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Abstract — Data fusion is one of the key aspects in robust
and failure-tolerant vulnerable road user (VRU) perception
systems. This paper presents a multi-radar sensor fusion platform
that enables automatic detection, tracking and classification of
pedestrians and cyclists while aiming to support fail-safe system
operation. The sensor fusion platform encapsulates two main
modules working concurrently: the first detection-to-detection
fusion module performs a spatio-temporal alignment of radar
detections, data association of the aligned detections and finally
multi-object tracking; the second module is the sensor failure
management block, which is responsible for fault-tolerant system
operation and encapsulates multilevel verification subsystem.
The proposed multi-radar fusion system is experimentally
evaluated through multi-target scenarios. Demonstrated results
show effectiveness of the proposed platform and failure-tolerance
of the system compared to a single sensor solution.

Keywords — Radar, sensor fusion, VRU, failure-tolerant,
redundancy, target classification.

I. INTRODUCTION

Multi-sensor data fusion has already demonstrated and
been proved to be an efficient approach for accurate,
environment-resistant, and failure-tolerant data sensing and
processing in many applications and especially in automotive
ones like monitoring VRUs such as pedestrians and cyclists.
These applications in particular require high precision
measurements and fail-tolerant sensors [1]. There are
countless number of works showing fusion approaches
of different sensor modalities: radar, vision, LIDAR,
ultrasound, etc. [2], [3]. However very few are focused on
homogeneous radar fusion architectures, despite its advanced
environment perception sensing capabilities. Furthermore,
increasing the number of radars not only increases area
coverage, probability of detection, localization, tracking and
classification performance but also significantly improves
failure-tolerance of the whole system.

This paper was inspired by our work on a radar-camera
fusion framework [2], however it targets different sensor
modalities with one of the key focus aiming to support fail-safe
system operation.

II. ARCHITECTURE OF THE PROPOSED FUSION PLATFORM

The structure of the proposed VRUs perception system is
shown in Fig. 1. More details can be found in [2], where the

detailed descriptions of modules A (Radar Signal Processing)
and B (Detection-to-Detection Fusion) is outlined. Therefore,

Fig. 1. Overview of the proposed VRUs perception system.

this section is mostly focused on the main concept with a
high-level description of modules A and B, and more details
of module C (Sensor Failure Management).

A. Radar Signal Processing

In this work, we used a TI 79 GHz, 3x4MIMO, FMCW
(Frequency Modulated Continuous Wave) radar in 3x4
MIMO waveform settings and resulting sensing capabilities
summarized in Table 1.

Table 1. 79 GHz radar settings and sensing parameters.

The Radar Signal Processing module is composed of four
sub-modules:
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1) Pre-Processing

This stage includes range-Doppler-angle processing
with Fourier transforms, detection with a Constant False
Alarm Rate algorithm (CFAR) [4] and clustering with the
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm.

2) Multi-target tracking

The multi-target tracking block from Fig. 1 includes three
main blocks. First the Data Association block where the input
measurements are fed to the tracking module, and associated
with the current tracks, following their Mahalanobis distance.
When two targets are close to each other and share the
same observation space, the observations can contribute to
update both trajectories. Sharing the observations introduces a
coupling into the decision process. JPDAF (Joint Probabilistic
Data Association Filter) [5] operates over these possible
combinations of matches. Then, at Track Management level,
these tracks are treated for track initiation, merging and
recovery. Finally, every active track, including the ones in the
initialization and tracking states, is predicted and updated in
the State Estimation block.

Fig. 2. Example of micro-Doppler images for pedestrian and bicyclist.

3) Feature extraction

This block utilises a 3D tuple (range, Doppler and azimuth
coordinates) for each tracked target centroid. Furthermore, to
improve classification results, we extract cubelets not only
from the current but also from the previous time instances:
for each tuple, for the same set of contiguous range and
angle coordinates, we select the previous 8 frames in the
range-azimuth profile (which amounts to approx. 800msec
worth of activity) and then apply a Short Time Fourier
Transform (STFT) with an overlapping factor of 50%. Fig. 2
shows examples of micro-Doppler images for different targets.

