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Abstract: Setting up pipelines in the oil industry is very costly and time consuming. For this reason,
a pipe is usually used to transport various petroleum products, so it is very important to use an
accurate and reliable control system to determine the type and amount of oil product. In this research,
using a system based on the gamma-ray attenuation technique and the feature extraction technique
in the frequency domain combined with a Multilayer Perceptron (MLP) neural network, an attempt
has been made to determine the type and amount of four petroleum products. The implemented
system consists of a dual-energy gamma source, a test pipe to simulate petroleum products, and a
sodium iodide detector. The signals received from the detector were transmitted to the frequency
domain, and the amplitudes of the first to fourth dominant frequency were extracted from them.
These characteristics were given to an MLP neural network as input. The designed neural network
has four outputs, which is the percentage of the volume ratio of each product. The proposed system
has the ability to predict the volume ratio of products with a maximum root mean square error
(RMSE) of 0.69, which is a strong reason for the use of this system in the oil industry.

Keywords: gamma-ray attenuation technique; Multilayer Perceptron (MLP) neural network; feature
extraction; frequency domain

MSC: 97R40

1. Introduction

When different products pass through the petroleum pipeline, these products are
mixed in a cross-section, which makes it difficult to recognize the type and quantity of
products passing through the pipeline. Therefore, implementing a non-invasive control
system to determine the type and amount of product passing through the pipe is very
important. Several studies have been done to introduce non-invasive X-ray tube-based
systems to determine the parameters of two-phase [1] and three-phase flows [2]. In [1], the
researchers defined five time characteristics as suitable features as input of the MLP neural
network for determining the type of flow regime and volumetric percentages. They stated
that all flow regimes were correctly detectable, and volume percentages were predictable
with a MAPE of less than 1.16, which was due to the extraction of appropriate characteristics
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from the received signal. Three RBF neural networks were trained in research [2], to
recognize the type of flow regimes of a three-phase flow. The inputs of these networks
were frequency characteristics named the first and second dominant frequencies of the
recorded signals of both detectors. The use of X-ray tubes is not limited to this, and the
researchers, following the design of a control system, introduced a structure consisting
of an X-ray tube, a test pipe, and a sodium iodide detector to determine the type and
amount of products passing through the pipeline [3]. Due to not using feature extraction
techniques, not only was a high computational load applied to the neural network, but also
the introduced system was not very accurate. Following the development of the previous
work [3], Balubaid et al. [4] implemented a structure similar to that in [3], but they divided
the received signal into five parts of approximation and detail using wavelet transform, and
approximation of the fifth stage and the details of the first to fifth stages were introduced
as appropriate characteristics. In line with these researches, a research was conducted
to select appropriate characteristics [5]. In this study, different time characteristics of the
received signal were extracted, the most efficient of which was determined by calculating
the correlation parameter between the characteristics so that the characteristics with the
lowest amount of correlation were introduced as neural network input. Although the
two-phase and three-phase flow parameters were detectable in the mentioned systems, in
all of them, gamma-based systems are referred to as the gold standard systems. Several
researches have been done to determine parameters such as the type of flow regimes
and the volume percentage in two-phase [6–8] and three-phase flows [9–11]. In these
researches, feature extraction techniques have not been used, but the operation of different
neural networks such as MLP, RBF, adaptive neuro-fuzzy inference system, and GMDH
neural network has been studied. In [12], the authors examined several time characteristics
and, using an innovative method, introduced the most appropriate characteristics for
determining the type of flow regimes and volumetric percentages of two-phase flows using
the MLP neural network. Sattari et al. [13] used the GMDH neural network, which is a
self-organized network, to select the appropriate characteristic automatically. Finally, they
can classify all flow regimes correctly and predict volume percentages with a maximum
RMSE of 1.11. Roshani et al. [14] applied characteristics such as count under Compton
continuum and under photopeak to determine volume percentages. Using GMDH neural
network, they were able to determine the volume percentage with an RMSE of less than
2.71. The deposition scale layer inside the pipe is undeniable over time that can have a
significant impact on the oil industry equipment. Therefore, in [15], the researchers try
to obtain the scale thickness how a two-phase flow passes through the pipe in different
volume percentages and three flow regimes of annular, homogeneous, and stratified. They
considered the characteristics of counts under photopeak of Ba-133 and Cs-137 as the input
of the RBF neural network, and the output of the network was the thickness of scale in the
pipe in millimeters. A gamma-ray attenuation-based control system was implemented in
study [16]. In this study, a dual-energy source and a detector were used to determine the
type and amount of product passing through the pipe. The weakness of this study was
the lack of feature extraction techniques that imposed a high computational load on the
network and reduced the accuracy of the proposed system. Non-iterative SGTM neural-
like structure can also be useful in determining the parameters of oil industry detection
systems [17,18]. In [19], a research has been done on the determination of volume ratio. In
the mentioned researches, due to the lack of extraction of effective characteristics, not only
relatively high accuracy has not been achieved, but also researchers have been forced to
use more detectors, which increases the cost and complexity of the detection system. In
the current research, using the frequency characteristics of the received signals, despite
the increase in accuracy in the presented system, only one detector has been used, which
has reduced the complexity of the detection system and reduced the design cost. The
contributions of the current research are as follows:

