based
methods: (1) the brute-force method generalises the auto-
mated search for impossible differentials of ciphers with small
S-boxes by Ref. [15], (2) the miss-in-the-middle method gen-
eralises the search for related-key impossible differentials of
ARX ciphers by Ref. [30], and (3) the quantified method is a
new automated method based of quantified bit-vector SMT
problems.

421 | Brute-force method

Let VC be the validity constraint of a characteristic model of a
function f=f,_; © f,_ 50« o fi, and let (a,) be a property of f
for some bit-vector constants a and f. The brute-force and
miss-in-the-middle methods are based on the fact that if the
bit-vector SMT problem

o, V1s s Ve 2 VE(ros 71s s v) Ala=70) A (B=7,)

(6)

is unsatisfiable, then (@, f) has zero propagation probability.
The difference between these two methods is the choice of the
properties (a, f). The brute-force method simply chooses a
subset of properties with many zero bits and checks whether
the SMT problem given by Equation (6) is unsatisfiable for
each property. This choice is due to the fact that for some
functions most of the impossible differentials found this far
have many zero bits [15].

422 | Miss-in-the-middle method

The idea of the miss-in-the-middle technique [3, 47] is to find
an impossible differential built from two probability-one

characteristics I'y and I',, where the characteristic I'y (resp.
I';) covers the first (resp. second) half of cipher, such that the
output difference & of I'y does not match the input difference
B of I'; in the middle of the cipher. For simplicity, our auto-
mated miss-in-the-middle method is explained for f=f5© f; ©
Jo; the generalisation for 7 > 3 is straightforward.

Let VCi(y;, vi41) and POC(y;, 7it1) be the validity and
probability-one constraints, respectively, of the characteristic
model of f; First, a pair of probability-one characteristics (I'y,
Ty) of fy and f5 is found by solving the bit-vector SMT
problem

0, 71,72:73 : POCo(10,71) APOCa(15,75). (7)

Let (&, a) be the input and output properties of 'y and
(B, B), the input and output properties of I',. Then, a similar
problem to Equation (6) is built for the property (a,) of fi.
If the problem is unsatisfiable (@,) is a zero-probability
property of fi, and by construction (@,) is a zero-
probability property of f. Otherwise, this process is repeated
by finding another pair of probability-one characteristics of f
and f5.

As the brute-force method, the miss-in-the-middle method
is based on the unsatisfiability of SMT problems in the form of
Equation (6), but where the propetties (@, ff) ate chosen as the
outputs and inputs of probability-one characteristics covering
the initial and last part of the cipher, respectively.

423 | Quantified method

As opposed to the brute-force and the miss-in-the-middle
methods, the quantified method is based on solving a satisfi-
able bit-vector SMT problem that combines existential and
for-all quantifiers. Given the validity constraint VC of a char-
acteristic model off = f_l °© f,_p 0 «n 0 ﬁ), consider the
quantified bit-vector SMT problemFalse

Y0, Vs V715 V2w s Vrey VC(yO,yl,...,y,) =TFalse. (8)

If satisfiable, a solution of this problem is an assignment of
the variables (yq, ¥,) such that the characteristic I = (¥, 71, .-,
7») is invalid for all intermediate properties (1, Y2, --., ¥r—1). In
other words, a solution of this problem is a property (¥, 7,) of f
with zero propagation probability.

Thus, zero-probability properties of f can be obtained by
solving the problem given by Equation (8) with an SMT solver
supporting quantified bit-vector formulas such as Boolector or
73 148, 49].

Although quantifier-free problems, used by the brute-force
and miss-in-the-middle methods, can be solved much faster
than quantified problems, any zero-probability property found
by the brute-force or the miss-in-the-middle method can be
found by the quantified method, and the latter method can
find zero-probability properties unreachable by the brute-force
and miss-in-the-middle methods.

85U80]7 SUOWILLOD BA81D 3ded!|dde ayy Aq pausenob a2 seoile O ‘8sn JO sa|ni 1o} A%eld8UUO 8|1 UO (SUORIPUOD-PUR-SWBIALIO" A3 1M AeIq 1 Bul [UO//:SdNY) SUOHIPUOD Pue SWs | 8U18eS *[220z/TT/2T] uo ARiqiauluo AM ‘WNID T3 - IV IONIAIAT Aq 2202T 288 1/670T 0T/I0p/W00" A8 | 1M Akeid||pul [UO"Yo Jeasa. e //:Scy oy pepeoiumoq 9 ‘2202 ‘LT/8TSLT

RANEA anp RIJMEN

| 477

These three automated methods can be used to search for
impossible differentials or zero-correlation linear approxima-
tions of a block cipher simply by setting f as the encryption
function Ej. Related-key impossible differentials can also be
searched with these three automated methods simply by
extending the SMT problems given by Equations (6) to (8) to
related-key differential characteristics.

