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Abstract—In hyperspectral imagery, differences in ground
surface structures cause a large variation in the optical scattering
in sunlit and (partly) shadowed pixels. The complexity of the
scene demands a general spectral mixture model that can
adapt to the different scenarios of the ground surface. In this
paper, we propose a physics-based spectral mixture model, i.e.,
the extended shadow multilinear mixing (ESMLM) model that
accounts for typical ground scenarios in the presence of shadows
and nonlinear optical effects, by considering multiple illumination
sources. Specifically, the diffuse solar illumination alters as the
wavelength changes, requiring a wavelength-dependent modeling
of shadows. Moreover, we allow different types of nonlinear
interactions for different illumination conditions. The proposed
model is described in a graph-based representation, which sums
up all possible radiation paths initiated by the illumination
sources. Physical assumptions are made to simplify the proposed
model, resulting in material abundances and four physically
interpretable parameters. Additionally, shadow-removed images
can be reconstructed. The proposed model is compared with other
state-of-the-art models using one synthetic dataset and two real
datasets. Experimental results show that the ESMLM model per-
forms robustly in various illumination conditions. In addition, the
physically interpretable parameters contain valuable information
on the scene structures and assist in performing shadow removal
that outperforms other state-of-the-art works.

Index Terms—Nonlinear spectral unmixing, spectral mixing
models, hyperspectral imagery, shadow-aware, nonlinear effect,
HySpex.

I. INTRODUCTION

Hyperspectral cameras, also referred to as imaging spec-
trometers, record the spectral information of ground materials
across many contiguous and narrow spectral channels, and
have become a valuable data source in remote sensing [1, 2, 3].
Each pixel in a spaceborne or airborne hyperspectral image
captures the signal backscattered from a mixture of ground
objects and atmospheric features [4]. In order to remove
atmospheric features, atmospheric correction methods convert
the signal to ground material reflectance [5, 6, 7]. As a pixel
typically contains more than one material, the spectrum of a
pixel at reflectance level is given as a mixture of the spectral
signatures of the materials (i.e., endmembers) contained in a
single resolution cell. Spectral unmixing reveals the endmem-
bers and their corresponding contributions (i.e., abundances)
[8, 9, 10]. Developing a good mixture model is one of the
uttermost important prior conditions for a successful spectral
unmixing process.

Methods based on radiative transfer [11, 12] model the
optical interactions of the entire imaging chain, and can build
an accurate mixture model. However, they often require de-
tailed geometric and radiometric auxiliary data. Additionally,

due to their complexity, inversing these models is non-trivial
[9]. Thus, in the past decades, many researchers have derived
simplified physics-based mixture models following various as-
sumptions. The most common model, the linear mixing model
(LMM) [13], follows the straightforward assumption that the
incoming solar illumination interacts with a pixel only once
before being scattered back to the sensor. The spectral mixture
is then given by the sum of the material spectra, weighted by
their spatial proportion within the pixel. This simple model
assumes an ideal scene structure, with a flat ground surface and
spatially separable ground materials [9, 10]. Two constraints
on the abundances are often applied along with the LMM [8].
As abundances are areal proportion values per pixel, they are
constrained to positive values (ANC, abundance non-negativity
constraint). Assuming that the endmember library includes all
possible materials in a scene, the sum of abundance values
per pixel equals one (ASC, abundance sum-to-one constraint).
Some later works relax the ASC constraint, allowing some
materials in a pixel not to be present in the endmember library
[8]. In addition, other constraints on the abundances have been
also applied along with the LMM, such as sparsity [14, 15, 16]
and spatial constraints [17, 18].

