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Abstract—Remote sensing hyperspectral cameras acquire high
spectral-resolution data that reveal valuable composition informa-
tion on the targets (e.g., for Earth observation and environmental
applications). The intrinsic high dimensionality and the lack of
sufficient numbers of labeled/training samples prevent efficient
processing of hyperspectral images (HSIs). HSI clustering can
alleviate these limitations. In this study, we propose a multiscale
spectral–spatial association network (MS2A-Net) to cluster HSIs.
The backbone of MS2A-Net is an autoencoder architecture that
allows the network to capture the nonlinear relation between data
points in an unsupervised manner. The network applies a mul-
tistream approach. One stream extracts spectral information by
deploying a spectral association unit. The other stream derives
multiscale contextual and spatial information by employing dilated
(atrous) convolutional kernels. The obtained feature representation
generated by MS2A-Net is fed into a standard k-means cluster-
ing algorithm to produce the final clustering result. Extensive
experiments on four HSIs for different types of applications (i.e.,
geological-, rural-, and urban-mapping) demonstrate the superior
performance of MS2A-Net over the state-of-the-art shallow/deep
learning-based clustering approaches in terms of clustering accu-
racy.

Index Terms—Convolutional autoencoder, deep learning,
dilated (atrous) convolutions, hyperspectral imaging, multiscale
information, remote sensing, spectral association.

I. INTRODUCTION

R EMOTE sensing (RS) has emerged as a prominent data
source for Earth observation with various applications

(e.g., agriculture [1], [2], urban mapping [3], [4] and geol-
ogy [5]). Hyperspectral imaging is one of the most popular
acquisition techniques, and creates hyperspectral images (HSIs)
that contains hundreds of narrow spectral bands. An HSI usually

Manuscript received 1 June 2022; revised 16 July 2022; accepted 28 July
2022. Date of publication 11 August 2022; date of current version 18 August
2022. This work is supported by the Imec-Vision Lab, University of Antwerp,
Belgium. (Corresponding author: Kasra Rafiezadeh Shahi.)

Kasra Rafiezadeh Shahi and Paul Scheunders are with the Imec-Visionlab,
Department of Physics, University of Antwerp, 2000 Antwerpen, Belgium (e-
mail: rafizadehshahie.kasra@gmail.com; paul.scheunders@uantwerpen.be).

Pedram Ghamisi is with the Helmholtz-Zentrum Dresden-Rossendorf,
Helmholtz Institute Freiberg for Resource Technology, 09599 Freiberg, Ger-
many, and also with the Institute of Advanced Research in Artificial Intelligence,
1030 Vienna, Austria (e-mail: p.ghamisi@gmail.com).

Behnood Rasti and Richard Gloaguen are with the Helmholtz-Zentrum
Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology,
09599 Freiberg, Germany (e-mail: b.rasti@hzdr.de; r.gloaguen@hzdr.de).

The code is available at: https://github.com/Kasra2020/MS2A-Net.
Digital Object Identifier 10.1109/JSTARS.2022.3198137

covers the visible and near-infrared (VNIR) to the shortwave
infrared (SWIR) range of the spectrum (0.38-2.50 μm) to en-
able users to observe and monitor materials and organisms of
interest [6]. Visual interpretation and traditional approaches for
processing HSIs require large amounts of man-power, time,
and expenses [7]. The ever-growing demand for utilizing HSIs,
encourages researchers to design and develop fast, yet robust
analytical approaches. Recently, there has been a tremendous
progress in the development of supervised and unsupervised
machine/deep learning approaches to analyze HSIs. Such ap-
proaches have been successfully deployed to accomplish vari-
ous HSI analysis tasks (e.g., feature extraction, classification,
clustering). Despite the satisfactory performances obtained by
supervised approaches, they require a considerable amount of
labeled/training samples, which is not always easy to obtain.
Thus, in recent years, unsupervised approaches have been re-
ceiving more attention [8].