Note that these three methods are sound but not complete
methods; any property found by these methods has zero
propagation probability, but some zero-probability properties
might not be found by these methods. In other words, if the
SMT problem given by Equation (6) is unsatisfiable, then (a,)
has zero propagation probability, but the other way around
does not hold in general (and similarly for the SMT problem
given by Equation (8)). In the single-key setting, these methods
are complete if assuming that the round keys are independent,
chosen uniformly at random, and XORed to the whole state
before each non-linear operation [15].

5 | THE TOOL CASCADA

In this section, we describe the tool CASCADA [31], an open-
source Python library that implements the bit-vector property
framework described in Section 3 and the bit-vector automated
methods described in Section 4.

The tool CASCADA is based on ArxPy [22], a tool used to
search for differential characteristics and impossible differen-
tials of ARX ciphers. However, while ArxPy restricts to
(related-key) differential, RX, and (related-key) impossible-
differential cryptanalysis, CASCADA implements the bit-
vector property framework, new automated methods, and
many new functionalities and improvements.

In particular, CASCADA implements the XOR difference,
RX difference and linear mask, and new bit-vector properties
can be easily added. Moreover, CASCADA implements the
XOR differential, RX differential and linear models of many
bit-vector operations, and it implements the weak and branch-
based models and the property model based on weight tables”.
As a result, CASCADA can search for (related-key) XOR dif-
ferential, RX differential, and linear characteristics, and
CASCADA can also search for (related-key) XOR impossible
differentials, RX impossible differentials and zero-correlation
linear approximations.

Compared to ArxPy, the cipher interface in CASCADA
has been improved to support not only ARX ciphers but also
other ciphers and primitives, and the documentation has been
extended so that each Python function and class contains a
detailed docstring with usage examples as doctests. On top of
that, CASCADA includes a complete test suite for each func-
tionality, and many unit tests follow the property-based testing
technique [50] to test programme properties on random inputs.

"For example, for ciphers with S-boxes, CASCADA can find the minimum number of
active S-boxes by using the weak model for the S-boxes but can also find full
characteristics by using the model based on weight tables for the S-boxes.

The user workflow to run one of the automated search
methods with CASCADA for a given primitive is the following.
First, the user implements the primitive following the interface
provided by CASCADA,; the user can also choose one of the
many primitives already implemented. Then, if the property
model of an operation of the primitive is not provided by
CASCADA, the user can either implement the property model
or simply use a weak, branch-based or table-based model.
Finally, the user chooses the search method and its parameters
(e.g. the bit-vector property, the SMT solver, additional con-
straints etc.), and starts the search.

In the search, CASCADA generates the characteristic model
from the Python implementation of the primitive, encodes the
SMT problems, and solves the SMT problems by querying an
external SMT solver. These steps, depicted in Figure 1, are
performed by CASCADA internally. Thus, using CASCADA
does not require any knowledge about SMT problems or SMT
solvers as this is automatically handled by CASCADA. Note
that the running time of the search is dominated by the time
the SMT solver takes to solve the SMT problems, and the steps
performed by CASCADA introduce negligible overhead.

The library CASCADA has a modular and loose-coupling
design split in several modules, namely the bit-vector mod-
ule, the primitive module, the property modules and the SMT
module so that each module can be used and extended inde-
pendently. The rest of this section explains a high-level over-
view of the implementation and functionality of each module,
and a full description of each module can be found in the
documentation of CASCADA.

5.1 | Bit-vector module

The bit-vector module handles the creation, evaluation, sym-
bolic manipulation and representation of bit-vector expres-
sions and functions. To this end, it provides data types to
create bit-vector constants, variables, operations, expressions
and functions; it relies on SymPy [51] (an open-source Python
library for symbolic computation) for the bit-vector symbolic
manipulation, and it provides several representations of the bit-
vector data types including an executable string representation,
a C code representation or a DOT (a graph description lan-
guage) representation.

To create bit-vector expressions, the bit-vector operations
described in Section 2.1, which are also the bit-vector opera-
tions supported by the SMT-LIB Standard 2.0 [36], are
implemented in the bit-vector module and called the primary
operations. This module also implements other bit-vector
operations such as the bit-wise majority, the bit-wise condi-
tional, the bit-reversal or the hamming weight, and it supports
bit-vector operations given by look-up tables or binary
matrices. All non-primary operations are implemented as bit-
vector expressions of primary operations so that they can be
easily represented in bit-vector SMT problems; the hamming
weight and bit-reversal are efficiently implemented as bit-
vector expressions by using a divide-and-conquer approach
from Ref. [52].

