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• Adding cardiopulmonary markers to physical parameters improve classical 
6MWD models in COPD.  

• • No walking exercise is needed to estimate 6MWT outcomes using Bayesian 
networks  

• • Disease severity in COPD can be inferred based on actual patient's 6MWT 
outcomes.  

• • Personalized models of disease progression may help to reduce hospitalization 
and mortality in COPD.  
 

Abstract:  
 

Background and Objective: Chronic obstructive pulmonary disease (COPD) requires a 

multifactorial assessment, evaluating the airflow limitation and symptoms of the patients. 

The 6-min walk test (6MWT) is commonly used to evaluate the functional exercise capacity 

in these patients. This study aims to propose a novel predictive model of the major 6MWT 

outcomes for COPD assessment, without physical performance measurements.  

Methods: Cardiopulmonary and clinical parameters were obtained from fifty COPD 

patients. These parameters were used as inputs of a Bayesian network (BN), which 

integrated three multivariate models including the 6-min walking distance (6MWD), the 

maximum HR (HRmax) after the walking, and the HR decay 3 minutes after (HRR3). The 

use of BN allows the assessment of the patients’ status by predicting the 6MWT outcomes, 

but also inferring disease severity parameters based on actual patient's 6MWT outcomes.  

Results: Firstly, the correlation obtained between the estimated and actual 6MWT 

measures was strong (R = 0.84, MAPE = 8.10% for HRmax) and moderate (R = 0.58, MAPE 

= 15.43% for 6MWD and R = 0.58, MAPE = 32.49% for HRR3), improving the classical 

methods to estimate 6MWD. Secondly, the classification of disease severity showed an 
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accuracy of 78.3% using three severity groups, which increased up to 84.4% for two 

defined severity groups.  

Conclusions: We propose a powerful two-way assessment tool for COPD patients, 

capable of predicting 6MWT outcomes without the need for an actual walking exercise. 

This model-based tool opens the way to implement a continuous monitoring system for 

COPD patients at home and to provide more personalized care. 

Keywords: 6MWT, wearables, Physical capacity, COPD, Bayesian networks  

 

 

 

1 Introduction 

Chronic respiratory diseases are among the most common diseases associated with high 

morbidity and premature mortality in the adult population. In particular, chronic obstructive 

pulmonary disease (COPD) represents the fourth leading cause of death worldwide [1]. 

COPD is characterized by progressive airflow limitation, resulting in shortness of breath 

and the patients often experience a sudden worsening of symptoms, also known as an 

exacerbation. The clinical condition of COPD patients is rather complex and requires a 

multidimensional assessment. This usually includes lung function test, as well as several 

questionnaires to evaluate the symptoms, the impact of the disease on the patients' quality 

of life, and the risk of future events [2]. 

The 6-minute walk test (6MWT) is a simple and standardized tool that is commonly used 

to assess the functional exercise capacity of patients with chronic respiratory diseases [3]. 

The outcomes of the 6MWT include the total distance walked by the patient (6MWD), as 

well as other relevant cardiopulmonary parameters such as the heart rate (HR), and the 
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oxygen saturation level (SpO2 measured before and after the test). The 6MWD is 

considered the main clinical outcome from the test, which correlates with physical activity 

measures from other tests such as the incremental shuttle walk test [4], [5], and has been 

associated with increased risk for hospitalization and mortality in COPD patients [6], [7]. 

The most common models used to estimate the distance involve patients’ physical 

characteristics such as age, height, and weight [8], [9]. However, these models may not 

properly estimate the 6MWD in COPD patients and additional potential modulators are 

needed. The accurate prediction of the 6MWD can provide a more precise estimation of 

the medical condition and functional exercise performance of the patients. 

Although the guidelines for the 6MWT state the measurement of HR and SpO2 as optional 

[10], these outcomes are commonly recorded and have proven to be relevant markers 

about the patients’ condition [7], [11]–[13]. In particular, the heart rate recovery (ie, the 

rate of decrease in HR after the walk cessation) has been suggested as a valuable 

predictor of worsening and mortality in patients with respiratory diseases [11]–[13]. In 

addition, the heart rate values measured at different stages of the test can potentially 

contribute to describe the 6MWD [14]. More recent studies also included parameters 

regarding the influence of the test intensity represented as the variation of HR [15]–[17]. 

Therefore, it can be concluded that not only the 6MWD provides clinically valuable 

information, but also other relevant outcomes should be considered to allow a more 

comprehensive assessment of the patients' functional status and progression.  

Recently, the use of Bayesian Networks (BNs) for medical applications represents a field 

of great interest [18], because of the interpretability of the resulting models, avoiding the 

limitations of black box models. BNs can effectively deal with decision-support models for 

complex clinical problems, in which multiple factors are interacting. Among its advantages, 
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BNs offer a powerful framework to combine evidence from different sources. For instance, 

clinical knowledge and published evidence obtained from meta-analyses can help to 

design the network structure [19], while the parameters can be learned from data using 

even small datasets. In particular, Bayesian approaches have been used in COPD 

patients to predict disease severity from clinical parameters [17], [18] as well as its 

association with mortality and patient’s quality of life [22]. Based on these premises, we 

used the power of BNs to integrate different multivariate models that can predict the main 

6MWT outcomes under uncertainty and unobserved variables. The network should 

combine symptoms and clinical parameters, measures of respiratory functional capacity, 

and cardiovascular function obtained in COPD patients. 