One of the main tasks of unsupervised learning is clustering
data points with similar characteristics into separate groups. For
HSIs, the main objective is to group pixels that share similar
spectral/spatial characteristics into distinct clusters. Overall,
HSI clustering approaches can be categorized into two general
groups (i.e., conventional shallow learning and deep learning).
Conventional shallow learning (CSL) clustering approaches
constitute the largest group [8], [9], [10], while deep learning
(DL) clustering techniques have been developed more recently
[11], [12]. The most widely used CSL-based clustering approach
is the k-means clustering algorithm that iteratively clusters the
data points by alternately assigning data points to the near-
est cluster centroids and updating the cluster centroids, until
convergence [13]. Density-based clustering techniques identify
clusters by calculating the local densities of the feature space,
assuming that each dense area represents a cluster [14]. In the
last decade, sparse subspace clustering (SSC)-based approaches
received significant attention [9], [10], [15], [16], [17]. These
methods cluster data points, based on the self-expressiveness
property, which indicates that each data point can be written
as a linear combination of other data points from the same
subspace [9]. SSC-based approaches initially generate a sparse
representation of the data and then compute a similarity matrix
on which spectral clustering is applied [18]. Despite the great
success of CSL-based clustering approaches, their performance
tend to deteriorate when it comes to processing complex datasets
(e.g., HSIs), as they merely assume a linear relation between data
points [8], [19].
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Due to the recent advances in computational technologies
(e.g., GPUs) and inheriting concepts from the human neural
network, DL-based clustering approaches have been developed,
that attain superior performances compared to CSL-based ap-
proaches [8], [20]. Autoencoder (AE)-based networks are the
pioneers of DL-based clustering approaches. A simple AE archi-
tecture consists of an encoder which extracts latent features from
the original dataset, and a decoder that reconstructs the original
dataset from the extracted latent features. Clustering is then
performed on the latent features. The deep clustering network
(DCN) is a representative DL-based clustering approach, which
aims to learn k-means friendly features by minimizing both
clustering and reconstruction losses simultaneously [11]. To
further improve the performance of AE-based networks, con-
volutional AE (CAE)-based networks have been proposed [21],
which reconstruct the original dataset by exploiting the spatial
information. Clustering deep neural networks (CDNNs) merely
use the clustering loss to train their network parameters, making
it hard to extract informative and abstract features, and making
them sensitive to network initialization [20]. Finally, variational
AE (VAE)-based clustering approaches are generative models
that enforce the extracted features to follow a predefined distri-
bution [8], [12].

These developments in DL-based clustering found their way
into the geoscience and remote sensing community. In [22],
a deep clustering was proposed, which utilizes an intraclass
distance constraint in its clustering loss, and employs a recon-
struction loss as well, leading to cluster friendly latent features.
In [23], a graph regularized residual subspace clustering net-
work (GR-RSCNet) was proposed, which captures subspace
information by learning the nonlinear relation between data
points in an HSI. In [24], a spectral–spatial subspace clus-
tering (DS3C-Net) approach was proposed to analyze HSIs.
DS3C-Net is a multiscale approach, feeding patch blocks with
different sizes with the same center pixel into parallel autoen-
coder networks. For the optimization, next to the reconstruction
loss and a self-expressiveness loss at each individual stream, a
collaborative self-expressiveness loss was employed to capture
the subspace structure between various scales. Authors in [25]
proposed to deploy 3-D convolutional kernels to capture the
spatial information of HSIs and produce the latent features.
Similar to DCN, the network parameters are optimized in accor-
dance with both clustering and reconstruction losses. In [26], an
HSI clustering network was designed to learn features by com-
puting the set-to-set and sample-to-sample distances (LSSDs),
from which the latent features are derived using different ex-
traction approaches (i.e., pairs extraction, joint spectral–spatial
feature extraction). Finally, density-based spectral clustering is
applied on the learned features to produce the final clustering
result.

Most of the aforementioned DL-based clustering approaches
merely use the spectral information (e.g., AE, VAE). When
spatial information is incorporated (e.g, CAE, DS3C-Net), a
single fixed convolutional operation has been employed [27]
and less attention is paid to the spectral information [28]. To
alleviate these shortcomings, and effectively exploit spectral
as well as spatial information in the clustering process, the
following approaches are suggested:

� Inspired by recent studies, we propose to employ dilated
(atrous) convolutional operations. These operations effec-
tively extract spatial information with a wider field of view,
and require fewer number of learnable parameters [29].

� To capture subtle spectral information in the training pro-
cess, we propose to include a spectral association unit
into the current backbone of the networks. The spectral
association unit is inspired by self-attention mechanisms
and squeeze-and-excitation networks that allow the user to
capture spectral information effectively [27], [28], [30].

Based on these two propositions, we present a multiscale
spectral–spatial association network (MS2A-Net) that combines
a designed spectral-association stream to extract informative
spectral features, and a multiscale spatial stream to capture the
spatial information between data points.

The main contributions of this study can be summarized as
follows:

1) To cluster HSIs in a more effective and accurate manner,
spatial information is extracted with a wider field of view
and fewer learnable parameters by using dilated convolu-
tional operations.

2) Spectral information is optimally preserved in the re-
construction process, by deploying a spectral-association
stream.

3) The network is optimized by fusing the spectral and spatial
features and employing a loss function that contains a
reconstruction loss term and a spectral mean constraint
on the latent features.