85U80]7 SUOWILLOD BA81D 3ded!|dde ayy Aq pausenob a2 seoile O ‘8sn JO sa|ni 1o} A%eld8UUO 8|1 UO (SUORIPUOD-PUR-SWBIALIO" A3 1M AeIq 1 Bul [UO//:SdNY) SUOHIPUOD Pue SWs | 8U18eS *[220z/TT/2T] uo ARiqiauluo AM ‘WNID T3 - IV IONIAIAT Aq 2202T 288 1/670T 0T/I0p/W00" A8 | 1M Akeid||pul [UO"Yo Jeasa. e //:Scy oy pepeoiumoq 9 ‘2202 ‘LT/8TSLT

478 RANEA anp RIJMEN
FIGURE 1 Main steps performed by
primitive cryptographic algorithms for distinguishing attacks
implementation (CASCADR) in an automated search method
[Characteristic model generation
search
parameters \'

t Bit-vector SMT encoding \

», Bit-vector

k L SMT solving

results

CASCADA

The bit-vector module also provides several context
managers to modify the creation, evaluation and manipulation
of bit-vector expressions. For example, the simplification
context controls whether to simplify expressions by applying
Boolean algebra rules, and the memoisation context is a space-
time trade-off also known as tabling where intermediate results
are stored in a table so that they can be retrieved when the
same inputs occur again.

Inspired by the representation of mathematical functions in
SymPy, the bit-vector module provides a similar interface to
represent bit-vector functions with or without external values;
round-based functions are also supported and even non-bit-
vector functions by using undefined bit-vector operations. A
bit-vector function can be converted into a (bit-vector) Static
Single Assignment (SSA) [53] object, that is, a list of assign-
ments where each instruction is a bit-vector operation and
each variable is assigned exactly once and defined before used.
The bit-vector module also implements decomposing an SSA
object of a round-based function into the SSA objects of its
rounds, representing the graph of an SSA object in the DOT
language and translating, compiling and evaluating an SSA
object into a C executable.

It is worth mentioning that the bit-vector module does not
depend on other modules of CASCADA, and thus it can be
used independently in applications requiring the symbolic
manipulation of bit-vector expressions or functions.

5.2 | Primitive module
The primitive module provides data types to represent
encryption functions and block ciphers. While key-schedule
functions can be implemented directly as bit-vector func-
tions, the encryption function type specifies a bit-vector
function and a list of round keys, and the block cipher type
specifies a key-schedule function and an encryption function.
The primitive module implements many cryptographic
primitives, namely AES [54], a masked AES [55], CHAM [50],
Chaskey [57], FEAL [58], HIGHT [59], LEA [60], MULTI2
[61], w-cipher [62], SHACAL-1 [63], SHACAL-2 [64], Simeck

SMT solver

[65], Simon [45], Speck [45], SKINNY [66], TEA [67], and
XTEA [68].

5.3 | Property modules

The property modules of CASCADA consist of the abstract
property module, providing the interface to implement bit-
vector properties, and the differential and linear modules,
which instantiate the abstract property module for the dif-
ference and linear mask properties, respectively.* Most of the
logic and functionality is implemented in the abstract prop-
erty module so that new bit-vector properties can be easily
added.

The abstract property module provides the data types to
represent bit-vector properties, property models, characteris-
tics and characteristic models. In particular, it implements the
weak model, the branch-based model, and the property
model based on weight tables, and it provides three charac-
teristic data types to represent (1) characteristics over bit-
vector functions, (2) characteristics over encryption func-
tions, and (3) pairs of characteristics over key-schedule and
encryption functions.

The abstract property module also implements the gener-
ation of characteristic models, the decomposition of charac-
teristics and characteristic models of round-based functions,
the DOT representation of characteristics and characteristic
models and the computation of empirical weights.

Given a characteristic I' = (yo, 71, ---, ¥»—1) Of a bit-vector
function f, the empirical weight is defined in CASCADA as an
estimation of the propagation weight of (yo, y,—1) computed by
evaluating [for many inputs satisfying yo. Since for some
properties the number of inputs required to obtain a mean-
ingful estimation is exponential in the propagation weight of
the characteristic, the computation of the empirical weight
automatically splits a high-weight characteristic into low-weight

*An additional property module, the algebraic module, is also implemented in CASCADA
instantiating the abstract property module for another bit-vector property, the value
property.

85U80]7 SUOWILLOD BA81D 3ded!|dde ayy Aq pausenob a2 seoile O ‘8sn JO sa|ni 1o} A%eld8UUO 8|1 UO (SUORIPUOD-PUR-SWBIALIO" A3 1M AeIq 1 Bul [UO//:SdNY) SUOHIPUOD Pue SWs | 8U18eS *[220z/TT/2T] uo ARiqiauluo AM ‘WNID T3 - IV IONIAIAT Aq 2202T 288 1/670T 0T/I0p/W00" A8 | 1M Akeid||pul [UO"Yo Jeasa. e //:Scy oy pepeoiumoq 9 ‘2202 ‘LT/8TSLT

RANEA anp RIJMEN

479

characteristics and evaluates f by translating and compiling the
SSA of f'to a C executable.

The differential module instantiates the abstract property
module for the XOR difference and RX difference properties.
It implements the XOR and RX trivial models of many @-
linear and propagation-deterministic operations, that is, opet-
ations that propagate an input property to a unique output
property with probability one.