In general, parameters obtained from a 6MWT provide valuable prognostic information 

about COPD patients. However, the test is performed only once or a few times per year 

in most cases. Since changes in patient’s status can occur any time between these 

measurements, a continuous monitoring system able to predict major 6MWT outcomes 

would have a clinically relevant impact. Concretely, the present study aims to propose a 

novel predictive regression model for major 6MWT outcomes (such as distance and HR 

recovery), using anthropometric information, clinical parameters such as measures of 

pulmonary function and HR indices derived from data acquired during rest. Different 

regression models were integrated into a multivariate BN, enabling the prediction of all 

relevant outcomes simultaneously. Likewise, it also allows to make inferences about the 

progression of a patient’s functional status, by updating any change that occurs in the 

patient's clinical variables or the outcomes derived from the 6MWT. The final model could 

serve to reinforce the home-monitoring of COPD patients by tracking relevant parameter 

changes over time. Its potential application in a digital healthcare system will enable a 

more personalized assessment of the patients’ status on a daily basis.  
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2 Methods 

2.1 Sample population and Experimental protocol  

Fifty COPD patients were recruited during their consultation at Ziekenhuis Oost-Limburg 

(Genk, Belgium). The institutional medical ethics committee from Ziekenhuis Oost-

Limburg approved the study (reference 18/0047U). The study follows the World Medical 

Association of Helsinki on Ethical Principles for Medical Research Involving Humans 

Subjects. All subjects were diagnosed with COPD before study inclusion and provided 

written informed consent prior to study participation. The exclusion criteria applied to the 

patient's recruitment were: younger than 18 years old, inability to give informed consent, 

no previous consultation or rehabilitation sessions, pregnant women, suffering from 

cognitive diseases and being unable to perform the experiment. The protocol included 

three phases, a five-minute resting phase, a walking phase, and a five-minute recovery 

phase. During the resting and recovery phases, the patients were seated in a wheelchair. 

The walking phase consisted of the execution of the 6MWT by the patients. During the 

test, the patients were asked to walk as far as possible along a 45-meter corridor for six 

minutes [10], while none of them used supplementary oxygen during the walk. The 

distance was measured as the total number of laps completed by the patients along the 

corridor plus the meters of the last non-complete lap. 

Anthropometric data and spirometry parameters were collected for each patient by a 

clinical technician as well as relevant clinical information from the patient’s record. A 

summary of the main clinical parameters is listed in Table 1. In particular, the spirometry 

parameters comprised the most commonly used parameters in COPD patients, the forced 

vital capacity (FVC), the forced expiratory volume in one second (FEV1), and the ratio 
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between these parameters (FEV1/FVC). All these parameters expressed as a percentage 

of the predicted value for a healthy person with similar anthropometrics measures.  

2.2 Physiological data 

At the end of the resting phase and shortly after the walking phase, the peripheral capillary 

oxygen saturation (SpO2) and the heart rate (HR) were measured by a pulse oximeter 

(Model 3230, Nonin Medical Inc.). The patients were also asked to score their level of 

dyspnea and fatigue, using the modified Borg scale (mBorg) [23] before and after exercise. 

Electrocardiogram (ECG) was recorded during the entire resting and recovery phases. 

The ECG recording was continuously measured using lead II by a wearable prototype 

device (Stichting imec the Netherlands) using Ag/AgCl electrodes (Kendall H92SG, 

Covidien Inc.). The ECG signals were sampled at 512 Hz.  

2.3 Extraction of HRV indices from ECG 

The R-peaks from the ECG signals were detected using a wavelet-based technique, using 

the resampled signal at 500 Hz by spline interpolation [24], followed by manual rejection 

of misdetections and ectopic beats after visual inspection. The selection of only normal 

heartbeats aimed to obtain normal-to-normal intervals (NN intervals) from the RR time 

series before any further processing. This correction step was performed by a 

trained/specialized researcher. The RR intervals were computed by the time differences 

for each pair of R detections to get the RR time series. All the RR time series were selected 

to have the same length, 255.75 s, and 322.25 s, for the last part of resting and the first 

part of recovery phases, respectively. 

The series of RR intervals were used to compute classical heart rate variability (HRV) 

indices which provide information about different aspects of the cardiovascular system, 

                  



   

 

8 

 

like autonomic regulation or adjustment. In particular, we computed time-domain, 

frequency-domain, and non-linear HRV indices only for the resting phase where 

stationarity in the RR time-series is guaranteed.  

2.3.1 Time-domain HRV indices 

We computed Standard Deviation of NN intervals (SDNN), the Percentage of successive 

NN intervals that differ by more than 50 ms (pNN50), and the Root Mean Square of 

Successive NN interval Differences (RMSSD) [25]. 

2.3.2 Frequency-domain HRV indices 

Before computing the frequency HRV indices, we applied cubic spline interpolation to the 

NN time series to 4 Hz to get a uniform sampling. The spectral density of the series was 

estimated by the Welch periodogram of the resampled NN series using windows of 64 s. 

The frequency-domain indices consisted of the absolute and normalized energy of the 

time series in different frequency bands. Particularly, we computed the energy in the low-

frequency band between 0.04 and 0.15 Hz (LF) and the energy in the high-frequency 

band, between 0.15 and 0.40 Hz (HF). The former reflecting sympathetic and the latter 

the parasympathetic activity of the nervous system [25]. The LF and HF indices were 

divided by the sum of the two energy bands to get also normalized indices (nLF and nHF). 

Moreover, the ratio between LF and HF energy was calculated (HF/LF).  

2.3.3 Non-linear index 

The non-linear index was a common HR fragmentation index computed as the percentage 

of inflection points (PIP) of the NN time series, that is the percentage of zero-crossing 

points in the first derivative of the NN series [26]. 
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2.3.4 Heart rate recovery 

We analyzed the heart rate recovery (HRR) using a biexponential approach [27] applied 

to the NN time series of the recovery phase, after the 6MWT.  In particular, we computed 

the decay in heart rate after the test at minute 1, 2, and 3 of recovery (HRR1, HRR2 and 

HRR3). These decays in HR have been investigated in many studies, commonly after an 

exercise peak, as a predictor of cardiovascular death [28].  