To the best of our knowledge, this study is the first attempt
to utilize the concepts of self-attention mechanisms and dilated
convolutional operations for the purpose of HSI clustering. Ex-
perimental results on four HSIs for different types of applications
(i.e., geological-, rural-, and urban- mapping) demonstrate the
superior performance of MS2A-Net over several state-of-the-art
shallow/deep learning-based clustering approaches in terms of
clustering accuracy.

The remaining of this article is organized as follows. In Sec-
tion II, we describe the proposed approach in detail. Section III is
devoted to the description of the data. The presentation and dis-
cussion of the experimental results are elaborated in Section IV.
Conclusions are provided in Section VI.

II. MULTISCALE SPECTRAL–SPATIAL ASSOCIATION NETWORK

(MS2A-NET)

Motivated by the architecture of autoencoder-based networks
and dilated convolutions [27], [29], we propose a multiscale
spectral–spatial association network (MS2A-Net) for HSI clus-
tering. MS2A-Net has a simple yet effective architecture, as
shown in Fig. 1. MS2A-Net aims to extract spatial and contextual
information from an HSI at various scales, while preserving the
spectral information. In the following section, we describe the
two main streams deployed in MS2A-Net.

A. Notation

Throughout the article, bold upper case characters (X ∈
Ra×b×c) denote tensors of rank 3, and Xi ∈ Ra×b is a matrix,
denoting layer i (i = 1, . . . , c) of that tensor. X ∈ Rh×w×D
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Fig. 1. Illustration of the proposed multiscale spectral–spatial association network.

and R ∈ Rh×w×D express an HSI and its reconstructed image,
respectively, with spatial dimensions h (height) and w (width),
and the number of spectral bands D. Xs ∈ Rh×w represents the
sth spectral band of X. A vector is denoted with a lower case
character x, and its components as xi.

B. Multiscale Spatial Stream

A normal 2D-convolutional layer on an HSI can be formulated
as:

Mi = σ

(
BN

( D∑
s=1

Xs ∗Wi + bi

))
, (1)

(i = 1, . . . , d1). Here, for each value of i, all spectral bands ofX
are convolved with the same filterWi ∈ Rr×r, with a predefined
kernel size r, after which all bands are summed up (sum and
convolution can be swapped) and a bias bi is added. Then, a batch
normalization (BN) is applied to guarantee a fast and stable
training process. Finally, a rectified linear (ReLU) function is
applied as the nonlinear mapping function σ to obtain the ith
extracted feature map Mi ∈ Rh×w, with i = 1, 2, . . ., d1. The
number of filters (d1), is predefined by the user (in this study,
d1 = 12).

The receptive field of the kernels is bound to close-range
neighbors. In order to capture spatial information with a wider
receptive field, the kernel size of the convolutional layers can be
increased, and the extracted feature maps from multiple kernel
sizes can be stacked together. However, this strategy requires
high computational power and results in a significant increase
in the number of learnable parameters.

As a remedy to this issue, we will deploy dilated convolutional
layers. Dilated convolutional layers with different dilation rates
enlarge the receptive field and capture multiscale spatial infor-
mation, while keeping the number of learnable parameters under
control [27], [29]. The idea is to apply several streams of 2-D
convolutional layers, with different dilation rates l:

M′l
i = σ

(
BN

( D∑
s=1

Xs ∗W′l
i + bli

))
(2)

Fig. 2. Illustration of the multiscale spatial stream, where the streams (a), (b),
and (c) employ filters with dilation rates of 1, 2, 4, respectively.

(i = 1, . . . , d1), with W′l
i ∈ R(lr−l+1)×(lr−l+1) represents the

weights corresponding to the ith convolutional filter with dila-
tion rate l (l = 1 leads to Eq. (1)). As shown in Fig. 2, we employ
three streams (a), (b), and (c), with dilation rates l = 1, 2, and
4, respectively. In this study, we fix r to 5. Since we aim to use
the multiscale extracted features both in the reconstruction and
clustering processes, we concatenate M′l

i , with i = 1, . . . , 12
and l = 1, 2, 4 to shape M′ ∈ Rh×w×36.

M′ is subject to a final 2-D convolutional layer, consisting of
filters with r = 1 and stride= 2 (see Fig. 1), generating d2 output
features. To restore the original spatial dimensions of the original
HSI, upsampling with a scale factor of 2 is performed before
the batch normalization and the employment of the nonlinear
activation function (σ). The final extracted multiscale spatial
feature map is denoted by SPF ∈ Rh×w×d2 .

C. Spectral-Association Stream

Apart from exploiting the spatial information using the mul-
tiscale spatial stream, it is important to preserve and effec-
tively incorporate the spectral information from the original
HSI during the reconstruction process [29]. For this, MS2A-
Net employs a spectral association unit (henceforth we will
call it spectral-association stream), which contains two phases
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Fig. 3. Spectral-association stream schema, where we extract the most infor-
mative spectral features (SAF) from the original HSI (X).

