
RESEARCH ARTICLE

A construction heuristic for the capacitated

Steiner tree problem

Simon Van den EyndeID, Pieter Audenaert*, Didier Colle, Mario Pickavet

IDLab, Ghent University - imec, Ghent, Belgium

* pieter.audenaert@ugent.be

Abstract

Many real-life problems boil down to a variant of the Minimum Steiner Tree Problem (STP).

In telecommunications, Fiber-To-The-Home (FTTH) houses are clustered so they can be

connected with fiber as cost-efficiently as possible. The cost calculation of a fiber installment

can be formulated as a capacitated STP. Often, STP variants are solved with integer linear

programs, which provide excellent solutions, though the running time costs increase quickly

with graph size. Some geographical areas require graphs of over 20000 nodes—typically

unattainable for integer linear programs. This paper presents an alternative approach. It

extends the shortest path heuristic for the STP to a new heuristic that can construct solu-

tions for the capacitated STP: the Capacitated Shortest Path Heuristic (CSPH). It is straight-

forward to implement, allowing many extensions. In experiments on realistic

telecommunications datasets, CSPH finds solutions on average in time O(|V|2), quadratic in

the number of nodes, making it possible to solve 50000 node graphs in under a minute.

1 Introduction

When building a greenfield point-to-point fiber network, the goal is to connect several build-

ings to a central cabinet. The major costs are the cost to open the road and build a pipe, the

trenching cost, and the cost of the fiber, the fiber cost. In point-to-point networks, each building

is connected to the central cabinet through a single fiber (there are no splitters). Once a road is

trenched, multiple fiber bundles can go through the same connection without having to trench

multiple times. This is similar to the Minimum Steiner Tree Problem (STP), see Problem 1,

where each edge weight is counted at most once. On the other hand, each extra meter of fiber

costs more money. In general, it is much easier to optimize fiber costs (e.g. shortest paths from

the fiber cabinets to the buildings) compared to the trenching cost: solving a rooted STP with

as root the central cabinet and with as terminals the buildings is NP-hard. To make sure that

the proposed constraints are rooted in real-world problems, we worked together with Comsof,

a telecommunications company that develops software to design fiber networks.

Due to the cable size, there are sometimes restrictions on the maximal number of fibers that

run through an edge. This can also happen in non- or semi-greenfield installation, where there

is still some room in existing cables but not much. We say that edges have a maximal fiber

capacity.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0270147 June 16, 2022 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Van den Eynde S, Audenaert P, Colle D,

Pickavet M (2022) A construction heuristic for the

capacitated Steiner tree problem. PLoS ONE 17(6):

e0270147. https://doi.org/10.1371/journal.

pone.0270147

Editor: Khalil Abdelrazek Khalil, University of

Sharjah, UNITED ARAB EMIRATES

Received: December 19, 2021

Accepted: June 3, 2022

Published: June 16, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0270147

Copyright: © 2022 Van den Eynde et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The Vienna dataset is

available at https://homepage.univie.ac.at/ivana.

ljubic/research/STP/ The LIN dataset is available at

the Steiner Tree library at http://steinlib.zib.de/

steinlib.php?LIN The PUC dataset is available at the

https://orcid.org/0000-0002-2318-6923
https://doi.org/10.1371/journal.pone.0270147
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270147&domain=pdf&date_stamp=2022-06-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270147&domain=pdf&date_stamp=2022-06-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270147&domain=pdf&date_stamp=2022-06-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270147&domain=pdf&date_stamp=2022-06-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270147&domain=pdf&date_stamp=2022-06-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270147&domain=pdf&date_stamp=2022-06-16
https://doi.org/10.1371/journal.pone.0270147
https://doi.org/10.1371/journal.pone.0270147
https://doi.org/10.1371/journal.pone.0270147
http://creativecommons.org/licenses/by/4.0/
https://homepage.univie.ac.at/ivana.ljubic/research/STP/
https://homepage.univie.ac.at/ivana.ljubic/research/STP/
http://steinlib.zib.de/steinlib.php?LIN
http://steinlib.zib.de/steinlib.php?LIN

This capacitated variant of the STP is described below as Problem 2. This specific variant is

also used for wind-farm cabling as is shown by [1], where a transformation from STP to an

integer linear program (ILP) formulation is proposed. Both the wind farm and the telecommu-

nications examples use sparse graphs, where complexity-wise the number of vertices |V| equals

the number of edges |E|, in big-O notation, this is written as O(|V|) = O(|E|). Therefore, we will

restrict our tests to sparse graphs, and in particular, we will focus on the telecommunications

example by mainly considering road networks for testing graphs. The objective of this paper is

to find a heuristic that can solve capacitated STP quickly. It does so by extending the shortest

path heuristic for STP to incorporate capacities. The result is a new heuristic, the Capacitated

Shortest Path Heuristic (CSPH). Furthermore, benchmark data for the STP is adapted by add-

ing capacities, so it can be used to measure the quality and time complexity of CSPH.

Problem 1 (Steiner Tree Problem (STP)) Consider an undirected simple connected graph G
= (V, E), a cost function cðeÞ : E! R�0 on the edges and a set of terminals T� V. The mini-
mum Steiner tree problem in graphs then requires finding a minimal-cost tree that connects all
terminals.

In this paper, it can also be called the Steiner problem, the Steiner tree problem, or STP.

The minimum Steiner tree problem is a classical NP-hard problem, see [2].

Problem 2 (Capacitated Steiner Tree Problem (CSTP)) Consider an undirected simple
connected graph G = (V, E), a cost function cðeÞ : E! R�0 on the edges, a capacity function
capðeÞ : E! N>0, a root r 2 V and a set of terminals T� V with demands T ! N. We say that
edge e has capacity cap(e). The capacity of an edge e restricts the maximum number of root-ter-
minal paths (with as cost the terminal demand) over this edge to cap(e). The capacitated mini-
mum Steiner tree problem in graphs requires finding a minimal-cost tree that connects the
terminals such that the edge capacities are respected.