1. Examining the received signals in the frequency domain and extracting appropriate
characteristics.
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2. The use of a detector in the structure of the control system.
3. The use of only one neural network to determine volume rates, which is due to the

extraction of appropriate characteristics. This is despite the fact that in previous re-
searches, researchers implemented separate neural networks according to the number
of output parameters, which increases the cost of calculations.

4. Increasing accuracy in determining volume rates.

The current paper is structured as follows. In the second section, the simulated
structure is explained in detail. Then, the received signals are transferred to the frequency
domain using the Fast Fourier transform, and the frequency characteristics are extracted
from them. In the next section, the obtained characteristics are used as inputs of the MLP
neural network and volume ratio are predicted. In Section 5, the results of this research are
stated and the conclusion is presented in the last section.

2. Simulation Setup

Ethylene glycol, crude oil, gasoline, and gasoil have been studied in this study as by-
products. The density of these products is 1.114, 0.975, 0.721, and 0.826 g/cm3, respectively.
In this research, a test pipe is considered with an external diameter of 10 cm and a thickness
of 0.25 cm. The detection system consists of a dual-energy gamma source, consisting of
americium-241 and barium-133, and a sodium iodide (NaI) detector located on either side
of the test pipe. The distance between the source and the detector is 30 cm. The simulated
structure is shown in Figure 1. This simulation is done with version X of Monte Carlo
N Particle code (MCNP-X). First, one product is placed inside the pipe in a single phase,
and then the next product is loaded into the pipe. The two products overlap in a cross-
section, and over time the amount of the first product decreases, and the second product
increases. In this simulation, all possible modes for combining two by two petroleum
by-products in volume percentages of 5% to 95% with steps of 5% are implemented. A
total of 118 simulations, including 6 different modes × 19 different volume percentages
+ 4 single-phase modes, are carried out. The received signals can be seen for several
different modes in Figure 2. The simulated structure and sample of the signal received by
the detector are shown in Figure 1. The reproduction aftereffects of this study have been
approved by past examinations [6].
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Figure 2. Recorded spectrum by the detector.

According to the Beer–Lambert law, the attenuation rate of a narrow gamma-ray beam
is as follows

I = I0e−µρx (1)

where I is the intensity of un-collided and primary photons is represented by I0. The mass
attenuation coefficient and density of absorber material are shown by µ and ρ, respectively.
x is the beam path length through the absorber. Equation (1) states that gamma rays have
different attenuation rates when they hit different objects. This difference in the attenuation
rate can be a very important factor to determine the type and amount in many detection
systems.