For the XOR difference property, the differential module
implements the non-trivial models of the following opera-
tions: the unary operators [H.(x) = x cand H.(x) = x H ¢,
the binary operators A, V, B, H, and the ternary operators
bit-wise majority, bit-wise conditional and the Simon round
function fd’b,c. We implemented the models of HH., B and fﬂ’b,c
from previous work [23, 29, 43|, we derived the models for
H. and H from the models of the modular addition by using
the identity =(x & y) = —x H y [52], and we derived the
models of the bit-wise operations (A, V, bit-wise majority and
bit-wise conditional) by extrapolating the constraints for 1-bit
inputs.

For the RX difference property, the differential module
implements the models of the unary
operators K (x) = x < ¢ and >,(x) = x > c, the binary
operators A, V, B, B, and the ternary operators bit-wise
majority, bit-wise conditional and the Simon round function
Jabe- The models of <, and 3>, were based on the rotational
analysis from Ref. [69], and the model of H was detived from
the model of] [4] and the identity =(x H y) = —x H y. The
rest of the models are derived from their XOR models since an
XOR model of a function f commuting with <& is also an RX
model of f.

The linear module instantiates the abstract property
module for the linear mask property. Apart from the trivial

non-trivial

models of @-linear and propagation-deterministic operations,
it implements the non-trivial models of [[44], H (from the
model and the identity ~(x H y) = -x [y), and of A and V by
extrapolating the constraints for 1-bit inputs.

The generation of linear characteristic models automati-
cally handles the branches in SSA objects. An input linear
mask @ can propagate through a branch x+(x, x) to multiple
output masks (i.e. to any output mask (B, f;) such that a @
Bo ® B = 0), and branches are automatically detected and
handled whenever a variable x is used multiple times in an
SSA object.

For any property, the generation of a characteristic model
of a bit-vector function f in CASCADA is performed as
described in Section 3.3, where the property models of the bit-
vector operations in the SSA of f are used to build the con-
straints of the characteristic model. Thus, characteristic models
can be directly generated for any function f composed of bit-
vector operations with property models implemented in
CASCADA. For functions including operations without models
in CASCADA, one can fully implement their models (if their
property models are known) or use weak, branch-based or
table-based models, which can be easily obtained for any
function in CASCADA.

54 | SMT module

The SMT module implements the automated methods
described in Section 4. To solve the underlying SMT problems,
the SMT module relies on PySMT [70], an open-source Python
API for SMT solvers. As a result, the SMT module supports
any of the bit-vector SMT solvers natively supported by
PySMT (i.e. Boolector, CVC4 [71], MathSAT [72], Z3, and
Yices [73]), and it can also use other solvers through the
interface of PySMT.

Apart from the choice of the bit-vector SMT solver, many
options in the automated methods implemented in the SMT
module can be configured, including the type of constraints
(e.g. validity and weight constraints or only probability-one
constraints), additional constraints, the verbose level, or
whether to filter characteristics using the empirical weight. If
this last option is enabled, after a characteristic is obtained as a
solution of an SMT problem, the empirical weight of the
characteristic is computed, and characteristics with large
approximation errors between their propagation weights and
their empirical weights are discarded.

Most of the automated methods of Section 4 require
solving a sequence of SMT problems built incrementally from
a base SMT problem. For example, this occurs when multiple
solutions are required from an SMT problem, or in the search
for characteristics of round-based functions. This type of in-
cremental queries are common to SMT solvers, and many of
them support an incremental mode [10], where computations
from previous problems are reused to solve the next query.
The SMT module implements this type of sequences of SMT
problems as incremental queries, leveraging the incrementality
feature of SMT solvers.

As in the other modules, we implemented an extensive
suite of tests in the SMT module. In particular, we tested the
search for low-weight characteristics in the primitives imple-
mented in CASCADA by revisiting the following previous
work, listing the weights of optimal characteristics covering
small number of rounds. This includes XOR differential and
linear characteristics of AES [8], XOR differential and linear
characteristics of CHAM, [18], linear charactetistics of Chaskey
[13], XOR differential and linear characteristics of HIGHT
[16], XOR [23], related-key XOR [17], and RX [20], differential
characteristics of Simeck, XOR [74], related-key XOR [20], and
RX [17], differential characteristics of Simon, XOR differential
and linear characteristics of SKINNY [66], and XOR differ-
ential [75], and linear [13] characteristics of Speck.

6 | CONCLUSION AND FUTURE WORK

In this work, we presented the tool CASCADA, and we
described the bit-vector property framework and the auto-
mated methods implemented in CASCADA, including the new
automated method based on quantified problems. Moreover,
we provided a high-level overview of the functionality and
implementation of the modules in CASCADA. This overview is

85U80]7 SUOWILLOD BA81D 3ded!|dde ayy Aq pausenob a2 seoile O ‘8sn JO sa|ni 1o} A%eld8UUO 8|1 UO (SUORIPUOD-PUR-SWBIALIO" A3 1M AeIq 1 Bul [UO//:SdNY) SUOHIPUOD Pue SWs | 8U18eS *[220z/TT/2T] uo ARiqiauluo AM ‘WNID T3 - IV IONIAIAT Aq 2202T 288 1/670T 0T/I0p/W00" A8 | 1M Akeid||pul [UO"Yo Jeasa. e //:Scy oy pepeoiumoq 9 ‘2202 ‘LT/8TSLT

480 |

RANEA anp RIJMEN

not exhaustive and a complete description of the functionality
and features of CASCADA can be found in its documentation.