2.4 Modeling 6MWT outputs 

The aim of the study was to implement a predictive model able to estimate relevant outputs 

of the 6MWT from baseline clinical information, without the need of performing the test. In 

particular, the 6MWT outputs to be modeled were: the total distance walked by the patient 

(ie, 6MWD), the maximum heart rate achieved when completing the test (ie, HRmax), and 

the heart rate recovery index evaluated after 3 minutes of the patient’s recuperation (ie, 

HRR3). To estimate the 6MWT outputs, a total of 32 features (see Appendix A, Table A.1) 

including clinical markers of disease severity, patients’ anthropometric characteristics, and 

HRV indices obtained during the pre-walking period were included to the initial feature 

space.  

2.4.1 Feature selection with LASSO regularization 

Firstly, we modeled each 6MWT output independently before integrating them in a global 

model. The initial feature space served as input to a multivariate regression analysis, that 

includes least absolute shrinkage and selection operator (LASSO) regularization to retain 

the most predictive parameters [29]. This regularization technique allows to obtain sparse 

models and thus a better interpretation of the final outcomes. 

The LASSO approach was applied individually for each 6MWT output to obtain three 

independent multivariate regression models which are described below. The most 
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predictive features retained after the LASSO regularization were then used to obtain the 

final models, this time through ordinary least square (OLS) regression. Detailed 

information about this two-stage procedure can be found in Appendix A. 

2.4.2 Model for estimating the walked distance 

For COPD patient assessment using the 6MWT, the distance walked by the patients 

represents one of the most important clinical outputs beyond spirometer tests. Many 

studies proposed equations to empirically predict the 6MWD for healthy subjects. The 

following equation, including physical characteristics of the subject, is commonly used 

[30]:  

6MWDpred = 218 + [5.14 ∗ h e i g h t − 5.32 ∗ a g e] − [1.80 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡 + 51.36 ∗ 𝑠𝑒𝑥] (1) 

  

However, the above equation applies to healthy subjects and does not consider other 

factors associated with the patient's condition like clinical parameters, that can affect the 

walked distance, as it may happen in COPD patients. Therefore, apart from the covariates 

in Eq. (1), we introduced other factors to the model. In particular, the multivariate model 

included new potential features from the following categories:  

1. Clinical parameters associated with the patient’s diagnosis: FEV1, FVC, FEV1/FVC 

ratio, Borg-scale index 

2. Parameters measured during rest and before the test: HR, HRV indices, SpO2 

3. Parameters obtained after exercise: HRmax 

Although the maximum heart rate, HRmax, reached by the patient can only be measured 

when the test is completed, we have added it as a potentially useful variable closely related 
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to the walked distance. Finally, the most predictive features retained via the LASSO were 

used in the final 6MWD model retrained on the whole population. 

2.4.3 Model for the maximum heart rate HRmax 

Following the same procedure as for the distance model, we determined the best feature 

subset that explains the variance in the values of HRmax, using LASSO regularization. 

Unlike the distance estimation, only the parameters measured during the baseline period 

and related to the clinical status of the patient (features listed in categories 1 and 2) are 

considered in this model, which means that the distance walked, and the recovery heart 

rate were not included among the input covariates. This strategy will facilitate the further 

coupling of the individual models, described in later sections. 

2.4.4 Model for heart rate recovery index HRR3 

In the case of the HRR3 model, both the distance walked, and the maximum heart rate 

reached were used as input covariates of the LASSO procedure, in addition to the 

aforementioned baseline features (categories 1 and 2). It was expected that the HRR3 

marker could be influenced by both markers, especially by HRmax, as it is measured during 

the stage following the end of the test. Likewise, parameters assessed during baseline, 

especially those of cardiac origin, are expected to contribute significantly to the recovery 

response.  

2.5 Coupling individual models using a Bayesian Network 

2.5.1 Converting individual 6MWT models into Bayesian network 

 

Except for the HRmax output, the models obtained for HRR3 and 6MWD might depend on 

each other and thus on certain features only known after the test execution (ie, HRmax). 

However, if these features are unknown, the 6MWT outputs can simultaneously be 
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estimated by coupling the previous individual models through a Bayesian network (BN). 

That is possible because this probabilistic approach makes it possible to infer any variable 

within the network, once it has been trained with the original dataset.  

In general, the structure of a BN can be learned from data, or manually constructed based 

on expert knowledge. In this study, we designed our network by coupling the predictive 

models obtained previously for each 6MWT output. Therefore, we can obtain a sparse BN 

just focused on predicting the quantities of interest (6MWD, HRmax, HRR3). Moreover, the 

feature selection step based on the LASSO guarantees a good trade-off between 

simplicity and model performance.  

2.5.2 A versatile, two-way 6MWT model, using Bayesian Network  

 

The above strategy would be sufficient to predict the results of the 6MWT test. However, 

this solution by itself might not allow to infer, if unknown, the severity of the patients in 

case of knowing the results of the test.  

To add this functionality to the network, we first explored which features are the most 

relevant to accurately predict FEV1 values, using a similar approach as for the previous 

models. Then, the new relevant selected variables were included when learning the global 

structure of the network as new observed nodes, without affecting the previous models 

obtained for the 6MWT outputs. For this step, the global structure of the network was 

designed by fixing some arcs according to the sparse models obtained for each 6MWT 

output, while other relevant arcs or relationship between the input variables including the 

FEV1, were learned from data using the Hill-Climbing (HC) learning algorithm [31], [32]. 

At this point, the global Bayesian networks would also permit the prediction of disease 

severity based on the 6MWT outputs and other inputs, that is, running the model in reverse 
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to predict an unknown input by the observed outputs. All the above is possible because 

the information can flow in any direction in BNs, depending on which variables are 

observed or unknown [33]. Therefore, we developed a unified global model to estimate 

the outputs of the 6MWT based on the baseline parameters, or to predict disease severity 

after the execution of the test if unknown for a particular patient. A global overview of this 

versatile tool is illustrated in Figure 1. 