The next section begins by discussing the related work: we discuss why we took a heuristic

approach and which papers most inspired our heuristic. Section 3, describes the Shortest Path

Heuristic, a well-performing heuristic for the STP. Section 4 details the main contribution of

this paper the capacitated shortest path heuristic (CSPH), a fast heuristic for solving the CSTP.

The following section contains several possible extensions to incorporate additional con-

straints in the code and demonstrate the flexibility of CSPH. Next, in Section 6 the experiments

and datasets are described. The paper uses open-source datasets commonly used to benchmark

STP problems and generates CSTP problems by adding fiber costs and capacities. The results

of the experiments section are shown in Section 7. While it is difficult to estimate the quality of

the solution, a rough estimate is provided. Furthermore, the section contains a comprehensive

time analysis, theoretical as well as empirical. Lastly, in the conclusions, we summarize the

problem, our solution, CSPH, and how it performs.

2 Related work

2.1 Steiner tree construction heuristics

A special case of the Steiner tree problem is the Minimum Spanning Tree problem (MST).

MST can be solved optimally by the O(|V| � log(|V|)) Prim algorithm with a binary heap.

There also exists an average-case linear time O(|E|) algorithm by [3], but it builds upon a rather

convoluted MST verification algorithm. Several attempts have been made to create fast Steiner

tree constructions. For example, for rectilinear graphs, a Steiner tree can be built in linear

time, given an MST that fulfills certain shape properties, see [4].

A famous and well-performing Steiner tree construction heuristic is the shortest path heu-

ristic (SPH) first proposed in 1980 by [5]. An improved version was published in 2002 in [6]

under the name Prim-Improved. It is this version that is presented in Algorithm 1. The reason

PLOS ONE A construction heuristic for the capacitated Steiner tree problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0270147 June 16, 2022 2 / 17

Steiner Tree library at http://steinlib.zib.de/steinlib.

php?PUC.

Funding: This research was partly funded by the

Ghent University IOP project “Modelling

Uncertainty in Hub Location Planning through

Interdisciplinary Research”, by the VLAIO project

“Comsof Autonomous Planning Agent” and by the

UGent-project BOF/STA/202009/039. The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0270147
http://steinlib.zib.de/steinlib.php?PUC
http://steinlib.zib.de/steinlib.php?PUC

that we specifically chose SPH is twofold. First, in [6], a that proposes and compares several

fast STP heuristics, SPH is the best performing algorithm for VLSI-type graphs. Second, in

2013 the 11th DIMAC challenge on Steiner trees was launched. Several interesting papers on

STPs have been developed thanks to this challenge. [7] presents SCIP-Jack, a mathematical

program solver that can tackle several different Steiner tree problems. Similarly, the versatile

iterative heuristic presented by Pajor, Uchoa, and Werneck in [8] performs well on several

Steiner tree problem classes by building several trees, performing local updates, and combining

the best trees efficiently. As the initial tree-constructing heuristic, they suggest using the short-

est-path heuristic (SPH).

2.2 Alternative Steiner tree approaches

In recent years, a lot of deep learning models have attempted to solve hard combinatorial

graph problems. Often by building deep neural nets that take graphs as input, commonly

labeled as graph convolutional networks. Unfortunately, we do not think that deep neural nets

are the right approach for this large-scale combinatorial problem. To show why we will detail

the work of several papers on learning heuristics for combinatorial optimization problems and

why their models are not sufficient to find decent solutions to CSTP with more than 5000

graph nodes.

The authors of [9] claim that it is currently not possible to scale end-to-end deep learning

to real-world instances. So, they propose to train a deep learning model on small problem

instances to then generalize these in a zero-shot fashion. The paper details in which ways this

can be done and which parts require more attention. Since this is an exploratory paper on this

novel way of approaching combinatorial problems with deep learning, the results are not that

good compared to classical approaches. In particular, their optimality gap for the TSP is at

10% for graphs with 200 nodes. To summarize: the presented approach may hold the future

for solving large-scale combinatorial problems, but this is not yet feasible. Moreover, models

for these kinds of graphs are mostly not size-generalizable: if the model was built on small

training graphs, it will underperform on larger graphs. This paper aims for graph sizes up to

50, 000 nodes. The current graph models only test for sizes up to 500 nodes. Case in point, in

2019 the paper [10] provides new best results by combining a neural net with attention layers

and a custom learning approach. They get very good results but only look at graphs up to 100

nodes.

Two papers published in 2021 attempt to solve the Steiner tree problem directly. The first

paper considers several black-box neural nets (feed-forward, graph neural, graph convolu-

tional, and graph attention), which have a significantly worse approximation ratio than the

2-approx [11]. The second type of model the paper considers is an extension of the 2-approx

method where additional nodes are generated by neural nets. While this method has a good

approximation ratio, it requires executing multiple 2-approx iterations, significantly impacting

the running time. The second paper approaches the problem differently by embedding graphs

into a low-dimensional vector and feeding them to a reinforcement learning model [12]. Their

model gets good approximation results on several small graphs, but it seems to be about 1.5

times slower than 2-approx. Furthermore, the authors show that the model is capable of some

generalization, however, the paper only experimented on graphs with up to 150 nodes.

2.3 Capacitated Steiner tree problem

The capacitated Steiner tree problem is hard and at the same time rather specific, making it a

less popular subject. From the reduction to STP, CSTP is NP-complete. Contrary to STP, for

which [13] has shown that it can be approximated up to a factor of 1.39 with an LP

PLOS ONE A construction heuristic for the capacitated Steiner tree problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0270147 June 16, 2022 3 / 17

https://doi.org/10.1371/journal.pone.0270147

approximation model, [14] has proven the inapproximability of CSTP. While CSTP can be

reduced to STP, it can also be reduced to the capacitated minimum spanning tree (CMST)

problem. An overview of CMST heuristics was written by [15].