The linear mixture model depends on strict physical as-
sumptions that are often not fulfilled in reality. In many
situations, nonlinear optical interactions are non-negligible
[9, 10, 19]. Nonlinear mixtures can occur at both microscopic
and macroscopic levels [10] and, depending on the size of the
particles under investigation, different categories of models
exist. At the microscopic level intimate mixtures occur, in
which the optical interactions with grains or particles are
typically smaller than the path length followed by the photons
[10]. The most popular model is the Hapke model [20] that
derives the measured reflectance as a function of optical and
physical parameters of the medium. Intimate mixtures are not
the focus of this paper. In the macroscopic scenario, nonlinear
optical interactions can occur because of height differences
between ground objects [9, 10]. In order to allow incoming
light to interact more than once before being scattered back
to the sensor, some nonlinear models use higher-order terms
through the term-wise product of spectra. Most methods only
consider bilinear terms up to the second order. The parameters
and constraints corresponding to the bilinear terms can follow
different assumptions, leading to different nonlinear mixture
models, such as the Nascimento model [21], the Fan model
[22], the PPNM (Post-nonlinear Mixing Model) [23], and
the GBM (Generalized Bilinear Model) [24]. Authors in [25]
proposed a linear-quadratic model based on radiative transfer
theory. This model has a similar form as the generalized
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bilinear model (GBM) [24], but it is entirely derived from
physical equations with clear interpretations of the parameters.

Apart from bilinear models, some works have attempted to
consider all orders of interactions using harmonic functions
[26] and polynomial functions [27]. Recently, a multilinear
mixing (MLM) model [28] has been proposed, based on the
stochastic process of optical interactions with clear physical
assumptions. This model traces the path that a single light
ray follows and extends the optical interactions to infinite
order, following physical assumptions. Besides abundances,
this model includes one additional parameter P , which is the
probability of a light ray undergoing further optical interac-
tions after each previous interaction with ground materials. It
is worth noting that this model follows the rule of conservation
of energy: when P > 0, the reconstructed pixel does not
increase its value with respect to the LMM result for the
same endmembers and abundances. However, when a pixel
receives additional illumination from its neighborhood, the
observed spectrum can be larger than the reconstructed result
by the LMM. This phenomenon can be achieved numerically
by setting P < 0, with P losing its physical meaning.

Later, the MLM model has been extended to tackle shadow
effects (the SMLM model) by including another parameter
Q, representing the pixel-wise fractional value of cast shadow
[29]. The way of treating shadow in this work is equivalent
to adding a ”zero-reflectance” spectrum to the endmember
library, which has been recognized as a straightforward manner
to deal with shadows in spectral mixture models [30, 31]. This
method assumes shadow to be an endmember and regards
the shadow problem as a wavelength-independent scaling
effect. Despite being able to model shadowed pixels with
comparatively low reconstruction errors, this technique lacks
physical interpretation, as the shadow endmember is not the
spectrum of any ground material.

When treating shadow as a scaling effect, the spectral angle
between sunlit and shadowed ground materials remains zero.
Therefore, some methods apply spectral angle matching to
pair sunlit and shadowed pixels containing the same material
[32, 33, 34, 35]. However, shadow not only scales a spectrum,
but also causes wavelength dependent distortions [36]. Some
works have paid attention to the spectral distortions caused
by shadow. In an early work, a constant illumination is
assumed and shadow is treated as a nonlinear effect [21].
The authors studied a specific situation, where trees block
the direct solar illumination on a region covered by grass.
Assuming that shadowed areas receive secondary illumination,
the proposed method models the shadowed spectrum by the
term-wise product of the tree and grass spectra. Another group
of methods allows the illumination conditions to vary over a
scene. As shadowed pixels receive no or only a part of direct
solar illumination, diffuse solar illumination is a prominent
illumination source for shadowed pixels [37]. Authors in [36]
performed a field experiment to study the spectral characteris-
tics of shadowed regions, and showed that the shadow effect is
strongly wavelength-dependent. Several more generic methods
describe the shadow effects by introducing multiple illumina-
tion sources and applying the concept of spectral unmixing.
Inspired by radiative transfer theory [37], authors in [38]

developed a spectral unmixing method using hyperspectral
data at radiance level, coupled with a digital surface model
(DSM). Authors in [39] have presented a spectral mixture
model based on reflectance data, and have derived abundance
values along with topographical information. Although it was
shown that embedding multiple illumination sources in a
model improves unmixing performances in (partly) shadowed
pixels, nonlinearity has been modeled similarly for all pixels,
regardless of the illumination conditions [39]. However, the
nonlinearity in shadowed areas can behave quite differently
from sunlit areas, due to the light attenuation caused by
occluding objects.