3. Frequency Feature Extraction

The signals received from the detector are large and require to feature extraction for
better interpretation to prepare for neural network training. There are several methods
for extracting signal characteristics, including extraction of time, frequency, and time-
frequency characteristics. In this study, the frequency characteristics of the received signals
are investigated. For this purpose, to transmit the signal from the time domain to the
frequency, the Fast Fourier Transform (FFT) is used according to the following Equation (2).

Y(k) =
n

∑
J=1

×(J)w(y−1)(k−1)
n (2)

where Y(k) = FFT(X) and wn = e(−2πi)/n is one of the n roots of unity.
From the frequency domain signals, the amplitude of the first to the fourth dominant

frequency were extracted and introduced as neural network inputs. The extracted features
have been introduced as very useful features in previous researches [20–22], so the men-
tioned characteristics have been used in order to increase the accuracy of the volumetric
rate detection system. The frequency domain signal and the extracted characteristics are
shown in Figure 3.
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4. The Multilayer Perceptron Neural Network

The human brain has millions of computing units called neurons. All these neurons are
connected with each other. Neurons have branches called dendrites that receive information
from other neurons. The nucleus is the processing unit of the neuron, which after processing
the received information, transmits the output information to other neurons through
the output cable called the axon. All these processes happen in the physiological and
biochemical fields. Researchers have proposed several methods to model this function in
mathematics, one of the most common of which is the MLP neural network. The structure
of this network has an input layer and an output layer. There can be different number of
hidden layers between these two layers. In the hidden layers, a series of mathematical
processes are performed, which are introduced as the activation function. The number
of these layers, the number of neurons in the hidden layers, and the type of activation
function depend on the nature and degree of non-linearity of the available data. In the
implementation of neurons mathematically, the output of neurons is as follows [23,24].

nl =
u

∑
i=1

xiwij + b j = 1, 2, · · · , m (3)

uj = f

(
u

∑
i=1

xiwij + b

)
j = 1, 2, · · · , m (4)

output =
j

∑
n=1

(unwn) + b (5)

In which x presents the input parameters; the bias term, the weighting factor, and the
activation function are shown with b, w, and f, respectively. The index i is the input number,
and j is the neuron number in every hidden layer. In recent years, different mathematical
approaches have been used for analyzing data in plenty of engineering fields [25–48], but
it has been proved that Artificial Neural network (ANN) is the most powerful tool for
estimation and classification. For the implementation of neural networks, the collected
data are usually divided into three categories: training data, validation data, and test data.
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Training data usually contain 70% of the data. The neural network is designed based on
this data, and the network fits on these data. A total of 15% of the data are allocated to
validation data. These data are used for testing during training. Although the neural
network is not trained with this data, it is essential to prevent over-fitting and under-fitting
problems. The rest of the data fall into the category of test data. After completing the
network design steps, these data are given to the neural network input to check the network
performance against data that have not been seen before. Proper network performance
against these three datasets guarantees network performance in operating conditions. To
extract the mentioned characteristics and train the MLP neural network, MATLAB software
was applied. Although there are many toolboxes for neural network training in this
software, no pre-designed toolbox was used in this research and all steps of neural network
implementation are programmed for more freedom of action. In the implementation stages,
the ‘newff’ function was used for training the MLP neural network. In order to prevent
over-fitting and under-fitting of the neural network and to ensure the proper functioning
of the designed neural network, the available data are divided into three sub-data. The first
sub-data are the training data, which includes the majority of the data. These data are used
to train the neural network. The network is fitted using these data. The second sub-data
are the validation data used for testing during training. The correct response of the neural
network to this dataset shows the correct training process. After the implementation of the
neural network, the designed network is evaluated against the test sub-data. The neural
network has not seen these data and is not trained with them, and it is only used to check
the performance of the neural network. The accurate response of the neural network to
these three datasets guarantees the proper functioning of the neural network in operational
conditions and the absence of over-fitting and under-fitting problems.