A more general variant of CSTP is much more famous: the capacitated fixed-charge net-

work design problem (CFNPD) where instead of a single root and a set of destinations, there

are origin-destination pairs. Setting all origins to a single root reduces the problem to CSTP.

Because of the large number of constraints, CFNPD is usually solved with ILPs, such as by

[16]. The disadvantage of ILPs is their complexity, for example in [17], where they use a com-

bination of mathematical programming techniques and heuristic to find provably high-quality

solutions to the fixed charge network flow problem, calculating a near-optimal solution for a

500-node 2500-edge graph easily takes 15 minutes or more. Similarly, [18] takes about 10 min-

utes to solve problem instances with 100 nodes and 400 edges when using their MIP solver

with a novel local branching metaheuristic.

3 Shortest Path Heuristic

In this section, a heuristic to solve the Steiner tree Problem will be discussed. Several path heu-

ristics were considered, such as the zoom-in approach and the iterative pathfinding [19]. For

this paper, SPH was chosen over other heuristics because [6] concluded that it (under the

name of prim-improved) was their best pick after comparing several fast STP construction

heuristics—including the distance network heuristic and adaptations of MST algorithms Prim,

Kruskal, and Boruvka. Moreover, [8] implemented SPH in a competitive Steiner Problem

solver. The main drawback of SPH is that tests from [6] have indicated that the performance of

SPH can decrease for some harder instances. However, the instances under consideration will

be road networks, which are considered easy instances: the graphs are generally sparse and

have low max and average degrees.

SPH builds a solution tree terminal by terminal, see Algorithm 1 for the pseudocode. Start-

ing from a partial solution tree PST, SPH searches for the terminal closest to PST with a Dijk-

stra-variant (lines 7-13). Once the closest terminal is found, the terminal and its path to the

PST are added to this tree. As [6] has demonstrated, it is not necessary to fully restart the Dijk-

stra search each time a new path is added to the PST because the upper bounds determined by

the Dijkstra search do not change when a path is added to the PST. So, after setting the upper

bound of the new PST-nodes to 0 and putting these nodes once again in the Dijkstra heap, the

search can continue (lines 14-20).

Algorithm 1: Shortest Path Heuristic
input: A network G, a root root and a set of terminals T
output: A solution tree containing all terminals

1 foreach node 2 G do
2 SteinerUpperBound (node) inf;
3 SteinerUpperBound (root) 0;
4 node root;
5 Initialise heap;
6 while T not empty do
7 while node =2 T do
8 foreach neighbour neigh of node do
9 newDist EdgeCost (node, neigh) + SteinerUpperBound (node);
10 if newDist < SteinerUpperBound (neigh) then
11 SteinerUpperBound (neigh) newDist;
12 Add (newDist, neigh) to heap;
13 (_, node) Pop heap;
14 // ADAPT-phase, at this point node is a terminal
15 Remove node from T;

PLOS ONE A construction heuristic for the capacitated Steiner tree problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0270147 June 16, 2022 4 / 17

https://doi.org/10.1371/journal.pone.0270147

16 path the path from node to the solutionTree;
17 Add path to the solutionTree;
18 foreach node 2 path do
19 SteinerUpperBound (node) 0;
20 Add (0, node) to heap;
21 Return solutionTree;

For a fast version, it is possible to use the following data structures. To enable the Dijkstra

search, SPH uses a binary heap with distance-node pairs, sorting on the distances. The same

node can be added twice with the same distance, which can be corrected by the node-distance

map SteinerUpperBound. When a node is polled from the heap, the distance can be verified

with the node’s distance in the map and passed over if unequal. As can be derived from the

name, the map will always contain an upper bound for the distance to the partial solution tree.

Lastly, a Dijkstra search tree (or some kind of predecessor map) must be maintained to retrieve

the root-terminal path once a terminal is polled.

In every iteration, SPH finds the terminal closest to the tree that is already built. In worst

case, this heuristic runs in time O(|T|�(|E|+ |V| � log(|V|))). However, empirically—on several

graphs, including road networks—it runs independent of T, in time O(|E|+ |V| � log(|V|)),

see [6].

4 Capacitated Shortest Path Heuristic

The Capacitated Steiner Tree Problem (CSTP) definition can be found in Section 1 at problem

2. The difference with STP is threefold. Terminals now have demands, edges have capacities,

and the fiber cost is considered in the optimization objective. Each edge e has an associated

capacity cap(e). Then, for a solution to be valid, for each edge e, the sum of the demands of the

terminals it connects to the root (i.e. the flow) is at most cap(e). We say that, in a partial solu-

tion tree, the terminals incur a flow on the edges. The leftover capacity of an edge is defined as

its capacity minus the current flow on the edge.

This section will derive an adaptation of SPH for CSTP. This heuristic, CSPH, calculates a

quick and valid solution with an acceptable error rate. As seen in Section 3, SPH builds a Stei-

ner tree solution by connecting terminal after terminal to the tree. Each new terminal is found

by an adapted Dijkstra starting from the partial solution tree. CSPH, see Algorithm 2, main-

tains this idea and builds a solution tree terminal by terminal. The next terminal to add is

found by performing a Dijkstra search (with adapted edge costs) from the partial solution tree.

Once the cheapest path to a terminal is selected, it is verified whether this path has sufficient

capacity for the terminal demand. If so, the terminal is added to the solution tree and the next

terminal will be searched for. If not, some of the edges will be labeled as full (they are effectively

removed from the graph for the remainder of the search) and the search is repeated. Once all

terminals have been connected, the solution tree is returned.