The tool CASCADA not only aims to facilitate designers
and cryptanalysts the security evaluation of cryptographic
primitives but also to assist further research in automated
methods. For example, no property models have been
researched for many operations, such as a linear model of the
modular addition by a constant x—x H ¢ or a differential
model of the rotation by a variable (x, y)—x << y, and if new
models are researched, they can be easily implemented and
tested in CASCADA. Similatly, no bit-vector automated
method has been proposed for several distinguishing attacks,
such as truncated differential [76] or linear cryptanalysis in the
related-key setting [77], and new bit-vector properties can also
be easily implemented and tested in CASCADA.

ACKNOWLEDGEMENT

Adrian Ranea is supported by a PhD Fellowship from the
Research Foundation—Flanders (FWO) with grant number
11E1921N.

CONFLICT OF INTEREST

The author declares that there is no conflict of interest that
could be perceived as prejudicing the impartiality of the
research reported.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly
available at http://doi.otg/10.5281/zenodo.6504337.

PERMISSION TO REPRODUCE MATERIALS
FROM OTHER SOURCES

None.

ORCID

Adridn Ranea © https://orcid.org/0000-0002-8697-7423

REFERENCES

1. Biham, E. and Shamir, A.: Differential Cryptanalysis of the Data
Encryption Standard. Springer, (1993)

2. Biham, E.: New types of cryptanalytic attacks using related keys.
J. Cryptol. 7.4(4), 229-246 (1994). https:/ /doi.org/10.1007/bf00203965

3. Biham, E., Biryukov, A., Adi Shamir: Cryptanalysis of skipjack reduced
to 31 rounds using impossible differentials. In: EUROCRYPT. Lecture
Notes in Computer Science, vol. 1592, pp. 12-23. Springer (1999)

4. Ashur, T., Liu, Y.: Rotational cryptanalysis in the presence of constants.
In: IACR Trans. Symmetric Cryptol. 2016, vol. 1, pp. 57-70 (2016)

5. Matsui, M.: Linear cryptanalysis method for DES cipher. In: EURO-
CRYPT. Lecture Notes in Computer Science, vol. 765, pp. 386-397.
Springer (1993)

6. Andrey, B., Vincent, R.: Linear hulls with correlation zero and linear
cryptanalysis of block ciphers. In: Des. Codes Cryptogr, vol. 70.3, pp.
369-383 (2014)

7. Mouha, N,, Preneel, B.: A proof that the ARX cipher Salsa20 is secure
against differential cryptanalysis. In: IACR Cryptol. ePrint Arch (2013)328

8. Mouha, N, et al: Differential and linear cryptanalysis using mixed-
integer linear programming, In: Inscrypt. Lecture Notes in Computer
Science, vol. 7537, pp. 57-76. Springer (2011)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Abraham, E., Kremer, G.: Satisfiability checking: theory and applications.
In: SEFM. Lecture Notes in Computer Science, vol. 9763, pp. 9-23.
Springer (2016)

Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Handbook of
Model Checking, pp. 305-343. Springer (2018)

Lodi, A.: Mixed integer programming computation. In: 50 Years of
Integer Programming, pp. 619-645. Springer (2010)

Song, L., Huang, Z., Yang, Q.: Automatic differential analysis of ARX block
ciphers with application to SPECK and LEA. In: ACISP (2). Lecture Notes
in Computer Science, vol. 9723, pp. 379-394. Springer (2016)

Liu, Y., Wang, Q., Vincent, R.: Automatic search of linear trails in ARX
with applications to SPECK and Chaskey. In: ACNS. Lecture Notes in
Computer Science, vol. 9696, pp. 485—499. Springer (2016)

Ahmed, A, et al: MILP modeling for (large) S-boxes to optimize
probability of differential characteristics. In: TACR Trans. Symmetric
Cryptol. 2017, vol. 4, pp. 99-129 (2017)

Sasaki, Yu, Todo, Y.: New impossible differential search tool from design
and cryptanalysis aspects - revealing structural properties of several ci-
phers. In: EUROCRYPT (3). Lecture Notes in Computer Science, vol.
10212, pp. 185-215 (2017)

Yin, J., et al.: Improved cryptanalysis of an ISO standard lightweight
block cipher with refined MILP modelling, In: Inscrypt. Lecture Notes in
Computer Science, vol. 10726, pp. 404—426. Springer (2017)

Wang, X., et al: Automatic search for related-key differential trails in
SIMON-like block ciphers based on MILP. In: ISC. Lecture Notes in
Computer Science, vol. 11060, pp. 116—131. Springer (2018)

Roh, D, et al.: Revised version of block cipher CHAM. In: ICISC.
Lecture Notes in Computer Science, vol. 11975, pp. 1-19. Springer
(2019)