5. Result and Discussion

An MLP neural network with four inputs and four outputs was designed that the
inputs of this network are the characteristics of the amplitude of the first to fourth dominant
frequency. Of the 118 available data, 82 were allocated to training data, 18 to validation
data, and 18 to test data. The outputs of this network include the percentage of volume ratio
of each of the petroleum by-products. It is important to say that neural networks with the
different of number layers and different neurons in each layer have been implemented and
tested, and a the best structure is shown in Figure 4. The target outputs can be predicted
with fewer layers, but their accuracy is not high, and since the aim of this research is to
increase the accuracy in determining volume ratio, a structure that has the least error has
been presented. Regression and error diagrams have been used to show the performance
of this network. The high compatibility of the stars and line indicates the high accuracy
of the designed network. The amount of error between the network output data and the
desired output data can be seen in the error diagram. The performance of the network
for determining the volume percentage of ethylene glycol, crude oil, gasoline, and gasoil
are shown in Figures 5–8, respectively. To calculate the amount of network error, two
criteria, mean square error (MSE) and root mean square error (RMSE), have been computed
with Equations (5) and (6). The accuracy of the network and the structure of the designed
network are shown in Table 1.

MSE =
∑N

j=1
(
Xj(Exp)− Xj(Pred)

)2

N
(6)

RMSE =

∑N
j=1
(
Xj(Exp)− Xj(Pred)

)2

N

0.5

(7)
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Figure 8. Network performance for predicting the volume rate of gasoil: (a) training, (b) validation,
and (c) testing dataset.

Table 1. The characteristics of designed networks.

ANN MLP

No. of neurons in the input layer 4
No. of neurons in the 1st hidden layer 25
No. of neurons in the 2nd hidden layer 20
No. of neurons in the 3rd hidden layer 10

No. of neurons in the output layer 4
No. of epoch 850

Hidden neuron activation function Tansig

MSE of predicting ethylene glycol Training data Validation data Test data
0.34 0.28 0.26

RMSE of predicting ethylene glycol 0.58 0.53 0.51
MSE of predicting crude oil 0.25 0.45 0.34

RMSE of predicting crude oil 0.50 0.67 0.58
MSE of predicting gasoline 0.30 0.28 0.45

RMSE of predicting gasoline 0.55 0.52 0.67
MSE of predicting gasoil 0.41 0.30 0.26

RMSE of predicting gasoil 0.66 0.55 0.51

Appropriate inputs in this study have been obtained by extracting frequency features.
The use of these features, in addition to increasing the accuracy of the proposed system,
reduces the volume of calculations. Using only one neural network with four outputs, the
volume percentages of each product could be predicted with high accuracy, while more
neural networks were needed in previous studies [1–5] to determine the volume percentage
of each product used. The target outputs and the outputs in the designed neural network
are shown in Table 2. The accuracy of the introduced detection system is compared with
the previous research in Table 3. The general process of the current research is shown
in Figure 9. According to this figure, the detection process is that first, four petroleum
products were simulated two by two with each other in different volume percentages in a
test pipe. A dual-energy gamma source and a NaI detector were placed on both sides of this
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pipe, and data related to each simulation were collected and labeled. Then, using FFT, the
received signals were transferred to the frequency domain and the frequency characteristics
were extracted from them. Finally, the extracted characteristics were used to train a neural
network, which its output was the volume rate of petroleum products.

Mathematics 2022, 10, 2916 15 of 21 
 

 

 
Figure 9. The general process of the research to determine the volumetric ratio of petroleum prod-
ucts. 

Figure 9. The general process of the research to determine the volumetric ratio of petroleum products.



Mathematics 2022, 10, 2916 15 of 20

Table 2. Comparison of target values with neural network outputs.