Algorithm 2: Capacitated Shortest Path Heuristic
input: A network G, a root root and a set of terminals T
output: A solution tree containing all terminals

1 foreach node 2 G do
2 SteinerUpperBound (node) inf;
3 SteinerUpperBound (root) 0;
4 node root;
5 while T not empty AND heap not empty do
6 while node =2 T do
7 foreach neighbour neigh of node do
8 if neigh 2 solutionTree and Edge(node,neigh) =2 solutionTree
then
9 continue;

PLOS ONE A construction heuristic for the capacitated Steiner tree problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0270147 June 16, 2022 5 / 17

https://doi.org/10.1371/journal.pone.0270147

10 newDist EdgeCost (node, neigh) + SteinerUpperBound (node);
11 if newDist < SteinerUpperBound (neigh) then
12 SteinerUpperBound (neigh) newDist;
13 Add (newDist, neigh) to heap;
14 (_, node) Pop heap;
15 path the path from node to the root;
16 if Each edge on path has sufficient leftover capacity (must be at
least 1) then
17 // ADAPT-phase
18 else
19 // RESET-phase
20 Return solutionTree;

Instead of just a single tree, two trees are maintained. The Dijkstra tree is used during the

search and can change the structure in the ADAPT and RESET phases. The SolutionTree, on

the other hand, maintains the partial solution and can only increase in size (once added, nodes

or edges will not be removed). During the Dijkstra search, some nodes are skipped over to pre-

vent the creation of loops and assure the solution is a tree, see line 8. Furthermore, while in

SPH, when a new terminal is found with the Dijkstra search, the terminal is immediately

added to the solution (ADAPT phase, line 17)), in CSPH, first the leftover capacities of the

edges on the root-terminal path have to be validated.

Only if each edge has sufficient leftover capacity can the path be added to the solution with

an extra step to record the capacities (ADAPT-phase, line 17). However, if an edge efull has

insufficient leftover capacity, it is removed from the graph (RESET-phase, line 19), though if it

is already present in the solution tree, it will remain a part of the solution. Moreover, all

descendant edges in the Dijkstra search tree are removed from the tree, their upper bounds are

set to infinity, and all unaffected neighbors (in the network) of the removed nodes are added

to the heap with their current distance. The descendant edges of efull are the edges ed such that

the path from a node incident to ed to the root passes through efull. Note that by removing

edges due to capacity constraints, the heuristic is not guaranteed to find a solution.

Now we will investigate the edge cost function. The total edge cost is the trench cost plus

the fiber cost. The trench cost of an edge has to be paid only once—independent of the number

of connected terminals. In other words, when an edge is added to the solution tree, its trench

cost is reduced to 0. If the solution tree is represented as a predecessor map, checking whether

an edge is present in the solution tree can be done in constant time. The fiber cost is based on

the terminal demand, we use the average demand as an estimation.

5 Extensions and improvements

5.1 Cost requirements

While sometimes capacity requirements are strict, it frequently occurs that overflow just cre-

ates an additional cost. This cost is generally quite high, for example in telecommunications, a

capacity overflow would indicate that a street has to be broken up for a second time, requiring

expensive man-hours as well as burdening the users of the street. Still, it might be the best solu-

tion at hand. Such a penalty can be implemented as follows. During the RESET phase, when it

is discovered that an edge e has insufficient leftover capacity for a terminal demand, e is labeled

full instead of removing it. The Dijkstra search tree is still updated (reset), just like the upper

bounds and the heap. Then, a dedicated edge cost method can take into account whether an

edge is present in the solution tree and whether it is full. If full, a custom penalty can be added.

Because the search tree was partially reset, it is possible to change the edge cost to any positive

value without breaking the heuristic. Such a change guarantees that the heuristic always finds a

solution.

PLOS ONE A construction heuristic for the capacitated Steiner tree problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0270147 June 16, 2022 6 / 17

https://doi.org/10.1371/journal.pone.0270147

Another change to the cost function can be implemented by not setting the cost to 0 for

edges already present in the solution tree. This is necessary if re-using this edge for a new root-

terminal connection incurs a small cost. This can be resolved in the same cost-function as

described above, and by taking this into account when adding a path to the solution tree. How-

ever, when using a value for the re-use cost that is higher than the single-use cost, the costs will

not be taken into account correctly, because the heap prioritizes small distances and no update

is forced, contrary to when an update is forced in the RESET-phase each time capacity over-

flow increases the cost. So, as common in Steiner problems, keep the re-use cost smaller than

the single-use cost.

5.2 Capacity—Demand structure

Several possible extensions can easily be tackled by this heuristic. First, the terminal demands

could be any integer. The CSPH heuristic can be adapted to this purpose with some minor

changes. In the ADAPT phase, when a path is added to the solution, the edge demands have to

be updated according to the terminal demand. Moreover, in the RESET phase, all edges that

have insufficient capacity for the current terminal are removed. This ensures that the algo-

rithm chooses another path in the next iteration. The disadvantage is that some edges might be

labeled full prematurely because of a terminal with large demand, while such an edge could

still serve a terminal with a small demand.

The second implicit assumption CSPH relies on is that there exists a total order on the

capacities, and in particular, that capacities are comparable. This assumption can be avoided

by relying on edge demands instead of leftover capacities. Where the edge demand of an edge e
is defined as the combination of the terminal demands of those terminals for which the path

from the root to the terminal contains e. When demands are integers, it holds that the leftover

capacity of e plus the demand on e equals the e’s capacity. So for an edge e, instead of compar-

ing e’s leftover capacity with cap(e), the edge demand is compared directly with the original

cap(e). The two techniques differ because when using the leftover capacity, two different

capacities have to be compared. When relying on edge demands, this is no longer the case.