(see Fig. 3) [31]. The initial step in the spectral-association
stream is to extract the spatial information at the local level.
To extract spatial information correlated with each pixel, we
deploy a normal close-range 2-D convolutional layer with d3
filters with r = 3 on X:

Fj = soft

(
σ

(
BN

( D∑
s=1

Xs ∗Wj + bj

)))
(3)

(j = 1, . . . , d3), with F ∈ Rh×w×d3 . To make the process faster
and produce a spectral-association matrix, we deploy a softmax
function (soft) to rescale each output feature of σ between
0 and 1. Subsequently, a spectral-association matrix SA =
reshape(soft(XT ))× reshape(F) ∈ RD×d3 is produced, where
reshape (.) unfolds a tensor of rank 3 into a matrix with h.w
rows, and × denotes the matrix multiplication operation. SA
describes the contribution of each spectral band to the extracted
spatial features in F, derived in Eq. (3).

Originally, the spectral-association matrix was proposed
in [31] to reconstruct the original HSI. However, in this study,
we propose to use SA to extract spectral features as follows:

SAF = reshape−1 (reshape (X)× SA) (4)

where SAF ∈ Rh×w×d3 , and reshape−1 (.) folds a matrix into
a tensor of rank 3.

D. Reconstruction Process

To train the network in an unsupervised manner, the original
HSI needs to be reconstructed. For this, the extracted spatial
(SPF) and spectral (SAF) feature maps are concatenated to
EF ∈ Rh×w×d, where d = d2 + d3. To equally contribute spec-
tral and spatial information in the reconstruction process, we set
d2 = d3 = 3 in this study. However, d2 and d3 can be varied,
depending on the application at hand. Thereafter, we feed EF
into the decoder section, which consists of a normal close-range
2-D convolutional layer, with D filters of 3× 3 kernel size, 2D
batch normalization, and nonlinear mapping function σ, and that
finally generates the reconstructed HSI R from EF.

E. Optimization of MS2A-Net

In order to train MS2A-Net in an unsupervised manner and
stabilize its performance, we designed the following loss func-
tion:

arg min
W,b

L = ||X−R||2F + λ ||X−M
′||2F (5)

where L represents the loss function, minimized with respect
to all weights and biases of the entire network. X ∈ Rh×w

and M
′ ∈ Rh×w denote computed averages over the spectral

dimension from X and M′, respectively. In addition, ||.||F
represents theFrobenius-norm. In Eq. (5), the first term denotes
the mean squared error (MSE) between the original (X) and
reconstructed (R) images. The second term defines the spectral
mean constraint, which denotes the MSE between the averaged
feature values from M′ and the spectrally averaged image X.
λ is a tradeoff parameter to control the impact of the spectral
mean constraint. Since MS2A-Net ultimately aims to cluster the
multiscale spatial features (M′), the spectral mean constraint
on the generated M′ is included in the designed loss function,
to assure that the generated latent features have a direct impact
on the training process, in such a way that they are enforced to
preserve the mean spectral information of the original image.

As the final step of MS2A-Net, the clustering is applied. To
be more specific, we apply k-means clustering on the generated
multiscale spatial features (M′) to clusterX. The optimization of
the MS2A-Net assures a more effective exploitation of spatial
as well as spectral information for a better description of the
relations between pixels in an HSI, leading to an improved
clustering map.

III. HYPERSPECTRAL DATA DESCRIPTION

We evaluate the performance of our proposed algorithm on
four real HSIs, covering three different application domains (i.e,
rural, urban, and geological sites).

A. Trento Dataset

This dataset is acquired by the AISA Eagle sensor over a
rural area in the south of the city of Trento, Italy. The HSI is
composed of 166× 600 pixels with a spatial resolution of 1 m,
and 63 spectral bands ranging between 0.40 and 0.98 μm. The
acquired HSI along with its corresponding ground truth dataset
are presented in Fig. 4. The Trento dataset contains six classes:
1) Apple trees, 2) Buildings, 3) Ground, 4) Wood, 5) Vineyard,
and 6) Roads.

B. Houston 2013 Dataset

This dataset is acquired over the University of Houston cam-
pus and the neighboring urban area by the Compact Airborne
Spectrographic Imager (CASI) on June 23, 2012. In this work,
we utilized a subset of this scene, composed of 300× 300 pixels
(indices on spatial dimensions range within [40:340,500:800]),
with a spatial resolution of 2.5 m and 144 spectral bands ranging
between 0.38–1.05 μm. The HSI along with its corresponding
ground truth dataset are presented in Fig. 5. More details on the
Houston 2013 dataset can be found in [32]. The Houston 2013
subset contains six classes: 1) healthy grass, 2) soil, 3) residential
area, 4) road, 5) parking lot, and 6) tennis court.