Ethylene Glycol Crude Oil Gasoline Gasoil

Train Validation Train Validation Train Validation Train Validation

Target Output Target Output Target Output Target Output Target Output Target Output Target Output Target Output

100 100.2503 0 −0.6679 0 −0.2444 0 0.1200 0 0.2518 0 −0.2710 0 −0.3601 100 100.9374
0 0.4616 5 5.4959 100 100.3333 95 95.5458 0 0.8781 0 0.1298 0 0.3037 0 0.8107
0 0.3729 25 25.0965 0 0.2291 75 75.5199 100 100.1504 0 0.8440 0 0.2588 0 0.5440

10 10.6204 15 15.4440 90 90.7862 0 0.9285 0 0.0703 85 85.6582 0 0.5093 0 0.0190
15 15.0060 35 35.7542 85 85.0123 0 0.9116 0 −0.0111 65 65.6383 0 0.0029 0 0.6936
20 20.4711 55 55.9576 80 80.0183 0 0.4176 0 0.6988 45 45.2076 0 0.8107 0 0.3935
30 30.7347 60 60.3923 70 70.2377 0 0.8690 0 0.8302 40 40.1848 0 0.2093 0 0.5399
35 35.5848 80 80.1789 65 65.3069 0 0.1560 0 0.1548 20 20.8099 0 0.9703 0 0.8869
40 40.5047 5 5.2565 60 60.4803 0 0.9834 0 0.3711 0 0.4331 0 0.6670 95 95.8385
45 45.2502 45 45.1342 55 55.6207 0 0.6872 0 0.7567 0 0.0370 0 0.4000 55 55.1675
50 50.1489 60 60.6732 50 50.5052 0 0.9281 0 0.2362 0 0.2378 0 0.1402 40 40.1336
55 55.6802 0 0.5803 45 45.5780 30 30.7838 0 0.8557 70 70.7285 0 0.9178 0 0.9562
60 60.3997 0 0.1954 40 40.5334 90 90.5645 0 0.4622 10 10.7957 0 0.6351 0 0.4161
65 65.2189 0 0.8662 35 35.1642 25 25.0627 0 0.2284 0 0.8243 0 0.4157 75 75.2045
70 70.6607 0 0.7815 30 30.1545 90 90.9765 0 0.0372 0 0.1148 0 0.1682 10 10.0996
75 75.6053 0 0.4562 25 25.5907 0 0.3221 0 0.9140 40 40.1615 0 0.8996 60 60.0079
80 80.6537 0 0.3388 20 20.7869 0 0.2980 0 0.8735 75 75.1267 0 0.6834 25 25.2053
85 85.5384 0 0.2130 15 15.1296 0 0.8131 0 0.8869 95 95.7242 0 0.4242 5 5.2522
90 90.7981 Test 10 10.0152 Test 0 0.9475 Test 0 0.1989 Test
95 95.2433 Target Output 5 5.6774 Target Output 0 0.0524 Target Output 0 −0.0373 Target Output
5 5.7691 10 10.0963 0 0.2924 0 0.1449 95 95.3581 90 90.0206 0 0.6137 0 0.7854

20 20.9692 75 75.3825 0 0.9871 0 0.2932 80 80.3520 25 25.8914 0 0.7352 0 0.4598
25 25.8302 35 35.3142 0 0.1070 0 0.6704 75 75.2338 0 0.5532 0 0.8594 65 65.2154
30 30.0729 55 55.2824 0 0.4603 0 0.8266 70 70.9220 0 0.9220 0 0.5587 45 45.9522
40 40.2206 70 70.1186 0 0.7534 0 0.5823 60 60.0233 0 0.8444 0 0.9862 30 30.4423
45 45.2943 75 75.7724 0 0.2841 0 0.2891 55 55.7898 0 0.7327 0 0.6064 25 25.5066
50 50.4005 85 85.8925 0 0.5841 0 0.3978 50 50.6236 0 0.8367 0 0.3638 15 15.9047
65 65.2375 0 0.6401 0 0.5907 5 5.3456 35 35.4429 95 95.4732 0 0.7297 0 0.5678
70 70.4170 0 0.9915 0 0.1090 15 15.2002 30 30.4238 85 85.6029 0 0.0655 0 0.2494
85 85.9635 0 0.2781 0 0.5994 40 40.5686 15 15.1449 60 60.7102 0 0.3174 0 0.4820
90 90.4796 0 0.2070 0 0.8356 55 55.9146 10 10.8898 45 45.5192 0 0.7994 0 0.3714
95 95.7340 0 0.2397 0 0.0471 75 75.8077 5 5.9287 25 25.4674 0 0.2552 0 0.4647
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Table 2. Cont.