 

Figure 1 Flowchart of the final system used in this study. BSdyspnea: Dyspnea score of the 
patient before the test, based on the mBorg scale; FEV1: forced expiratory volume in one second, 
FVC: forced vital capacity, HRbase: Heart rate of the patient before the test, HRmax: Heart rate 
maximum after the test, HRR3: the heart rate recovery index evaluated after 3 minutes of patient’s 
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recovery, PIP: percentage of inflection points in RR time seires, RRmean: mean RR interval before 
the test, SpO2: peripheral capillary oxygen saturation. 

2.5.3 Parameter learning 

 

After the definition of the network structure (final variables and arcs), the next step was to 

estimate the network parameters. This step can be performed automatically for the entire 

network using the maximum likelihood estimator (MLE), which is equivalent to apply linear 

regression for continuous nodes [34]. However, the parameters can also be defined 

manually, by setting the node coefficients obtained from the LASSO or any other 

regularization technique, while root nodes (i.e., nodes without parents) are fixed with the 

distribution parameters of their associated continuous variables.  In this work, we used the 

MLE method, since the LASSO was mainly applied for feature selection. Once the 

parameters of the BN are learned, it is possible to generate new random synthetic 

observations from the conditional distribution of the nodes, conditional on the evidence.  

The simulations are performed using an approximate inference algorithm (logic sampling) 

based on Monte Carlo particle filters [33]. This allows, for instance, to generate more 

representative samples for those patient groups with fewer cases. Consequently, a more 

balanced dataset can be obtained and used to retrain the network, thus improving its 

robustness and accuracy. 

2.6 Model assessment and validation 

The metrics used to assess the performance of individual models included root mean 

squared error (RMSE) and predictive correlation (R), while for model selection we applied 

leave-one-out cross-validation. The RMSE and R were used for the prediction of 

continuous variables represented by the 6MWT outputs. In the case of FEV1, we aimed to 

predict which group each patient belonged to, rather than estimating the absolute values 

of FEV1. Therefore, the overall performance was estimated by the weighted accuracy 
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(Acc) metric, representing the average accuracy over all classes, considering the fraction 

of correct predictions in each class. Different grouping strategies were also applied when 

assessing the model accuracy, in order to get more balanced data among severity groups. 

It was achieved by merging some of the initially defined four groups (G=4), thus generating 

fewer groups (G=3 and G=2). The reason for these strategies was the reduced number of 

patients presented in some of the initial groups, which were defined according to the 

patients’ FEV1 values.  

2.7 Sensitivity analysis 

Finally, we performed a sensitivity analysis to quantify the relative effect of the input 

parameters on the 6MWT model outputs, 6MWD, HRmax and HRR3. In particular, we 

applied a variance-based sensitivity analysis presented by Sobol, which measures the 

uncertainty of model output because of the input's variance [35]. We computed the main 

effect indices, Si, defined as the effect of varying xi on the output y, 

𝑆𝑖 =
𝑉𝑎𝑟[𝐸[𝑦|𝑥𝑖]]

𝑉𝑎𝑟[𝑦]
 (2) 

 

In addition, we also computed the total-order effect indices which consider the impact of 

the variation of two or more parameters. We followed the approach presented in the study 

of Satelli et al. [36] to reduce the number of combinations. Consequently, the total-order 

indices, STi were calculated as: 

𝑆𝑇𝑖 = 𝑆𝑖 +∑𝑆𝑖𝑗
𝑖≠𝑗

+ ∑ 𝑆𝑖𝑗𝑙
𝑖≠𝑗≠𝑙

+⋯+ 𝑆123…𝑘 = 1 (3) 
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The main difference between the main and total-order indices is that the main effect 

indices, Si quantify the variability of the output by the input parameters alone, whereas, 

the total-order indices, STi, consider the parameter and its interactions. The indices were 

calculated for each model output and its corresponding inputs. These indices provide 

better knowledge about the input and output relations and measure the robustness of the 

model in case of variance. 

3 Results 

3.1 Study population 

The cohort for this study includes 50 COPD patients, 38 males and 12 females. Four 

patients were excluded from the analysis because of the presence of a pacemaker 

interfering with the ECG signal (one patient) or a low signal-to-noise ratio (three patients). 

Table 1 shows the patients' demographic and anthropometric data.  

Table 1 Demographic and anthropometric data for the study population 

Clinical characteristics n = 46 

Male (Female) 34 (12) 

Age, yr 65.00 (60.00 - 69.00) 

Height, cm 169.50 (164.00 - 178.00) 

BMI, kg/m2 24.85 (22.27 - 29.04) 

Smoker, n (%)  

Current smoker 9 (19.57) 

Former smoker 37 (80.43) 

Comorbidities, n (%) 43 (93.48) 

Asthma 10 (21.74) 

Lung cancer 9 (19.57) 

Cardiovascular disorders 14 (30.43) 
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Obstructive sleep apnea syndrome 8 (17.39) 

6MWD, m 435 (370 - 498) 

FVC% pred 86.45 (72.20 - 110.90) 

FEV1% pred 52.15 (42.80 - 68.60) 

80% ≤ FEV1% pred, n (%) 5 (10.87) 

50% ≤ FEV1% pred < 80%, n (%) 20 (43.48) 

30% ≤ FEV1% pred < 50%, n (%) 18 (39.13) 

FEV1% pred < 30%, n (%) 3 (6.52) 

The data are presented as median (first - third quartile) and in the case of grouping, as the 
number and percentage of patients. BMI: body mass index; FVC: forced vital capacity; FEV1: 
forced expiratory volume in one second. 

 

On average patients walked 431 meters during the 6MWT. During the test, 7 patients 

paused and resumed walking at least once. These patients have a low FEV1% pred, being 

below 50%, thus indicating a greater severity. 