C. Geological Finland Dataset

The geological Finland dataset was captured over an outcrop
of the Archean Siilinjärvi glimmerite-carbonatite complex in
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Fig. 4. Trento dataset. From top to bottom: false color-composite image of the
HSI using bands R:40, G:20, B:10; ground truth along with the class legends.

Fig. 5. Houston 2013 subset. Top: the false color-composite image using
spectral bands: R:105, G:61, B:40; middle: corresponding ground truth maps,
and bottom: class labels.

Finland [33], by a hyperspectral frame-based camera (0.6 Mp
Rikola Hyperspectral Imager), mounted on a hexacopter (Ai-
botix Aibot X6v2). The HSI is composed of 300× 900 pixels
and contains 50 spectral bands covering the range between
0.50 and 0.90 μm. The geological Finland dataset contains
five classes: 1) Clay, 2) Glimmerite, 3) Dark-rocks (which is
a mixture of soil and Glimmerite), 4) Dust, and 5) Water. The
RGB image of the scene and its corresponding reference map
are shown in Fig. 6. More elaborated and detailed information
on the geological Finland dataset can be found in [5].

Fig. 6. Geological Finland dataset, captured over Siilinjärvi in Finland. Top:
RGB image; bottom: ground truth along with the class legends.

Fig. 7. Geological Spain dataset, captured over the Rio Tinto area in Spain.
Top: RGB image; bottom: ground truth along with the class legends.

D. Geological Spain Dataset

The Rio Tinto area is located 70 km north of Huelva in
the Iberian Pyrite Belt, in Spain. The area has a rich mining
history dating back to the Bronze Age, while currently, signif-
icant resources remain and mining operations still take place.
Panoramic outcrop scans were acquired by an AISA-FENIX
camera, mounted on a tripod [34]. The captured HSI is composed
of 300× 1416 pixels and 190 spectral bands, covering the range
between 0.38 and 2.50μm. The geological Spain dataset consists
of eight classes: 1) Chlorite rich schist, 2) Sericite rich schist, 3)
Chlorite + Sericite rich schist, 4) Chert, 5) Massive Sulphide, 6)
Purple Shale, 7) Phyllite, and 8) Saprolite. The RGB image along
with the corresponding ground truth of the scene is displayed in
Fig. 7.

E. Evaluation Metrics

We evaluate the clustering performance of the studied ap-
proaches using three widely used classification metrics: overall
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accuracy (OA), average accuracy (AA), and Kappa. Remark
that the proposed clustering approach is entirely unsupervised,
i.e., only unlabeled data are used for optimizing the network
and the clustering. However, for a quantitative evaluation of
the clustering results, labeled data are applied for validation.
Y = [y1, y2, . . ., yN ] represents the true class labels. C =
[c1, c2, . . ., cN ] denotes the obtained cluster labels, where ci =
{1, . . ., k}, with k the number of clusters. To evaluate the clus-
tering performance, a matching function c′i = bestMap(yi, ci)
between the predicted cluster labels and true class labels is
constructed by the Hungarian algorithm [35]. Subsequently, OA
is computed as ΣN

i=1Γ(c
′
i, yi)/N , where Γ(c′i, yi) is 1 if yi = c′i

and 0 otherwise.
In addition, we report two commonly applied unsupervised

evaluation metrics, namely, the normalized mutual information
(NMI) and the adjusted rand index (ARI). NMI is based on the
common/mutual information between two clusters and is defined
as ∑

ij nij log
ninij

ni+n+j√(∑
i ni+ log ni+

n

)(∑
j n+j log

n+j

n

) (6)

where nij = |c′i ∩ yj |, ni+ and n+j are defined as
∑N

j=1 nij

and
∑N

i=1 nij , respectively. In order to compare different ap-
proaches, the mutual information is normalized between 0 and
1 [36].

ARI computes the similarity (or dissimilarity) between two
clusters and is a adopted from the original rand index [37]. It is
defined as ∑

ij

(
nij

2

)−∑i

(
ni+

2

)∑
j

(n+j

2/

)(
n
2

)
1
2

[∑
i

(
ni+

2

)
+
∑

j

(
n+j

2

)]−∑i

(
ni+

2

)∑
j

(
n+j

2

)
/
(
n
2

) . (7)

The value of ARI is smaller than 1 and can be negative, in which
case two clusters are less similar than what can be expected from
a random result.