Practically, this makes it possible to have a different discrete capacity function for each of the

edges. For example, CSPH could now theoretically handle a case where terminal demands can

be of two different types, such as red and blue. Then, some edges can allow both red and blue,

while some allow only blue and some only red. The heuristic will provide a valid solution to

the problem, however, it is quite possible that in such cases the solution quality is not as high.

Since a root-terminal path causes a reset if an edge cannot fit the terminal demand, there will

be a reset each time red-only edges are found on the path for a blue terminal and vice versa.

This effect worsens the more discrete types there are.

6 Experiments

6.1 Data collection

All three heuristics were tested on several datasets. The authors had no access to any identify-

ing information on individuals. Since the aim is to swiftly build an approximate Steiner tree,

large example graphs are preferred. The most relevant online dataset was the Vienna dataset

by [20], available at the link: https://homepage.univie.ac.at/ivana.ljubic/research/STP/. This

dataset consists of large real-world examples, for which optimal solutions are available in their

paper. The Vienna dataset consists of the GEO instances and I instances, with respectively 23

and 85 problem instances. Both contain telecommunication deployment and infrastructure

data from various Austrian cities, but the I instances also contain more rural areas with sparser

infrastructure. Due to privacy reasons, the I instances of the Vienna dataset do not have any

PLOS ONE A construction heuristic for the capacitated Steiner tree problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0270147 June 16, 2022 7 / 17

https://homepage.univie.ac.at/ivana.ljubic/research/STP/
https://doi.org/10.1371/journal.pone.0270147

location data and thus have no distance information. Of the I instances, the 15 first instances

are used in the experiments.

Our results are also tested on some VLSI instances found in the Steiner library. The dataset

used, lin, was created by A. Lin. The lin dataset contains large rectilinear graphs. The graphs in

this set are structurally similar, for example, they have almost the same average degree. A sec-

ond Steiner Library dataset that is used in the experiments is the puc dataset. It is included to

have some comparison with less sparse graphs.

Table 1 shows the average values of some common measures for all the datasets. The aver-

age number of nodes divided by the number of edges indicates that the average degree for all

datasets, except puc, lies between 2.8 and 3.8, which is due to the inherent sparse nature of the

graphs and the limited amount of preprocessing (only the Vienna dataset was partly

preprocessed).

6.2 Experiment descriptions

All algorithms were implemented using Python 3.8 and executed in a single core on a laptop

with a 2.9GHz CPU and 8GB RAM.

The experiments are controlled for four parameters: the graph, the number of terminals (as

a percentage of nodes), the base capacity (as a percentage of terminals), and the capacity struc-

ture. The experiment starts with the selection of a graph, with its associated trenching and

fiber costs. Then, the number of terminals is determined based on a percentage, selected from

{1%, 6%, 11%, 16%, 21%}, of the number of nodes. The terminals are randomly chosen

amongst the nodes, with unit demands. Next, each edge is assigned a capacity. First the base

capacity capb is decided as
jTj
10

multiplied with 1, 2 or 3. Second, a capacity structure is chosen.

When the structure is random, the capacity on each edge is a random number between 1 and

capb × 3. When the structure is leveled, the capacity on each edge is capb × level with level ran-

domly chosen from 1, 2, 3, 4, 5. When the capacities are leveled, there are only 5 different

capacities over the entire graph. This is often the case in telecommunications since cable and

duct sizes have fixed capacities.

For each graph, CSPH is executed for 5 different terminal settings and a total of 6 capacity

settings (two levels and three base capacities). Then, each setting is repeated 10 times with a

different random seed (so capacities and terminals are assigned differently). On the same data,

SPH and Dijkstra are executed, but since they cannot take the capacities into account, this step

is skipped, resulting in a total of 50 runs for each graph.

7 Results

This section shows and discusses the results of the experiments in section 6. All figures, except

for Fig 1, were generated with the Python package Matplotlib.

Table 1. Dataset descriptions; all numbers are averages over all the graphs in a dataset. #x represents the number of elements in x.

dataset #graphs #nodes #edges #edges/#nodes Location info

lin 37 8587 15956 1.78 Y

puc 50 1269 8694 6.35 N

Vienna G 22 25872 40581 1.55 Y

Vienna I 15 10409 15480 1.48 N

https://doi.org/10.1371/journal.pone.0270147.t001

PLOS ONE A construction heuristic for the capacitated Steiner tree problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0270147 June 16, 2022 8 / 17

https://doi.org/10.1371/journal.pone.0270147.t001
https://doi.org/10.1371/journal.pone.0270147

7.1 CSPH quality performance

Since CSPH is a fast heuristic and the CSTP is NP-Hard, it is not possible to guarantee that a

solution can be found, even if there is one available. A small example graph where you can see

this is given in Fig 1. In this example, all edges have a capacity of one. The dashed edges have

cost 10, while the other edges have cost 1. The left figure contains the original graph and the

right figure contains the path that CSPH will find. This path connects a single terminal and

blocks the path to the second terminal.

Since the experiments do contain capacities, CSPH fails to connect all terminals there as

well. This can affect the runtime and the total cost. To not let this influence the time and cost

averages, these failed instances are removed and the averages are, per graph and terminal set-

tings, calculated separately. Otherwise, the settings with more successful CSPH executions

would have a larger influence on the average.

The CSPH results are not compared with optimal solutions, since no algorithm was found

that can generate these for large graphs. Instead, the cost subdivision (fiber and trenching) of

the solutions is investigated and compared with the Dijkstra and SPH results. In particular,

Dijkstra gives an optimal fiber cost, and [6] has shown that the optimality gap of the trenching

cost of SPH on sparse graphs (VLSI-like) is generally less than 5%. However, both Dijkstra and

SPH ignore capacity constraints, so their respective fiber and trench cost are possibly an

underestimation of the actual optimal cost.