4) Classification

We evaluated several previously developed models [6],
[7]. In this work we used a 3D-Convolutional Neural
Network (CNN)-Long Short-Term Memory Networks (LSTM)
architecture. The architecture is depicted in Fig. 3.
The 3D-CNN is used to obtain intermediate short term
spatio-temporal features within sub-cubelets, and the LSTM
layer is used for the final radar cubelet classification.

Fig. 3. 3D Convolutional Neural Networks + LSTM scheme.

B. Detection-to-Detection Fusion

The above described radar modules provide detected
ROIs of targets, along with their labels. The first step is the
projection of the detections on a common coordinate system.
This is obtained by estimating the homography between the
two radar planes.

1) Spatio-temporal alignment

Based on approaches from the work of [7], radar
acquisitions are considered coplanar because they perform a
plane projection on the horizontal plane. Consequently, the
transformation between the radar planes can be represented
by a homography matrix.

Let (X1, Y1, Z1)
T the coordinates of the target in the radar

frame and (X2, Y2, Z2)
T its projection on the second radar. For

Z = 0 (horizontal plane) they are related as follows:

w ×

X1

Y1

1

 = H ×

X2

Y2

1

 (1)

where : H =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 (2)

w is a scale factor representing the depth of (X1, Y1, 1)
T of

one radar relative to another and H is the homography matrix.
To estimate w and H, we used corner reflectors placed

at different locations in the environment and observed by
both radars. In our experiments, we used 25 correspondences
of radar1/radar2 for estimating the homography parameters.
Because both radars operate at different acquisition rates,
we time-stamped the measurements and updated the system
with measurements having the same timestamps. This allows
obtaining a uniform synchronization between the sensors.

2) Multi-target radar-radar tracking

After radars alignment, all detections are projected in a
common plane. The centralized algorithm takes the current
detections as inputs from both sensors and performs tracking
in the same way as for the above described multi-objects
radar tracking. Each detection consists of three values: 2D
coordinates, confidence of classification and label. These
detections are then used in the same dynamic model as the
one defined for radar-based tracking. Finally, the association
of each estimated state i to the corresponding label li is made
via a voting approach. The association is made with the highest
vote for the class.
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Fig. 4. Multi-level view on the system architecture.

C. Failure sensor management

A homogeneous multi-sensor data fusion system provides
a support for perception and processing with increased sensor
fail-robustness. The failure sensor management system is
the key part responsible of fault-tolerant and fail-operational
aspect. This block consists of sensor and data verification parts
demonstrated on the verification level see Fig. 4.

1) Sensor verification

As sensors can physically degrade over time, the quality of
the received data therefore degrades too. From a pure software
architecture point of view, there is very little that can be
done about this. Problems like these, however, are detected
at the algorithmic level. E.g. noise level and signal-to-noise
level measurements are used to detect certain types of
signal degradation. Other options, at the fusion level, include
cross-correlation of signals between different sensors. E.g. if
one sensor misses a signal that is detected by other sensors,
this is an indication that this sensor is malfunctioning.

2) Data verification

Several fail-robustness aspects are addressed at this level.
Data integrity: Sensor data can get garbled on the route

between the sensor and the processing unit. Therefore, data
integrity checks are included, which allows us to verify that
the received data frames are not altered and are complete.

Capacity problems: The amount of data to be transferred
from the sensors to the processing is very high. Temporary
capacity problems result in missing data packets or even
complete missing data frames. Data integrity checks are used
to identify missing data packets. Frame meta-data (timestamps,
sequence numbers) are used to detect missing frames.

Deadlock and excessive latency avoidance: In order to
avoid deadlocks (in case of complete sensor failure), and to
avoid high latency in the processing (e.g. due to capacity
problems) the data processing pipeline should not wait
indefinitely for data to arrive from different sensors. If sensor
data does not arrive within an acceptable time period, the
fusion algorithm should continue with the available data from
other sensors.

III. EXPERIMENTAL RESULTS

The VRUs perception system was further tested in
real life scenarios. For that, we conducted several outdoor
measurements to collect real-time samples for further
processing and evaluation. The multi-radar setup was placed

on two tripods at a height and width targeting a conventional
vehicle bumper as illustrated in Fig. 5. There was also a
camera placed on a crossbar for obtaining only a ground truth
information but not in the main fusion processing pipeline.
Furthermore one of two radars was rotated in a horizontal plane
towards the other one to increase the overlap of their field of
view see Fig. 6b. We collected a dataset for pedestrians and
bicycles combining several scenarios of single and multiple
heterogeneous and homogeneous targets. The recorded dataset
has been used to evaluate the different modules of the proposed
above multi-radar fusion framework.