IV. EXPERIMENTAL RESULTS

A. Implementation Details

We implemented MS2A-Net in Python, version 3.8 using the
Pytorch library on a workstation with an i9-7900X CPU, 128 GB
RAM, NVIDIA GeForce RTX 2080 Ti 11 GB GPU. We adopted
the Adam optimizer with default parameters for both streams
(i.e., spectral-association and spatial multiscale). The param-
eters of the Adam optimizer are set as: β1 = 0.9, β2 = 0.999,
ε = 10−8, and weight decay= 0. The implementation of MS2 A-
Net is available online at: https://github.com/Kasra2020/MS2A-
Net.

B. Comparison to State-of-the-art Clustering Approaches

In this section, we provide a quantitative and qualitative
assessment of the obtained clustering results from the studied
clustering approaches on different datasets. All the experiments
are reported and analyzed based on five runs, with different
random initialization of the learnable parameters. Please note

that for each dataset, the entire ground truth dataset was utilized
for validation during the performance evaluation.

We compare clustering performance of our proposed MS2A-
Net to ten other representative CSL/DL-based clustering ap-
proaches:

1) Traditional CLS-based clustering approaches:
k-means [13] and spectral clustering on the sparse
coefficients (SC-SC) [18].

2) Advanced sparse subspace-based clustering approaches
that have proven to be effective for analyzing com-
plex datasets: hierarchical sparse subspace clustering
(HESSC) [38], scalable exemplar-based subspace clus-
tering (ESC) [10], and elastic net subspace clustering
(EnSC) [39].

3) DL-based clustering approaches: AE [40], CAE [40],
VAE [12], DCN [11] and deep multiresolution clustering
network (DMC-Net).

In AE, CAE, VAE, DCN, DMC-Net, the clustering results
are generated by employing k-means on the latent features. To
have a fair comparison, the number of latent features for all
aforementioned DL-based approaches is set to 36.

1) Quantitative Results on Trento Dataset: Table I reports the
quantitative assessment of the studied clustering approaches ap-
plied on the Trento dataset. Among the CSL-based approaches,
k-means and HESSC obtained the highest OAs (57.95 % and
56.76 %, respectively), while among the DL-based clustering
approaches, the approaches that incorporate spatial and contex-
tual information (i.e., CAE, DMC-Net, and MS2A-Net) attained
higher OAs. Among the approaches that merely use spectral
information (i.e., AE, VAE, and DCN), DCN is superior and
obtained comparable results as CAE. The inferior performance
of VAE (OA = 50.12 %) indicates that better hyperparameter
tuning for such an approach is required. Overall, DMC-Net
and MS2A-Net yielded the highest OAs (82.35% and 84.16%,
respectively). This demonstrates a substantial performance im-
provement by deploying a multiscale spatial stream. How-
ever, integrating spectral information by employing a spectral-
association stream improved the clustering performance even
further. With respect to individual class accuracies, most ap-
proaches failed to capture the “Ground” class accurately, except
for EnSC (97.29%). One can argue that the cause of this problem
is insufficient test samples for the “Ground” class.

2) Quantitative Results on Houston 2013 Dataset: We quan-
titatively assessed the clustering performance of studied ap-
proaches on Houston 2013 dataset (see Table II). Among the
CSL-based approaches, ESC obtained the highest OA (67.18%),
revealing that the selected exemplars are sufficiently represen-
tative to describe the entire dataset. SC-SC obtained the poorest
performance (OA = 43.38%), meaning that the representative
dictionary utilized in SC-SC, is not well-built, and further tuning
of its parameters is required. MS2A-Net attained the highest OA
(73.06%) among all studied clustering approaches. In the Hous-
ton 2013 dataset, all DL-based clustering approaches distinguish
the “Healthy grass” class perfectly (100%). Except for VAE
(class accuracy = 87.09%), the performance of the DL-based
approaches is poor for the “Road” class. In addition, the poor
performance of some DL-based approaches could be due to the

https://github.com/Kasra2020/MS2A-Net
https://github.com/Kasra2020/MS2A-Net
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TABLE I
QUANTITATIVE ASSESSMENT OF ALL CONSIDERED CLUSTERING APPROACHES ON THE TRENTO DATASET

TABLE II
QUANTITATIVE ASSESSMENT OF ALL CONSIDERED CLUSTERING APPROACHES ON THE HOUSTON 2013 DATASET

TABLE III
QUANTITATIVE ASSESSMENT OF ALL CONSIDERED CLUSTERING APPROACHES ON THE GEOLOGICAL FINLAND DATASET

fact that default hyperparameter values were used, or because
the ground truth dataset was too small.