Ethylene Glycol Crude Oil Gasoline Gasoil

Train Validation Train Validation Train Validation Train Validation

Target Output Target Output Target Output Target Output Target Output Target Output Target Output Target Output

10 10.4268 0 0.3804 0 0.3282 15 15.3373 0 0.0031 0 0.7534 90 90.1902 85 85.4777
15 15.3218 0 0.6327 0 0.1551 30 30.4061 0 0.0505 0 0.4754 85 85.4217 70 70.4645
20 20.6227 0 0.5955 0 0.3584 40 40.7944 0 0.4310 0 0.4587 80 80.5661 60 60.1754
25 25.3852 0 0.7034 0 0.3649 65 65.4100 0 0.1768 0 0.7419 75 75.0850 35 35.1766
30 30.8757 0 0.2561 0 0.1140 95 95.6657 0 0.0806 0 0.8931 70 70.9688 5 5.1572
40 40.9742 0 −0.1749 0 0.0482 0 0.9053 0 0.3138 20 20.8780 60 60.7076 80 80.3878
50 50.0287 - - 0 0.2554 - - 0 0.3280 - - 50 50.3917 - -
65 65.4649 - - 0 0.6128 - - 0 0.2182 - - 35 35.6784 - -
80 80.1930 - - 0 0.9640 - - 0 0.2512 - - 20 20.6160 - -
90 90.8877 - - 0 0.9461 - - 0 0.0308 - - 10 10.1557 - -
95 95.2856 - - 0 0.3720 - - 0 0.8852 - - 5 5.4375 - -
0 0.8116 - - 10 10.9860 - - 90 90.2708 - - 0 0.9674 - -
0 0.1563 - - 20 20.2464 - - 80 80.6384 - - 0 0.0074 - -
0 0.3523 - - 25 25.5626 - - 75 75.2913 - - 0 0.8436 - -
0 0.8774 - - 35 35.1213 - - 65 65.8709 - - 0 0.1757 - -
0 0.7764 - - 45 45.8156 - - 55 55.4477 - - 0 0.9914 - -
0 0.4610 - - 50 50.1615 - - 50 50.8660 - - 0 0.5332 - -
0 0.0937 - - 60 60.4247 - - 40 40.1619 - - 0 0.3229 - -
0 0.3649 - - 65 65.0956 - - 35 35.3425 - - 0 0.1906 - -
0 0.6050 - - 70 70.0008 - - 30 30.0373 - - 0 0.3430 - -
0 0.8907 - - 80 80.0561 - - 20 20.2694 - - 0 0.7588 - -
0 0.9881 - - 85 85.0471 - - 15 15.9021 - - 0 0.0350 - -
0 0.8255 - - 95 95.6633 - - 5 5.6746 - - 0 0.8099 - -
0 −0.3040 - - 5 5.0832 - - 0 0.0832 - - 95 95.5449 - -
0 0.6973 - - 10 10.1651 - - 0 0.6355 - - 90 90.4770 - -
0 0.7413 - - 20 20.6047 - - 0 0.0190 - - 80 80.5796 - -
0 0.1897 - - 35 35.6512 - - 0 0.6508 - - 65 65.5103 - -
0 0.8841 - - 45 45.2931 - - 0 0.0432 - - 55 55.8189 - -
0 0.1644 - - 50 50.4422 - - 0 0.5633 - - 50 50.8786 - -
0 0.4981 - - 55 55.7387 - - 0 0.2583 - - 45 45.5543 - -
0 0.0006 - - 60 60.3096 - - 0 0.1521 - - 40 40.5810 - -
0 0.7261 - - 70 70.2379 - - 0 0.9742 - - 30 30.0793 - -
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Table 2. Cont.