3.2 Complete Bayesian network scheme highlighting 6MWT outputs 

The schemes in Figure 2 represent the global Bayesian network obtained for modeling the 

6MWT outputs. This network resulted in part from the coupling of the three individual 

models obtained after the LASSO regularization step. More details on the coefficients of 

the final models and the variables selected for each 6MWT output are described in 

Appendix A. The remaining variables, FEV1/FVC, RRmean and SpO2, not included in the 

aforementioned models, are mainly related to the FEV1 parameter, and allow inferring the 

patient’s severity group based on the actual 6MWT results. Nodes with gray background 

(Age, Height, PIP, FVC, FEV1 BSdyspnea, HRbase) represent the input variables from which 

the outputs (6MWD, HRmax and HRR3) were obtained, and defined by the red arcs. Black 

arcs define the direct relationship between inputs. Therefore, by instantiating just all the 
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gray nodes with evidence, the values of 6MWD, HRmax and HRR3 can be simultaneously 

predicted using the maximum a posteriori (MAP) queries. 

3.3 Performance metrics for the individual and global models 

The performance of the individual models was measured by the correlation coefficient R 

and the RMSE using leave-one-out cross-validation. The performance metrics for the 

6MWD, HRmax and HRR3 are presented in Table 2. The individual models showed a 

moderate correlation (above 0.60) for the 6MWD, and a strong correlation for the HR- 

related outputs, specifically, 0.8360 and 0.8763 for the HRmax and HRR3 predictions, 

respectively. On the other hand, the RMSE and MAPE values were, respectively, 75.9 m 

and 15.60% for the 6MWD, 10.29 bpm and 8.10% for the HRmax and 4.34 bpm and 18.29% 

for the HRR3. Note that these values were measured for the individual models, while the 

values for the complete Bayesian network of Figure 2 are also shown in Table 2. The 

performance metrics obtained for the output nodes when the outputs are all unknown, 

slightly worsened for 6MWD and to a greater extent for HRR3, due to the error propagation 

occurring between the links connecting these model outputs. Nevertheless, the 

correlation, RMSE and MAPE values still exhibited a moderate performance in such a 

situation. 
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Figure 2 Bayesian networks obtained for modeling the main outputs of the 6-minute walking 
test (6MWT) and disease severity (FEV1). A) Network highlighting in gray those nodes (variables) 
needed to estimate 6MWD, HRmax and HRR3 according to individual models obtained. B) Network 
highlighting the most relevant nodes for estimating the spirometry related variable, FEV1, and thus 
the patient's severity, assuming that both FVC and FEV1/FVC are unknown. In both networks, blue 
nodes indicate the dependent variables, while nodes in white stand for the unknown variables. Arcs 
in red are related to the models obtained for individual 6MWT outputs. Black arcs mean interactions 
between input variables that are useful for the accurate prediction of FEV1 if the 6MWT outputs are 
known. BSdyspnea: Dyspnea score gave by the patient before the test based on the mBorg scale, 
FEV1: forced expiratory volume in one second, FVC: forced vital capacity, HRbase: Heart rate of the 
patient before the test, HRmax: Heart rate maximum after the test, HRR3: the heart rate recovery 
index evaluated after 3 minutes of recovery, PIP: percentage of inflection points, RRmean: mean time 
difference between beats before the test, SpO2: peripheral capillary oxygen saturation. 
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Table 2 Average performance metrics for the 6MWD, HRmax and HRR3 models selected by leave-
one-out cross-validation. 

 Individual models  Bayesian network  

 
R 

(95%CI) 
RMSE  MAPE 

R 

(95%CI) 
RMSE MAPE 

6MWD [m] 
0.602 

(0.38-0.76) 
75.90 

15.60 0.583 

(0.35-0.75) 
77.16 

15.43 

HRmax [bpm] 
0.836 

(0.72-0.90) 
10.29 

8.10 0.8369 

(0.72-0.91) 
10.26 

8.10 

HRR3 [bpm] 
0.876 

(0.79-0.93) 
4.34 

18.29 0.577 

(0.34-0.74) 
7.36 

32.49 

The performance metrics, correlation (R), Root Mean Squared Error (RMSE) and 

Mean Absolute Percentage Error (MAPE) were computed for the individual models 

and the Bayesian network. 

3.4 Relationship between relevant inputs and 6MWT outputs 

After training of the Bayesian network, synthetic samples were simulated for each variable 

within the network. The aim of the new randomly generated samples is not to get strong 

correlations between variables, but to increase understanding of their existing 

relationships, especially increasing the understanding between inputs and outputs.  Figure 

3 displays the 6MWT outputs against selected relevant inputs from both the 5000 

simulated samples and the 46 original samples used for training the network. Correlation 

values (Pearson's coefficient) between variables and the associated P values are added 

to each graph. All correlations were statistically significant (P<.001). The results indicate 

an inverse relationship, that is a negative correlation, between 6MWD, and HRbase, Age, 

and HRmax, while the correlation between 6MWD and FVC was positive.  

Regarding HRmax, its relationship with HRbase was positive as expected. On the other hand, 

the relationship of HRmax with Age and the spirometry values, FEV1 and FVC, was inverse. 
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Finally, the recovery output, HRR3 had a positive correlation with the other outputs, 6MWD 

and HRmax whereas its correlation with HRbase was negative. Note that there is no 

correlation between HRR3 and PIP.  

 

Figure 3 Relationship between the model inputs and outputs, 6MWD, HRmax and HRR3. The 
colored points represent the simulated data, whereas the black points are the real data used in the 
model. The blue lines are the linear regression resulting from the simulated and real data. 6MWD: 
six-minute walking distance, FEV1: forced expiratory volume in one second, FVC: forced vital 
capacity, HRbase: Heart rate of the patient before the test, HRmax: Heart rate maximum after the test, 
HRR3: the heart rate recovery index evaluated after 3 minutes of recovery, PIP: percentage of 
inflection points.  

3.5 Sensitivity Analysis 

Figure 4 shows the results obtained from the sensitivity analysis performed for the analyzed 

6MWT outputs. Both the main effect (Si) corresponding to each individual input alone, and 

total effect (STi) considering also the interactions with other inputs are shown. For all 
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models, values of Si and STi are almost similar, indicating that interactions between inputs 

are negligible and thus the models are mostly additive. 