3) Quantitative Results on Geological Finland Dataset: The
quantitative assessment of the different clustering approaches
applied on the geological Finland dataset is reported in Ta-
ble III. HESSC is capable of clustering the geological Finland
scene (OA = 70.05 %) more accurately than other CSL-based
approaches. Despite the good performance of CAE in other
datasets, in the geological Finland dataset, it performed slightly
weaker (OA= 70.76%) than AE (OA= 68.37%). Similarly as in
the Houston 2013 dataset, this may be caused by the low number
of available test samples. MS2A-Net attained the highest OA

(80.48%) among all studied clustering approaches. DL-based
approaches distinguished the “Dark-rocks” class better than the
majority of the CSL-based approaches.

4) Quantitative Results on Geological Spain Dataset: The
performance of the studied clustering approaches applied on the
geological Spain dataset is reported in Table IV. Interestingly,
the availability of a high number of test samples for various
classes reveals valuable information. We can observe that some
CSL-based approaches (i.e., ESC, SC-SC) are not applicable on
this dataset. In the case of SC-SC, deriving sparse representation
for a large-scale dataset is too computationally expensive. In
the case of ESC, one can reduce the number of exemplars, but
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TABLE IV
QUANTITATIVE ASSESSMENT OF ALL CONSIDERED CLUSTERING APPROACHES ON THE GEOLOGICAL SPAIN DATASET. “OM” DENOTES OUT OF MEMORY

Fig. 8. Clustering maps of the Trento dataset obtained by (a) k-means, (b) HESSC, (c) ESC, (d) EnSC, (e) AE, (f) CAE, (g) DMC-Net, (h) MS2A-Net.

this results in poor performance when the number of selected
exemplars is not sufficient to represent the entire dataset. In
addition, overall, CSL-based approaches have inferior perfor-
mance compared to DL-based approaches. Furthermore, incor-
porating spatial information (i.e., CAE, DMC-Net, MS2A-Net)
ameliorates the clustering performance of DL-based approaches,
compared to when merely spectral information is deployed.

5) Processing Time: All tables report required processing
times on the four datasets. k-means is the fastest clustering
approaches on all studied datasets, since it merely needs to com-
pute the Euclidean distance between data points and centroids.
AE is the fastest DL-based approach. However, comparing all

other CSL- and DL-based approaches, MS2A-Net is faster than
any other approach. Among all approaches, EnSC and DCN
are the most time consuming CSL- and DL-based clustering
approaches, respectively.

6) Qualitative Assessment on Trento, Houston 2013, Geo-
logical Finland, and Geological Spain Datasets: Figs. 8–11
display clustering maps generated by the most representative
CSL- and DL-based clustering approaches, which can handle
complex and large scale datasets, on Trento, Houston 2013,
geological Finland and geological Spain, respectively. There is
a general trend, in which the spectral-based approaches (e.g.,
k-means, AE) tend to produce “noisy” maps in comparison
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Fig. 9. Clustering maps of the Houston 2013 dataset obtained by (a) k-means, (b) HESSC, (c) ESC, (d) EnSC, (e) AE, (f) CAE, (g) DMC-Net, (h) MS2A-Net.

Fig. 10. Clustering maps of the geological Finland dataset obtained by (a) k-means, (b) HESSC, (c) ESC, (d) EnSC, (e) AE, (f) CAE, (g) DMC-Net, (h) MS2A-Net.

to the ones (e.g., CAE, MS2A-Net), which incorporate spatial
information. Although CAE, DMC-Net, and MS2A-Net gener-
ate smooth clustering maps, it can be observed that DMC-Net
and MS2A-Net provide more detailed clustering maps compared
to CAE. This observation reveals the essence of using both
spectral and spatial information in the clustering process. Further
investigation of Fig. 8(g) and (h) demonstrates that MS2A-Net
more efficiently utilizes both spectral and spatial information
compared to DMC-Net. For instance, several “Apple trees”
pixels have been misclustered as “Wood” by DMC-Net, while
this effect is reduced when MS2A-Net is employed. The same

trend is observed in Fig. 11(f) and (g), where the “Chlorite
rich schist” class is not well clustered by DMC-Net, whereas
MS2A-Net can distinguish this class.

V. DISCUSSION: ABLATION STUDY AND HYPERPARAMETER

EVALUATION

In this section, we evaluate the impact of different hyperpa-
rameters on the performance of MS2A-Net. In order to tune the
MS2A-Net and identify its corresponding optimal hyperparam-
eters, we utilize the Trento dataset that has a richer and more
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Fig. 11. Clustering maps of the geological Spain dataset obtained by (a) k-means, (b) HESSC, (c) EnSC, (d) AE, (e) CAE, (f) DMC-Net, (g) MS2A-Net.