Ethylene Glycol Crude Oil Gasoline Gasoil

Train Validation Train Validation Train Validation Train Validation

Target Output Target Output Target Output Target Output Target Output Target Output Target Output Target Output

0 0.1960 - - 75 75.6808 - - 0 0.9075 - - 25 25.2178 - -
0 0.1926 - - 80 80.4320 - - 0 0.7600 - - 20 20.6035 - -
0 0.5311 - - 85 85.0690 - - 0 0.0494 - - 15 15.3289 - -
0 −0.7112 - - 0 0.8132 - - 5 5.9879 - - 95 95.9897 - -
0 −0.8436 - - 0 0.7161 - - 10 10.7479 - - 90 90.4273 - -
0 −0.9808 - - 0 0.7233 - - 15 15.4751 - - 85 85.8016 - -
0 0.4536 - - 0 0.3547 - - 25 25.3062 - - 75 75.8660 - -
0 0.1702 - - 0 0.8403 - - 30 30.2059 - - 70 70.7492 - -
0 0.8165 - - 0 0.5051 - - 35 35.7077 - - 65 65.9260 - -
0 0.9459 - - 0 0.3093 - - 45 45.7886 - - 55 55.9010 - -
0 0.4537 - - 0 0.4437 - - 50 50.4946 - - 50 50.5521 - -
0 0.9560 - - 0 0.7649 - - 55 55.1449 - - 45 45.0799 - -
0 0.3390 - - 0 0.1744 - - 60 60.1362 - - 40 40.3001 - -
0 0.6794 - - 0 0.6930 - - 65 65.8811 - - 35 35.7006 - -
0 0.0618 - - 0 0.5073 - - 70 70.7896 - - 30 30.6033 - -
0 0.6051 - - 0 0.2804 - - 80 80.3527 - - 20 20.7391 - -
0 0.8882 - - 0 0.6390 - - 85 85.5569 - - 15 15.9040 - -
0 0.0510 - - 0 0.6310 - - 90 90.1803 - - 10 10.1328 - -
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Table 3. The accuracy of the presented detection system compared to previous research.

Ref Extracted
Features

Type of Neural
Network

MSE RMSE

Training Testing Training Testing

[12] Time domain GMDH 1.24 1.20 1.11 1.09
[13] Time domain MLP 0.21 0.036 0.46 0.6

[14] Lack of feature
extraction GMDH 7.34 4.92 2.71 2.21

[15] Lack of feature
extraction RBF 0.049 0.37 0.22 0.19

[25] Frequency
domain MLP 0.17 0.67 0.42 0.82

[26] Lack of feature
extraction MLP 2.56 2.56 1.6 1.6

[current
study]

Frequency
domain MLP 0.41 0.45 0.66 0.67

6. Conclusions

Implementing an oil pipeline control system is very important to determine the amount
and type of product in the pipeline. The proposed control system consists of a dual-energy
source of gamma and one detector located on either side of a pipe. There are four petroleum
products called ethylene glycol, crude oil, gasoil, and gasoline inside the pipe, which were
examined in different volume ratios. Investigating the frequency characteristics of the
received signals by the detector were on the agenda. The characteristics of the amplitude of
the first to fourth dominant frequency were extracted from the signal and defined as the
input of the artificial neural network. The designed MLP network has four outputs, each
of which is related to the volume ratio of each product. By obtaining all four outputs, the
amount and type of product passing through the pipeline can be obtained. The maximum
RMSE of the designed neural network to determine the volume ratio was 0.67, which is
a very small value, compared to the detection systems of previous researches. The major
limitation of this research is working with radioisotope devices, which requires the use of
protective clothing. The high accuracy obtained from this research is due to the extraction
of appropriate characteristics from the received signals, which can be investigated in future
researches as inputs of different type of neural networks. In addition, the use of deep neural
networks to achieve higher accuracy is strongly recommended to researchers in this field.
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