Fig 2 contains the average cost for the three methods on the Vienna G dataset, subdivided

into fiber and trenching costs. The figure shows, as expected, that of the three methods, Dijk-

stra has the lowest trenching cost and SPH has the lowest fiber cost. The total cost of CSPH is

lower than these of Dijkstra and SPH. Not only that, but, at least for this example, CSPH cost

averages seem close to the non-capacitated average from Dijkstra and SPH, indicating that the

solutions it generates are of good quality. Fig 3 shows the averages for the Vienna I dataset. In

this case, the differences are less pronouncend and SPH scores as good as CSPH. Lastly, Fig 4,

plots the averages for the puc dataset. The plot mirrors Fig 2 and the same conclusion can be

drawn.

Fig 1. CSPH example. The large purple circle is the root. The yellow square nodes are the terminals. The left image has

no connections. In the right image, a single path connects the root to a terminal.

https://doi.org/10.1371/journal.pone.0270147.g001

PLOS ONE A construction heuristic for the capacitated Steiner tree problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0270147 June 16, 2022 9 / 17

https://doi.org/10.1371/journal.pone.0270147.g001
https://doi.org/10.1371/journal.pone.0270147

All in all, we think that these plots indicate that, if CSPH finds a solution, it is of good qual-

ity. In the telecommunications problem setting, often only a small subset of edges have a

capacity restriction. This would make it much more likely that there exist many solutions, so

CSPH is expected to perform well on these types of graphs.

Fig 2. Vienna G cost type analysis. Different cost types (fiber, trench and total) for the CSPH, Dijkstra and SPH

algorithms.

https://doi.org/10.1371/journal.pone.0270147.g002

Fig 3. Vienna I cost type analysis. Different cost types (fiber, trench and total) for the CSPH, Dijkstra and SPH

algorithms.

https://doi.org/10.1371/journal.pone.0270147.g003

PLOS ONE A construction heuristic for the capacitated Steiner tree problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0270147 June 16, 2022 10 / 17

https://doi.org/10.1371/journal.pone.0270147.g002
https://doi.org/10.1371/journal.pone.0270147.g003
https://doi.org/10.1371/journal.pone.0270147

7.2 CSPH time analysis

Another important factor to assess the quality of an algorithm is its time complexity. How long

does it take to find a solution? In this section, first, a theoretical worst-case analysis is

Fig 4. Puc cost type analysis. Different cost types (fiber, trench and total) for the CSPH, Dijkstra and SPH algorithms.

https://doi.org/10.1371/journal.pone.0270147.g004

Fig 5. Lin time evolution by method. Evolution of the time cost of Dijkstra, SPH and CSPH. Includes a quadratic and

linear function to compare trends.

https://doi.org/10.1371/journal.pone.0270147.g005

PLOS ONE A construction heuristic for the capacitated Steiner tree problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0270147 June 16, 2022 11 / 17

https://doi.org/10.1371/journal.pone.0270147.g004
https://doi.org/10.1371/journal.pone.0270147.g005
https://doi.org/10.1371/journal.pone.0270147

conducted. Next, some computational experiments will demonstrate the effective time com-

plexity of CSPH.

While the most interesting time analysis would be an average-case analysis, this seems to be

a non-trivial task due to the large number of variables to consider. However, we can do a

worst-case analysis. In the CSPH-algorithm (Algorithm 2), for the search for a single terminal,

a Dijkstra heap implementation is used, with time complexity factor O(|V| × log|V|). Now, the

search for a terminal can fail if an edge reaches its capacity limit. After such a RESET phase,

part of the search tree is removed and the Dijkstra search is repeated. This can happen at most

once for every edge since after a RESET, the edge is labeled full and no longer considered.

Lastly, each terminal is connected exactly once. This gives a total worst-case time complexity

of O(|T| × |E| × |V| × log|V|). This is equivalent with O(|T| × |V|2 × log(|V|)), since for sparse

graphs O(|E|) = O(|V|). In the experiments, |T| = x � |V| with x the terminal ratio, so we would

expect O(|V|3 × log(|V|)) worst-case time complexity.

First, the general running time trend in relation to the number of nodes will be evaluated.

The next figures show how the time costs of the methods evolve and compares them with a

quadratic and linear function in the number of nodes. Each point on the figures is the average

over all capacity, terminal, and seed settings for a particular graph and method. In Fig 5 the lin

dataset running time is evaluated. The SPH running time takes here almost as long as the

CSPH running time, indicating that CSPH most likely had very few resets. Moreover, the

CSPH trend is subquadratic, though more time-consuming than a linear method would be.

The same trends can be observed in Fig 6 on the Vienna G dataset, though the gap between

CSPH and SPH is larger here. Lastly, in Fig 7 on the Vienna I dataset a different trend is visual-

ized. Specifically, CSPH follows a roughly quadratic trend but remains far away from the

worst-case O(|V|3 � log(|V|)) scenario.

Fig 6. Vienna G time evolution by method. Evolution of the time cost of Dijkstra, SPH and CSPH. Includes a

quadratic and linear function to compare trends.

https://doi.org/10.1371/journal.pone.0270147.g006

PLOS ONE A construction heuristic for the capacitated Steiner tree problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0270147 June 16, 2022 12 / 17

https://doi.org/10.1371/journal.pone.0270147.g006
https://doi.org/10.1371/journal.pone.0270147

Let us now take a more detailed look at how the number of terminals influences the run-

ning time. Fig 8 shows for the Vienna G dataset the average running time ordered by graph

sizes and separated by the percentage of terminals. Furthermore, the number of terminals does

not seem to have a strong influence on the running time. The running time difference between

1% terminals and 21% terminals for 30000 and 70000 nodes is about constant at 10s. The same

plot for the Vienna I instances, see Fig 9, shows a less optimistic trend. In particular, the gap

between the terminal ratio lines increases when the number of nodes increases. This shows

that for the Vienna I dataset, the number of terminals has a significant impact on the running

time.