Sun, S., et al.: Automatic security evaluation and (Related-key) differential
characteristic search: application to SIMON, PRESENT, LBlock, DES
(L) and other bit-oriented block ciphers. In: ASTACRYPT (1). Lecture
Notes in Computer Science, vol. 8873, pp. 158-178. Springer (2014)
Lu, J., et al.: Rotational- XOR cryptanalysis of simon-like block ciphers.
In: ACISP. Lecture Notes in Computer Science, vol. 12248, pp. 105-124.
Springer (2020)

Kélbl, S.: CryptoSMT: An Easy to Use Tool for Cryptanalysis of Sym-
metric Primitives. https://github.com/kste/cryptosmt

Ranea, A.: ArxPy: Tool to Find XOR Differential and Rotational-XOR
Characteristics of ARX Primitives. https://github.com/ranea/ArxPy
Kolbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block
cipher family. In: CRYPTO (1). Lecture Notes in Computer Science, vol.
9215, pp. 161-185. Springer (2015)

Ankele, R., Kolbl, S.: Mind the gap - a closer look at the security of block
ciphers against differential cryptanalysis. In: SAC. Lecture Notes in
Computer Science, vol. 11349, pp. 163-190. Springer (2018)

Ankele, R., List, E.: Differential cryptanalysis of round-reduced sparx-
64/128. In: ACNS. Lecture Notes in Computer Science, vol. 10892,
pp. 459—475. Springer (2018)

Hadipour, H., Sadeghi, S., Majid, M.: Niknam, ling song and nasour
bagheri. ‘Comprehensive security analysis of CRAFT. In: IACR Trans.
Symmetric Cryptol. 2019, vol. 4, pp. 290-317 (2019)

Ranea, A., Liu, Y., Ashur, T.: An easy-to-use tool for rotational-XOR
cryptanalysis of ARX block ciphers. In: Proceedings of the Romanian
Academy, Series A, vol. 18.3 (2017)

Kraleva, L., Posteuca, R., Vincent, R.: Cryptanalysis of the permutation
based algorithm SpoC. In: INDOCRYPT. Lecture Notes in Computer
Science, vol. 12578, pp. 273-293. Springer (2020)

Arash Azimi, S, et al.: A bit-vector differential model for the modular
addition by a constant. In: ASIACRYPT (1). Lecture Notes in Computer
Science, vol. 12491, pp. 385—414. Springer (2020)

Arash Azimi, S., et al.: A bit-vector differential model for the modular
addition by a constant and its applications to differential and impossible-
differential cryptanalysis. In: IACR Cryptol. ePrint Arch (2022)

Ranea, A.: CASCADA. Version v1.0.0 (2022)URL. https://github.com/
ranea/ CASCADA. https://doi.org/10.5281/zenodo.6504337

85USD17 SUOLULUOD BAIFER.D 3 dedl|dde ayy Aq pausenob a2 S3o1le YO 88N JO Sa|nI 10} AR 8UIUO AB]IA UO (SUOHIPUOD-PUR-SLUBIALI0D" A 1M Ae1q 18Ul UO//:SdNY) SUO HIPUOD PUe SWLS | 8U1 385 *[z20z/TT/.T] uo ARiqiiaunuo A M ‘WNIDT13E - IV JONIAIAI Ag 202T 2881/670T 0T/10p/wod" Ao | 1M Akeid1|oulUO"YD Jeasa e/ SaiY o1y papeoiumoq ‘9 ‘2202 ‘LT.8TSLT

http://doi.org/10.5281/zenodo.6504337
https://orcid.org/0000-0002-8697-7423
https://orcid.org/0000-0002-8697-7423
https://doi.org/10.1007/bf00203965
https://github.com/kste/cryptosmt
https://github.com/ranea/ArxPy
https://github.com/ranea/CASCADA
https://github.com/ranea/CASCADA
https://doi.org/10.5281/zenodo.6504337
https://orcid.org/0000-0002-8697-7423

RANEA anp RIJMEN

481

32.

33,

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.
55.

56.

Reynolds, A.: Conflicts, models and heuristics for quantifier instantiation
in SMT. In: Vampire@IJCAR, vol. 44, pp. 1-15. EPiC Series in
Computing EasyChair (2016)

Mendonga de Moura, L., Bjorner, N.: Satisfiability modulo theories:
introduction and applications. In: Commun. ACM, vol. 54.9, pp. 69-77
(2011)

Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. J. Satisfiability, Boolean
Model. Comput. 9.1(1), 53-58 (2014). https://doi.org/10.3233/
sat190101

Ganesh, V., David, L.: Dill. ‘A decision procedure for bit-vectors and
arrays. In: CAV. Lecture Notes in Computer Science, vol. 4590, pp.
519-531. Springer (2007)

Barrett, C., Stump, A. and Tinelli, C.: The SMT-LIB standard: version
2.0. In: Proceedings of the 8th International Workshop on Satisfiability
Modulo Theories (Edinburgh, UK). Ed. by Gupta, A. and Kroening, D.
(2010)