The HRmax is significantly influenced by the heart rate at baseline, HRbase, with a 

contribution above 50%. Spirometry results measured through the FEV1 and the Borg-

scale index related to the lungs each contribute more than 10% to HRmax. The remaining 

variables associated with patient physical characteristics such as Age and Height together 

with PIP have a smaller contribution.  

Regarding the total distance walked, HRbase is again the component with the largest effect 

(40%). Its influence is more than 2-fold larger than the influence of both Age and Height 

(less than 20% each). Age and Height are commonly used in clinical models for distance 

estimates for healthy subjects. FVC and HRmax had a more modest effect on 6MWD but 

still notable (>10%). The model predicting 6MWD was the most heterogeneous among all, 

its variables are related to the cardiorespiratory system and the physical properties of the 

subject.   
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Figure 4 Global sensitivity analysis using Sobol indices for HRmax, 6MWD and HRR3. First-
order (main) effects 𝑆𝑖  (sensitivity to individual parameter variations) are represented by red bars 

and while green bars indicate total-order effects 𝑆𝑇𝑖 (sensitivity to parameter interactions).  

Finally, the recovery dynamic of heart rate during the post-walking phase was mostly 

modulated by the effects of HRmax and HRbase as expected. Both inputs together accounted 

for more than 95% of the total output variance, while the effects of the other inputs 

accounted for the remaining 5%. Hence, we can proceed by pruning all the others and 

keep only these 2 dominant markers. 

3.6 Inferring disease severity from 6MWT outputs 

In the previous sections, we described the results predicting the outputs of the walking 

test. However, a BN also allows to infer the inputs (i.e., pulmonary status) of the network 

from the outputs (6MWD, HRmax, HRR3). The Bayesian network designed in this study 

allows to estimate the severity of the patients by knowing the 6MWT outputs and the 

relevant clinical variables. Figure 2-B highlights in gray color, which nodes are more 

relevant to this specific task. Despite the fact that they were acquired before the test, 
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variables FVC and FEV1/FVC are assumed to be unknown together with FEV1. On the 

other hand, the node RRmean depends on Age and HRbase. Therefore, by instantiating the 

grey nodes, the conditional probability of belonging to a particular severity group can be 

estimated for any patient.  

 

Figure 5 Conditional probability associated with each class estimated for all patients. Top: 
all patienst grouped in four classes; Bottom: all patients grouped in two classes. Solid black squares 
(TRUE) indicate patients that were correctly classified while colors represent the classes. 

Figure 5 (top chart) shows the classification results by grouping the patients into four 

classes: Very severe (FEV1 ≤ 30%), Severe (FEV1: 30% – 50%), Moderate (FEV1: 50% – 

80%), and Mild (FEV1 > 80%). Since some classes had very few samples in the original 

database, the Bayesian network was retrained using simulated samples distributed 

uniformly among all classes. This allows for improved performance when classifying 

patients from minority classes. The overall weighted accuracy achieved for the initial four 

classes was Acc = 67.4% (95%CI: 52.0 – 80.5). As the Very severe group had only three 

individuals, the overall performance was also reported for three and two classes, being 

Acc=78.3% (95%CI: 63.6 - 89.1) using three groups, while for two groups was Acc=84.8% 

(95%CI: 71.1 – 93.7). With three classes, the groups were defined by merging the Very 
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severe and Severe patients (n = 21), while Moderate and Mild remained identical. When 

only two classes were used, the groups are formed by joining Very severe with Severe 

class, and Moderate with Mild class, with n = 21 and n = 25, respectively (see Figure 5 

bottom chart).  The classification results obtained for the two and three groups are 

summarized in Table 3 and Table 4, respectively. 

 

Table 3 Confusion matrix associated with the classification results obtained for only three classes 
(Very Severe + Severe, Moderate and Mild) according to disease severity. 

Population  

(N=46) 

        True class   

Very severe + 

Severe 
Moderate  Mild Total 

 

Predicted 

class 

 

Very severe 

+ Severe 
15 1 0 16 

Moderate 6 17 1 24 

Mild 0 2 4 6 

 Total 21 20 5 46 

 

Table 4 Confusion matrix associated with the classification results obtained for only two classes 
(Very Severe + Severe and Moderate + Mild) according to disease severity. 

Population  

(N=46) 

        True class  

Very severe + Severe Moderate + Mild Total 

 

Predicted 

class 

 

Very severe 

+ Severe 
15 1 16 

Moderate 

+ Mild 
6 24 30 

 Total 21 25 46 
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3.7 Inferring patient progression for personalized therapy 

In addition to estimating patient severity, the proposed network would make it possible to 

infer the progression of the patients if one or more parameters change over time. For 

instance, we could infer how a patient would evolve as he or she gets older, or if the heart 

rate decreases, or both. Such a tool would be of great clinical value for tailoring the most 

effective treatment for each patient. Figure 6 shows the estimate of the conditional 

probability (CP) belonging to each severity group in two patients, as a function of varying 

one of the parameters. That is, only one parameter is modified at a time, while the rest 

remains fixed. The example in Figure 6-A corresponds to a patient diagnosed as Severe; 

whose actual parameter values are highlighted with vertical blue lines. Based on these  
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Figure 6 Conditional probability (CP) estimated for each of the four disease severity groups 
as a function of parameters HRbase HRmax, FVC, and PIP. A) Example of the four CP trends 
computed for a Severe patient and, B) for a Moderate patient. The colored areas represent the 
probability of the actual patient to belong to a specific severity group: Mild (FEV1 ≥ 80%), Moderate 
(50% ≤ FEV1 < 80%), Severe (30% ≤ FEV1 < 50%), Very severe (FEV1 < 30%), when shifting the 
analyzed parameter towards higher or lower values. Vertical blue lines indicate the actual values 
corresponding to the analyzed parameters at the time of measurement, which usually fall within the 