The final figures show how the capacity structure and total capacity influence the running

time. Fig 10 shows the running time of CSPH and the number of resets it took on average to

find a solution for the G307 graph of the Vienna dataset with 7830 terminals. It is remarkable

how much difference there is in time between the leveled approach, where there are only 5 pos-

sible capacities versus the random approach where practically every edge has a different capac-

ity. The main reason why this reduces resets is that when CSPH resets a path, it labels all edges

with no leftover capacity as full, and this will affect more edges in the structured approach. A

similar pattern emerges in Fig 11 where graph I003 of the Vienna I instances is evaluated.

However, the difference in running time is less pronounced. The resets are scaled differently,

so there is still a large difference in resets. In both figures the observed standard deviations

show that the timing results are sufficiently robust and that, for example, the patterns

described above still hold when taking into account the deviations.

8 Conclusions

The Capacitated Steiner Tree problem (CSTP) extends the Steiner tree problem by limiting the

capacity of each edge, adding demands to terminals, and including shortest path costs. One

Fig 7. Vienna I time evolution by method. Evolution of the time cost of Dijkstra, SPH and CSPH. Includes a

quadratic and linear function to compare trends.

https://doi.org/10.1371/journal.pone.0270147.g007

PLOS ONE A construction heuristic for the capacitated Steiner tree problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0270147 June 16, 2022 13 / 17

https://doi.org/10.1371/journal.pone.0270147.g007
https://doi.org/10.1371/journal.pone.0270147

practical application of this problem is the optimal placement of Fiber-To-The-Home (FTTH)

cables. There is a fixed cost per edge to trench the roads and install cables, a length-based cost

for the fiber materials, and a capacity for the number of fibers that can pass through a cable.

CSTP is proven to be inapproximable, so this paper focuses on the realistic FTTH variant,

Fig 8. Vienna G CSPH time evolution by terminal ratio. The time in relation to the number of nodes. For each line,

a different percentage of nodes is a terminal.

https://doi.org/10.1371/journal.pone.0270147.g008

Fig 9. Vienna I CSPH time evolution by terminal ratio. The time in relation to the number of nodes. For each line, a

different percentage of nodes is a terminal.

https://doi.org/10.1371/journal.pone.0270147.g009

PLOS ONE A construction heuristic for the capacitated Steiner tree problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0270147 June 16, 2022 14 / 17

https://doi.org/10.1371/journal.pone.0270147.g008
https://doi.org/10.1371/journal.pone.0270147.g009
https://doi.org/10.1371/journal.pone.0270147

Fig 10. Vienna G307 time compared by capacity. The time (purple bars) and number of resets (yellow bars) for 5

different capacity settings for the G307 graph.

https://doi.org/10.1371/journal.pone.0270147.g010

Fig 11. Vienna I003 time compared by capacity. The time (purple bars) and number of resets (yellow bars) for 5

different capacity settings.

https://doi.org/10.1371/journal.pone.0270147.g011

PLOS ONE A construction heuristic for the capacitated Steiner tree problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0270147 June 16, 2022 15 / 17

https://doi.org/10.1371/journal.pone.0270147.g010
https://doi.org/10.1371/journal.pone.0270147.g011
https://doi.org/10.1371/journal.pone.0270147

where the base graph is a road network with a low max degree to develop a heuristic that can

quickly find a solution for large instances.

In the literature study, we did not find existing methods capable of solving large CSTPs

quickly. While some research has been done on representing graphs quickly using graph con-

volutional networks, practical algorithms are still in development. This paper demonstrated

how an extension of a heuristic for the capacitated STP based on SPH, the Capacitated Shortest

Path Heuristic, can find good solutions to the CSTP, while inheriting much of the simplicity of

SPH, which allows general input, such as discrete capacities and flexible costs. Despite the gen-

erality and the increased problem complexity, CSPH runs in practice in time O(|V|2) with a

small quadratic coefficient (empirically tested). For a sparse graph with 50000 nodes and 1000

terminals, CSPH takes less than 1 minute to find a solution. This is quite acceptable for most

practical situations. Furthermore, the running time is strongly influenced by the input proper-

ties such as the capacity sizes and the terminal density. Since CSPH is a fast heuristic and the

CSPH problem is NP-hard, the heuristic will not guarantee an optimal solution. However, cost

estimations on the road network seem to indicate that the optimality gap is acceptable. In con-

clusion, this paper developed CSPH, a fast cost estimator and initial construction technique

for CSTP in sparse graphs. To find a near-optimal solution, the authors recommend using

additional methods like local search improvements.

Author Contributions

Conceptualization: Pieter Audenaert.

Formal analysis: Simon Van den Eynde.

Funding acquisition: Pieter Audenaert, Mario Pickavet.

Investigation: Simon Van den Eynde.

Methodology: Simon Van den Eynde.

Project administration: Pieter Audenaert.

Resources: Simon Van den Eynde.

Software: Simon Van den Eynde.

Supervision: Pieter Audenaert, Mario Pickavet.

Validation: Simon Van den Eynde.

Visualization: Simon Van den Eynde.

Writing – original draft: Simon Van den Eynde.

Writing – review & editing: Simon Van den Eynde, Pieter Audenaert, Didier Colle, Mario

Pickavet.

References

1. Bentz C, Costa MC, Hertz A, Poirion PL. Cabling Optimization of a Windfarm and Capacitated K-Steiner

Tree. In: Conférence Gaspard Monge Program for Optimization -Conference on Optimization and Prac-

tices in Industry: PGMO-COPI’14; 2014.