Daemen, J., Vincent, R.: Probability distributions of correlation and
differentials in block ciphers. J. Math. Cryptol. 1.3, 221-242 (2007)
Boura, C,, et al.: Making the impossible possible. J. Cryptol. 31.1(1),
101-133 (2018). https://doi.org/10.1007/s00145-016-9251-7

Ashur, T., Beyne, T., Vincent, R.: Revisiting the wrong-key- randomiza-
tion hypothesis. J. Cryptol. 33.2(2), 567594 (2020). https://doi.org/10.
1007/500145-020-09343-2

Andrey Bogdanov, MeiqinWang: Zero correlation linear cryptanalysis
with reduced data complexity. In: FSE. Lecture Notes in Computer
Science, vol. 7549, pp. 29—48. Springer (2012)

David, A.: Wagner. “Towards a unifying view of block cipher cryptanal-
ysis. In: FSE. Lecture Notes in Computer Science, vol. 3017, pp. 16-33.
Springer (2004)

Phan, RCW., Umar Siddiqi, M.: A framework for describing block cipher
cryptanalysis. IEEE Trans. Comput. 55.11(11), 1402-1409 (2000).
https://doi.org/10.1109/tc.2006.169

Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential
properties of addition. In: FSE. Lecture Notes in Computer Science, vol.
2355, pp. 336-350. Springer (2001)

Schulte-Geers, E.: On CCZ-equivalence of addition mod 2 n. In: Des.
Codes Cryptogr, vol. 66.1-3, pp. 111-127 (2013)

Ray, B, et al.: The SIMON and SPECK lightweight block ciphers. In:
DAC, pp. 175:1-175:6. ACM (2015)

Sun, L., Wang, W., Wang, M.: More accurate differential properties of
LEDG4 and Midori64. In: IACR Trans. Symmetric Cryptol. 2018, vol. 3,
pp. 93-123 (2018)

Biham, E., Biryukov, A., Adi Shamir: Miss in the middle attacks on
IDEA and khufu. In: FSE. Lecture Notes in Computer Science, vol.
1636, pp. 124-138. Springer (1999)

Mendonga de Moura, L., Bjorner, N.: Z3: an efficient SMT solver. In:
TACAS. Lecture Notes in Computer Science, vol. 4963, pp. 337-340.
Springer (2008)

Christoph, M.: Wintersteiger, youssef hamadi and leonardo mendonga de
Moura. ‘Efficiently solving quantified bit-vector formulas. Formal
Methods Syst. Des. 42.1, 3-23 (2013)

Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random
testing of Haskell programs. In: ICFP, pp. 268-279. ACM (2000)
Meurer, A., et al.: SymPy: symbolic computing in Python. Peer] Comput.
Sci. 3, €103 (2017). https://doi.org/10.7717/peerj-cs.103

Warren, H.S., Jr.: Hacker’s Delight. Addison-Wesley (2003)

Rosen, B.K., Wegman, M.N., Kenneth Zadeck, F.: Global value numbers
and redundant computations. In: POPL, pp. 12-27. ACM Press
(1988)

Dworkin, M., et al.: Advanced Encryption Standard (AES). en (2001)
Tim Beyne, et al.: A low- randomness second-order masked AES. In:
SAC. Lecture Notes in Computer Science, vol. 13203, pp. 87-110.
Springer (2021)

Koo, B, et al.: CHAM: a family of lightweight block ciphers for resource-
constrained devices. In: ICISC. Lecture Notes in Computer Science, vol.
10779, pp. 3-25. Springer (2017)

57.

58.

59.

60.

61.
62.

63.

64.

65.

60.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

Mouha, N, et al: Chaskey: an efficient MAC algorithm for 32-bit
microcontrollers. In: Selected Areas in Cryptography. Lecture Notes in
Computer Science, vol. 8781, pp. 306-323. Springer (2014)

Miyaguchi, S.: The FEAL cipher family. In: CRYPTO. Lecture Notes in
Computer Science, vol. 537, pp. 627-638. Springer (1990)

Hong, D,, et al.: HIGHT: a new block cipher suitable for low-resource
device. In: CHES. Lecture Notes in Computer Science, vol. 4249, pp.
46-59. Springer (2006)

Hong, D., et al.: LEA: a 128-bit block cipher for fast encryption on
common processors. In: WISA. Lecture Notes in Computer Science, vol.
8267, pp. 3-27. Springer (2013)

ISO: Algorithm Registry Entry 9979/0009 (1994)

Gligoroski, D., et al.: w-Cipher: authenticated encryption for big data. In:
NordSec. Lecture Notes in Computer Science, vol. 8788, pp. 110-128.
Springer (2014)

Handschuh, H., et al.: Analysis of SHA-1 in encryption mode. In: CT-
RSA. Lecture Notes in Computer Science, vol. 2020, pp. 70-83.
Springer (2001)

Handschuh, H., Naccache, D.: SHACAL: a family of block ciphers. In:
Submission to the NESSIE Project (2002)

Yang, G., et al.: Aagaard and guang gong, “The Simeck family of light-
weight block ciphers. In: CHES. Lecture Notes in Computer Science, vol.
9293, pp. 307-329. Springer (2015)