A 
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patient’s actual group. FEV1: forced expiratory volume in one second, FVC: forced vital capacity, 
HRbase: Heart rate of the patient before the test, HRmax: Heart rate maximum after the test, PIP: 
percentage of inflection points.  

graphics, it can be deduced that an increase in HRbase or HRmax above 110 bpm and 150 

bpm, respectively, can result in a worsening of the patient. The same occurs when the PIP 

exceeds 60%. On the contrary, an increase in FVC% pred above 110% could improve the 

patient’s condition as expected, while the remaining parameters (not shown in the figure) 

had little influence. The same analysis is conducted in Figure 6-B for a Moderate diagnosed 

patient. In that case, the influence of each parameter is very similar to that of the Severe 

patient, with the actual values being within the expected region. Note that any desired 

combination of parameters changes can be tested as well, and more than one may be 

unknown when estimating the CP. However, such inference examples are only based on 

what the network has learned from our small study population. 

4 Discussion 

This study proposes a novel comprehensive tool for the assessment of walking capacity 

by modeling the 6MWT outcomes using Bayesian networks. To the best of our knowledge, 

it is the first time that Bayesian networks are used for modeling the 6MWT within a unified 

framework. The results showed that the prediction of the 6MWT outcomes, including 

6MWD, HRmax and HRR3, was good by only using clinical and physiological patient data. 

Furthermore, the implemented Bayesian network has the capacity of inferring the input 

variables from other known or measured data, and consequently, the pulmonary function 

parameters can be inferred from the 6MWT data. Therefore, our model provides a dual-

function tool. Firstly, the trained model allows the prediction of the 6MWT outcomes and 

thus, the evaluation of the functional exercise capacity of the patients. And secondly, it 

can assess the disease severity and progression by inferring the predefined FEV1% pred 

groups, and how disease severity might progress (ie, improved or worsened) by modifying 
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the available patient data. Both capabilities enable the proposed model to be used for 

more personalized monitoring of COPD patients in their home environment, where only 

the results of the analysis are reported occasionally to the medical doctors supervising 

them. 

Previous studies have proposed different models to predict the 6MWD [16], [17], [30], [37] 

and compare the test performance of the patients to spirometry values.  Many of 

these studies were, however, focused on healthy subjects. On the contrary, we 

modeled the 6MWD in COPD patients to obtain a more reliable characterization, 

considering the disease condition beyond the standard physical characteristics. 

We found that age, height, HR at baseline, HRmax, and FVC% pred of the COPD 

patients are significantly associated with 6MWD and consequently, they were 

included in the multivariate regression model. Unlike our study, the most frequent 

parameters presented in previous 6MWD models include age and height, while 

some studies also included HR information, whose findings partially agree with our 

results [15]–[17]. In particular, Poh et al [17] reported an inverse and direct 

relationship between 6MWD and both the age and height, respectively, in line with 

our results (see Figure 3). That study also included in the model a measure of 

HRmax, but the authors did not report the same inverse relationship that we 

observed between 6MWD and HRmax. It was probably as a result of the different 

ways the measure was expressed. Here, we used absolute HR values expressed 

in bpm, while they used a percentage of the theoretical maximum HR, estimated 

as 220  −  age. However, the same behavior seen in our study regarding HRmax and 

6MWD relationship was also observed in the study of Casanova et al.[16]. 
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On the other hand, only a few studies focused on healthy subjects included spirometry 

values. Camarri et al. [37] reported that height and FEV1 were the only significant 

parameters in the multivariate regression in healthy subjects. On the contrary, although 

FEV1 was not significant in this study, a closely related parameter like FVC was included 

in our model. These differences in the models might be due to differences in the 

populations and consequently, the ranges and distribution of the FEV1 values are different. 

Regarding COPD populations, Zeng et al,[38] investigated the relationship between 

6MWD and COPD severity. This study reported the relationships between 6MWD and 

both the age and FVC% pred, which agree with our results, displayed in Figure 3. As 

expected, both results suggest that a reduced FVC or an older patient implied a lower 

6MWD. Moreover, we found an inverse relation of 6MWD with HRbase and HRmax, 

suggesting that larger HR increases during the test are linked to shorter 6MWD, and thus 

with a reduced functional exercise capacity.  

The primary aim of the previous studies was to model the 6MWD whereas the other test 

outcomes have been investigated as modulators of it or to provide relevant information 

about disease prognosis. We additionally modeled HRmax and HRR3 because previous 

studies suggested them as predictors of disease worsening and mortality in respiratory 

diseases [11]–[13]. Furthermore, HRR3 after the 6MWT provided valuable information 

about severity and comorbidities in COPD patients [39], [40]. Importantly, unlike the 

6MWD model, the models obtained for both the HRmax and HRR3 included a HRV index, 

namely a marker representative of the heart rate fragmentation (PIP). Consequently, the 

proposed additional models contribute to a more complete model of the 6MWT 

performance in COPD. 
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The relationships exhibited in Figure 3 were expected based on previous studies and 

theoretical equations. On the other hand, the direct relationship between 6MWD and HRR3 

was also observed in previous studies that evaluated the heart rate recovery in respiratory 

diseases[11]–[13]. Therefore, the proposed models are in part supported by previous 

findings from other studies. But they are novel in the way they are integrated within a BN 

for assessing COPD patients, either by estimating the 6MWT outcomes, or by inferring 

disease severity from the test performance measures. 

Results derived from the variance-based sensitivity analysis performed on the 6MWT 

models highlighted the most important input variables affecting the output variance. 

Several factors modulated almost equally the 6MWD except for HRmax which accounted 

for 40% of its total variance. As expected, this model shows that the prediction of 6MWD 

depends on both the cardiac and respiratory systems, as well as physical metrics. 