TABLE V
NUMBER OF LEARNABLE PARAMETERS IN MS2A-NET

balanced ground truth dataset, compared to the other studied
datasets.

A. Influence of the Multiscale Spatial Stream on the Number
of Parameters

In MS2A-Net, dilated convolutions are utilized to cover a
larger receptive field while requiring fewer learnable parameters.
As reported in Table V, we computed the number of learnable
parameters for two scenarios. In the first scenario, dilated con-
volutions are deployed as described in Section II. In the second
scenario, we increase the kernel size of normal convolutions,
to cover the same receptive field as their corresponding dilated
convolutions at different scales. The results reveal that the de-
ployment of dilated convolutions reduces the required number
of learnable parameters (i.e., weights and biases) by approxi-
mately a factor of 5. Consequently, the computational effort of
MS2A-Net is reduced proportionally compared to its version
with normal convolutions. Furthermore, in the studied datasets
(i.e., rural, geological, and urban applications), pixels which lie
within a close-range neighborhood from each other tend to be
drawn from the same class. Therefore, to primarily capture the
local neighboring information, we limited the receptive fields
by selecting the dilated rates ({1, 2, 4}). However, depending on

the applications at hand, other choices for these hyperparameters
can be made.

B. Impact of the Spectral Mean Constraint

In the proposed approach, the ultimate goal is to cluster the
extracted multiscale features (M′). To include M′ implicitly
in the training process, we defined the spectral mean con-
straint on the generated M′, to assure that the generated latent
features have a direct impact on the training process, in such
a way that they are enforced to preserve the mean spectral
information of the original image. We evaluated the impact of
the spectral mean constraint in Eq. (5) for the following values
of λ: {0, 0.0001, 0.001, 0.01, 0.1}. In Fig. 12, the results are
displayed in terms of OA(%). From the obtained results, one can
conclude that λ = 0.1 leads to the highest OA and the lowest
variation.

C. Influence of the Number of Latent Features on the
MS2A-Net Performance

In Fig. 13, the performance of MS2A-Net is validated in terms
of OA(%) by utilizing different numbers of extracted latent
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Fig. 12. Impact of the spectral mean constraint for different values of λ.

Fig. 13. Impact of the number of extracted latent features on the performance
of MS2A-Net.

Fig. 14. Comparing the performance of MS2A-Net by using different scenar-
ios.

features (d = 6, 12, 18, 24, 30, 36, 42, 48, 54, 60). One can
observe that the best performance is obtained using 36 features.

Thus, we propose to use 36 as the number of extracted features
for all datasets.

D. Impact of the Multiscale Spatial and Spectral-Association
Streams

We evaluated the effectiveness of the streams deployed in
MS2A-Net by using various alternative scenarios:

1) Alternative 1 (A1): In this alternative, only the spectral-
association stream is deployed in the MS2A-Net architec-
ture, hereby completely ignoring the effect of the multi-
scale spatial stream in the training process.

2) Alternative 2 (A2): In this alternative, merely the multi-
scale spatial stream is deployed in the MS2A-Net training
process.

3) Alternative 3 (A3): This alternative is the proposed ap-
proach that deploys both spectral-association and multi-
scale spatial streams.

As shown in Fig. 14, poor results are obtained by scenario
A1, compared to the other scenarios. The spectral-association
stream mainly uses spectral information, and the lack of suf-
ficient spatial information strongly deteriorates the clustering
performance. With scenario A2, the clustering performance
improves by the beneficial influence of spatial information.
However, one can observe that optimal clustering performance
is obtained in scenario A3, when both multiscale spatial and
spectral-association streams are deployed.

VI. CONCLUSION

HSI clustering is a challenging task, which can provide
valuable insight into datasets. Unlike CSL-based clustering ap-
proaches, DL-based approaches can capture nonlinear intrinsic
relationships between data points complex datasets. Further-
more, most CSL- and DL-based HSI clustering approaches
merely utilize spectral information, while neighboring pixels
likely share the same characteristics. Hence, in this article,
we proposed a multiscale spectral–spatial association network,
which effectively exploits spectral and spatial information for
HSI clustering. MS2A-Net contains two main streams (i.e.,
a spectral-association and a multiscale spatial stream). The
spectral-association stream aims to efficiently extract spectral
information, whereas the multiscale spatial stream deploys di-
lated convolutions to capture spatial information at various
scales. We have demonstrated that MS2A-Net outperforms
the state-of-the-art CSL- and DL-based clustering approaches
with competitive processing times on four real hyperspectral
datasets.

In the future, we will work on different optimization strate-
gies to further improve the clustering performance. In addi-
tion, we intend to design even lighter networks with a reduced
number of learnable parameters, and consequently processing
time.
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