Fig. 5. Overall system and set up for outdoor measurement.

A. Radar Signal Processing

The recorded single-target dataset has been processed
by tracking each target and extracting the radar cubes. We
then partitioned the extracted data cubes into training, testing
and validation data. The 3D-CNN LSTM model discussed
above was trained with the batch-size of 8. The input
of the model is presented by 3D time-range-Doppler echo
of size 64x32x128x6. We train the model with 64 radar
data cubes of 32x128 range-Doppler images, where each
2D-image has 6 azimuth channels. The radar data cubes are
created around target’s centroid with contiguous range and
azimuth bins, where the target’s centroid is available at each
time-step from the JPDAF-tracker. Six azimuth bins along
with other dimensions were guided by the cubelet centroid
to be focused on the center of the target for the accurate
target feature extraction and further into classification. For
training, we used an ADAM solver as an optimizer and
an initial learning-rate of 1E-4. The model was trained for
50 epochs using an open source machine learning library
TensorFlow and NVIDIA TITAN-XP GPU with 12 GB RAM.
The effectiveness of the proposed model is tested by a
cross-validation technique. Fig. 6a summarizes the obtained
classification results of the proposed 3D-CNN+LSTM. As can
be seen, the 3D-CNN+LSTM achieves an average recognition
accuracy of 94.58%. This confirms that the 3D-CNN provides
robust spatio-temporal features able to distinguish between
different targets. Combined with the LSTM layer to capture
spatio-temporal dependencies, it achieves good results.

B. Detection-to-Detection Fusion

Fig. 6b illustrates the projection average error of the
alignment process described above. The blue dots correspond
to the different locations of the corner reflector detected in the
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(a)

(b)
Fig. 6. Illustration of the radar signal processing. (a) Confusion matrix for
multiple-targets classification, (b) Alignment results

first radar plane. The green dots correspond to the different
locations of the corner reflector viewed in the second radar
plane and projected on the bumper plane using homography
matrix H. We estimated the homography matrix H using the
data sets of 18 points. The transformed locations performed in
ranges between [3m, 15m] and angles between [−60◦, 60◦].
Fig. 7 illustrates the final results of the fusion algorithm with

Fig. 7. Results of the centralised fusion framework with multiple targets.

multiple heterogeneous targets. Throughout the experiment, the
radar tracks were more stable in the longitudinal direction,
which is consistent with the characteristics of the sensor. After
fusion processing, the status information of the fusion track
and the class were obtained. The information on the fusion
track was relatively stable and smooth. In some situations,
radar classification fails because of occlusions between the
targets. This is explained by the fact that the two targets are
closer to each other than the range, Doppler or angle resolution
of the radar system.

C. Failure sensor management

In the previous section, we discussed the main structure of
the block and types of failures tackled. Here we highlight some
real-life results. Although it is not always easy to demonstrate
all targeted failures in a real live situation, we highlight one
of them - sensor degradation.

Fig. 8. Pedestrian monitored with one of the radars degraded.

Fig. 8 shows a pedestrian being detected and tracked by our
two-radar setup. Later on, we do degradation emulation on one
of the radars (Radar A) and it starts completely losing detection
of pedestrian. Still, the fusion tracker can track the pedestrian
(as is Radar B). Moreover, the failure detection algorithm has
generated several warnings over time, as it detects that Radar
A is no longer contributing. We detected and indicated other
types of failures in a similar way.

IV. CONCLUSION

In this paper, we proposed a multi-radar data fusion system
for failure-tolerant vulnerable road users detection, tracking
and classification. The multi-sensor approach was leveraged
to fuse the data and improve the quality and robustness of
different processing modules. The fusion of the data between
two sensors has been improved thanks to the estimated
homography transform and the proposed data fusion algorithm.
An additional verification level was developed and tested to
utilise multi-sensor resources for the sensor fail-robustness
aspect of the system.
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