Therefore, it allows us to obtain a cardiopulmonary assessment of patients rather than just 

a pulmonary assessment. The other two models were, as expected, modulated mostly by 

HR-related measures, such as the HR measured at baseline and maximum HR achieved 

at the end of the walking phase. These two inputs alone represented more than 90% of 

the HRR3 variance. Other variables associated with physical characteristics and 

pulmonary function had a smaller influence yet were not negligible, notably for the HRmax 

model. Overall, the models were mostly additive, and the results provide a hint to which 

variables should be prioritized over the rest when not all can be measured.    

 To bring all models together in one single tool, the versatility of Bayesian networks was 

leveraged for this purpose. Using Bayesian networks, we were able to represent causality 

between the different 6MWT output variables, as well as between the inputs. By combining 

the use of regression techniques with regularization, prior clinical knowledge, and 
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available data, we defined the structure and learned the parameters of the final network. 

This overcomes the limitations of purely data-driven approaches that usually fail in 

representing disease mechanisms complexity, and in making complex clinical decisions 

even if trained on very large datasets [41], [42]. On the other hand, Bayesian networks 

have some advantages compared to standard regression models, which can model 

associations but not causal structure and operate under restrictive assumptions about the 

variables’ relationships. For instance, BNs can model multiple outcomes in a single model, 

deal with small datasets through data extension and constraints-based approaches[43], 

and in the presence of missing or incomplete data (ie, by modeling the joint probability 

distributions using the two-step Expected Maximization (EM) algorithm)[44] . Moreover, 

they provide a mechanism for updating knowledge when new evidence is available. 

Therefore, by using the same scheme, we could add other new potential outcomes in the 

network and according to physicians' needs, in order to have a more comprehensive tool 

for COPD patients' assessment. Alternatively, another important score of death risk like 

the BODE index can be easily obtained from the patient’s clinical parameters, including 

the BMI, FEV1 pred, and dyspnea assessed by the modified Medical Research Council 

(MMRC) score, while exercise walked distance (6MWD) can be obtained from the model 

estimates[45]. 

The models reported for the 6MWD by previous studies are mainly based on standard 

regression analysis [30], [37]. However, to design our BN network, we first applied 

multivariate linear regression with LASSO regularization to identify the most predictive 

features for each 6MWT output using cross-validation. While doing this we obtained a 

sparse, easily explainable network, where several variables are shared among the three 

defined multivariate models. Our approach provides an important alternative towards the 

integration of individual but closely related models into BNs, which is not possible with the 
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available automatic algorithms used for network structure learning.  Furthermore, the use 

of BN not only allows the prediction of the results of the 6MWT simultaneously under 

uncertain conditions, but it also enables inferring disease severity from actual 6MWT 

measures and clinical parameters. Indeed, the results obtained in both cases are 

promising considering the size of the database. Certainly, the more evidence becomes 

available, the more accurate estimation of the parameters of interest could be. That is 

supported by the results obtained when estimating the CP for fewer disease severity 

groups, defined as a function of FEV1% pred. Finally, it was possible to estimate the most 

probable patient disease condition, and thus the path of its progression, if some change 

occurs in any of the network parameters. However, this particular capability should be 

further tested and validated by using follow-up information about the patients’ clinical 

outcomes. 

Given all its different functionalities, our model represents thus a versatile tool for COPD 

patient assessment and monitoring. More importantly, the cardiopulmonary patient's 

assessment could be performed several times a year, without the need to perform the 

actual physical test, which is typically done yearly. Besides, the ambulatory application of 

this model can provide relevant information on the patient’s status that can aid in defining 

specific personalized treatments. Therefore, its potential use in digitalized healthcare 

systems as a decision support tool would reinforce the home-monitoring of COPD patients. 

4.1 Limitations  

Although Bayesian networks have some advantages when dealing with small datasets 

and in the presence of incomplete data, our study has been mostly limited by the small 

size of the population. This limitation becomes even more pronounced in some subgroups, 

such as those belonging to the very severe and mild classes. The classes are defined as 
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a function of disease severity considering the FEV1 values, therefore, including more 

patients in these two minority groups would increase the overall classification 

performance. Nevertheless, it is possible to merge the minority groups into those groups 

with more patients, which could still be suitable for clinical practice and warrant a higher 

prediction accuracy. On the other hand, it should be noted that in our database, the 

patients conducted the six-minute walk test only once. In many studies, the test is 

performed two or more times, where the results are averaged or retained from the best-

of-multiple attempts, minimizing the impact on the test outcomes of several factors such 

as the learning effect, path layout, or the patient fatigue and pauses [46], [47]. In that 

sense, our results regarding the prediction of the walked distance (R ~ 0.60) could be 

improved, if at least two walks were performed for each patient. This will be helpful 

because of the less propensity to execute a poor first attempt due to lack of learning, or a 

poor second walked distance due to patient fatigue or eventual pauses during the test. 

Moreover, the presence of comorbidities in these patients may also influence the 6MWT 

outcomes. However, it was not considered in the study due to the diverse nature of these 

comorbidities, making it difficult to pool patients in nearby similarly distributed groups. 

Finally, the lack of a control group does not allow us to define significant differences that 

can be detected between individual models obtained for healthy and COPD patients. 

5 Conclusions 

A comprehensive model was developed for the assessment of the standardized 6-min 

walk test outcomes in COPD patients without physical performance measures. Our model 

represents a first approximation that would become a powerful tool to continuously monitor 

the COPD patient’s condition and disease progression at home, without physical 

performance measures. The tool could also be suitable for being implemented together 
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with wearable devices or even embedded. Moreover, it might serve to schedule or 

planning personalized therapies for the patients, that can be easily adjusted in accordance 

with their evolution. Further studies requiring larger patient cohorts, with equally distributed 

groups of disease severity and follow-up information, are needed to validate and refine 

the model, as well as to improve the overall performance, especially for extreme low or 

high FEV1% measures. 
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