2. Karp RM. Reducibility among Combinatorial Problems. In: Miller RE, Thatcher JW, Bohlinger JD, edi-

tors. Complexity of Computer Computations: Proceedings of a Symposium on the Complexity of Com-

puter Computations, Held March 20–22, 1972. Boston, MA: Springer US; 1972. p. 85–103.

3. Karger DR, Tarjan RE, Klein PN. A Randomized Linear-Time Algorithm to Find Minimum Spanning

Trees. Journal of the ACM (JACM). 1995. https://doi.org/10.1145/201019.201022

PLOS ONE A construction heuristic for the capacitated Steiner tree problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0270147 June 16, 2022 16 / 17

https://doi.org/10.1145/201019.201022
https://doi.org/10.1371/journal.pone.0270147

4. Ho JM, Vijayan G, Wong CK. New Algorithms for the Rectilinear Steiner Tree Problem. IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems. 1990; 9(2):185–193. https://doi.

org/10.1109/43.46785

5. Takahashi H, Matsuyama A. An Approximate Solution for the Steiner Problem in Graphs. Math Japonic.

1980; 24(6):573–577.

6. de Aragão MP, Werneck RF. On the Implementation of MST-Based Heuristics for the Steiner Problem

in Graphs. In: Mount DM, Stein C, editors. Algorithm Engineering and Experiments. Springer Berlin

Heidelberg; 2002. p. 1–15.

7. Gamrath G, Koch T, Maher SJ, Rehfeldt D, Shinano Y. SCIP-Jack—a Solver for STP and Variants with

Parallelization Extensions. Mathematical Programming Computation. 2017; 9(2):231–296. https://doi.

org/10.1007/s12532-016-0114-x

8. Pajor T, Uchoa E, Werneck RF. A Robust and Scalable Algorithm for the Steiner Problem in Graphs.

Mathematical Programming Computation. 2018; 10(1):69–118. https://doi.org/10.1007/s12532-017-

0123-4

9. Joshi CK, Cappart Q, Rousseau LM, Laurent T. Learning TSP Requires Rethinking Generalization.

arXiv:200607054 [cs, stat]. 2021. https://doi.org/10.4230/LIPIcs.CP.2021.33

10. Kool W, van Hoof H, Welling M. Attention, Learn to Solve Routing Problems! arXiv:180308475 [cs, stat].

2019.

11. Ahmed R, Turja MA, Sahneh FD, Ghosh M, Hamm K, Kobourov S. Computing Steiner Trees Using

Graph Neural Networks. arXiv:210808368 [cs]. 2021.

12. Du H, Yan Z, Xiang Q, Zhan Q. Vulcan: Solving the Steiner Tree Problem with Graph Neural Networks

and Deep Reinforcement Learning. arXiv:211110810 [cs]. 2021.

13. Byrka J, Grandoni F, Rothvoß T, Sanità L. An Improved LP-based Approximation for Steiner Tree. In:

Proceedings of the 42nd ACM Symposium on Theory of Computing—STOC’10. Cambridge, Massa-

chusetts, USA: ACM Press; 2010. p. 583.

14. Bentz C, Costa MC, Hertz A. On the Edge Capacitated Steiner Tree Problem. arXiv:160707082 [cs].

2016;CoRR, abs/1607.07082.

15. Voß S. Capacitated Minimum Spanning Trees. In: Floudas CA, Pardalos PM, editors. Encyclopedia of

Optimization. Boston, MA: Springer US; 2001. p. 225–235.

16. Sridhar V, Park JS. Benders-and-Cut Algorithm for Fixed-Charge Capacitated Network Design Prob-

lem. European Journal of Operational Research. 2000; 125(3):622–632. https://doi.org/10.1016/

S0377-2217(99)00272-6

17. Hewitt M, Nemhauser GL, Savelsbergh MWP. Combining Exact and Heuristic Approaches for the

Capacitated Fixed-Charge Network Flow Problem. INFORMS Journal on Computing. 2010; 22(2):314–

325. https://doi.org/10.1287/ijoc.1090.0348

18. Rodrı́guez-Martı́n I, José Salazar-González J. A Local Branching Heuristic for the Capacitated Fixed-

Charge Network Design Problem. Computers & Operations Research. 2010; 37(3):575–581. https://

doi.org/10.1016/j.cor.2008.09.003

19. Yin F, Pickavet M, Arijs P, Gryseels M, Demeester P. Three Heuristic Techniques for Topological

Access Network Design. European Conference on Networks and Optical Communications 1997 (NOC

97). 1997; 1:157–164.

20. Leitner M, Ljubić I, Luipersbeck M, Resch M. A Partition-Based Heuristic for the Steiner Tree Problem in

Large Graphs. In: Blesa MJ, Blum C, Voß S, editors. Hybrid Metaheuristics. Lecture Notes in Computer

Science. Cham: Springer International Publishing; 2014. p. 56–70.

PLOS ONE A construction heuristic for the capacitated Steiner tree problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0270147 June 16, 2022 17 / 17

https://doi.org/10.1109/43.46785
https://doi.org/10.1109/43.46785
https://doi.org/10.1007/s12532-016-0114-x
https://doi.org/10.1007/s12532-016-0114-x
https://doi.org/10.1007/s12532-017-0123-4
https://doi.org/10.1007/s12532-017-0123-4
https://doi.org/10.4230/LIPIcs.CP.2021.33
https://doi.org/10.1016/S0377-2217(99)00272-6
https://doi.org/10.1016/S0377-2217(99)00272-6
https://doi.org/10.1287/ijoc.1090.0348
https://doi.org/10.1016/j.cor.2008.09.003
https://doi.org/10.1016/j.cor.2008.09.003
https://doi.org/10.1371/journal.pone.0270147