Beierle, C., et al.: The SKINNY family of block ciphers and its low-
latency variant MANTIS. In: CRYPTO (2). Lecture Notes in Com-
puter Science, vol. 9815, pp. 123-153. Springer (2016)

Wheeler, D.J., Needham, RM.: TEA, a tiny encryption algorithm. In:
FSE. Lecture Notes in Computer Science, vol. 1008, pp. 363-366.
Springer (1994)

Needham, R., Wheeler, D.: Tea Extensions. Tech. rep. Computer Lab-
oratory, University of Cambridge (1997)

Przemys law Soko lowski: ‘Design and Analysis of Cryptographic Hash
Functions’. PhD Thesis. Adam Mickiewicz University (2016)

Gario, M., Micheli, A.: PySMT: a solver-agnostic library for fast proto-
typing of SMT-based algorithms. In: SMT Workshop 2015 (2015)
Barrett, C.W,, et al.: Dejan jovanovic, tim king, andrew Reynolds and
cesare tinelli. ‘CVC4. In: CAV. Lecture Notes in Computer Science, vol.
68006, pp. 171-177. Springer (2011)

Cimatti, A., et al.: The MathSAT5 SMT solver. In: TACAS. Lecture
Notes in Computer Science, vol. 7795, pp. 93-107. Springer (2013)
Bruno, D.: Yices 2.2. In: CAV. Lecture Notes in Computer Science, vol.
8559, pp. 737-744. Springer (2014)

Liu, Z., Li, Y., Wang, M.: Optimal differential trails in SIMON-like ciphers.
In: TACR Trans. Symmetric Cryptol. 2017, vol. 1, pp. 358-379 (2017)
Biryukov, A., Velichkov, V., Le Corre, Y.: Automatic search for the best
trails in ARX: application to block cipher Speck. In: FSE. Lecture Notes
in Computer Science, vol. 9783, pp. 289-310. Springer (2016)

Lars, R.: Knudsen. “Truncated and higher order differentials. In: FSE.
Lecture Notes in Computer Science, vol. 1008, pp. 196-211. Springer
(1994)

Andrey Bogdanov, et al.: Key difference invariant bias in block ciphers.
In: ASIACRYPT (1). Lecture Notes in Computer Science, vol. 8269, pp.
357-376. Springer (2013)

Andrey Bogdanov, Tischhauser, E.: On the wrong key randomisation
and key equivalence hypotheses in matsui’s algorithm 2. In: FSE. Lecture
Notes in Computer Science, vol. 8424, pp. 19-38. Springer (2013)

How to cite this article: Ranea, A., Rijmen, V.
Characteristic automated search of cryptographic
algorithms for distinguishing attacks (CASCADA). IET
Inf. Secur. 16(6), 470481 (2022). https://doi.org/10.
1049 /ise2.12077

85U80]7 SUOWILLOD BA81D 3ded!|dde ayy Aq pausenob a2 seoile O ‘8sn JO sa|ni 1o} A%eld8UUO 8|1 UO (SUORIPUOD-PUR-SWBIALIO" A3 1M AeIq 1 Bul [UO//:SdNY) SUOHIPUOD Pue SWs | 8U18eS *[220z/TT/2T] uo ARiqiauluo AM ‘WNID T3 - IV IONIAIAT Aq 2202T 288 1/670T 0T/I0p/W00" A8 | 1M Akeid||pul [UO"Yo Jeasa. e //:Scy oy pepeoiumoq 9 ‘2202 ‘LT/8TSLT

https://doi.org/10.3233/sat190101
https://doi.org/10.3233/sat190101
https://doi.org/10.1007/s00145-016-9251-7
https://doi.org/10.1007/s00145-020-09343-2
https://doi.org/10.1007/s00145-020-09343-2
https://doi.org/10.1109/tc.2006.169
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1049/ise2.12077
https://doi.org/10.1049/ise2.12077

	Characteristic automated search of cryptographic algorithms for distinguishing attacks (CASCADA)
	1 | INTRODUCTION
	2 | PRELIMINARIES
	2.1 | Bit‐vector SMT problems
	2.2 | Distinguishing attacks on block ciphers

	3 | BIT‐VECTOR PROPERTY FRAMEWORK
	3.1 | Bit‐vector properties and characteristics
	3.2 | Bit‐vector property model
	3.3 | Bit‐vector characteristic model

	4 | BIT‐VECTOR AUTOMATED METHODS
	4.1 | Search for low‐weight characteristics
	4.2 | Search for invalid properties
	4.2.1 | Brute‐force method
	4.2.2 | Miss‐in‐the‐middle method
	4.2.3 | Quantified method

	5 | THE TOOL CASCADA
	5.1 | Bit‐vector module
	5.2 | Primitive module
	5.3 | Property modules
	5.4 | SMT module

	6 | CONCLUSION AND FUTURE WORK
	ACKNOWLEDGEMENT
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT
	PERMISSION TO REPRODUCE MATERIALS FROM OTHER SOURCES