In this paper, we present a novel nonlinear mixture model,
that is an extension of the SMLM model [29], and that
overcomes the mentioned problems in the following aspects:

• We consider two illumination sources, i.e., direct and
diffuse solar illuminations. Following physical assump-
tions, we allow variable illumination conditions over
the scene, where sunlit regions receive direct as well
as diffuse solar illuminations, while shadowed regions
receive diffuse solar illumination and possibly reflected
direct solar illumination. Specifically, one pixel can be
composed of shadowed areas along with fully sunlit areas,
and can therefore be treated as a partly shadowed pixel,
resulting in a better representation of shadow boundaries.

• Our proposed model allows two different types of nonlin-
ear interactions. Besides the nonlinear optical interactions
caused by the direct incoming light from both illumi-
nation sources, a pixel can receive secondary reflections
from its neighboring pixels. In this way, the proposed
model can produce reconstructed pixels with spectral
values larger than those obtained through LMM, without
losing the physical meaning of the parameter P , while
energy conservation still holds.

• We describe our model using a graphical representation
with multiple illumination sources. The mixture result is
computed as the sum of all light contributions, weighted
by their probabilities. In addition to the abundances
values, our model generates four pixel-wise physically
interpretable parameters: Q (spatial fraction of shadow
in a pixel), F (sky view factor, which denotes the
fraction of the sky hemisphere that is visible from the
ground surface [40]), P (the probability of higher-order
interactions of the incoming light ray), and K (a strength
factor of neighbor interactions, denoting the fraction of
the scattered light from the neighborhood that is received
by the pixel ).

The remainder of this paper is organized as follows. In
Section II, we describe the impact of shadow on the observed
reflectance, based on radiative transfer and atmospheric correc-
tion. Section III introduces the physics-based mixture models
from the literature, while Section IV describes our proposed
mixture model. Section V introduces the experimental setup,
including three datasets for the evaluation of the spectral
mixing models, quantitative measures for the comparison of
the methods, the unmixing procedure, and the experimen-
tal design. Section VI demonstrates the experimental results
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quantitatively using a synthetic dataset, and section VII and
VIII present both quantitative and qualitative results using
real datasets. Finally, we conclude our work and give future
prospects in Section IX.

II. THE IMPACT OF SHADOW ON REFLECTANCE

A. Notations

TABLE I
NOTATIONS

Symbol Description
λ wavelength
Lp path radiance
El direct solar irradiance at ground surface
Es diffuse solar irradiance at ground surface
τdir transmittance of the direct solar radiation
τdiff transmittance of the diffuse solar radiation
δ direct solar irradiance indicator
L at-sensor radiance with δ = 1
L′ at-sensor radiance with δ = 0
r material reflectance
r̂ estimated r by the atmospheric correction with δ = 1
r̂s estimated r by the atmospheric correction with δ = 0
F sky view factor

k1,k2,k3 parameters describing the diffuse-to-direct solar irradiance
x observed pixel
ei the i− th endmember
d number of spectral bands
p number of endmembers
N number of pixels

path a light path defined by the random variable {Xi}i≥0 ∈ S
P (path) probability of path

L light path length
S a discrete set containing all possible interactions that a

light ray can undergo from the illumination source(s)
to the observer

T (si) operator that acts on the light ray in state si
ai abundance of the endmember ei

γi,j
free parameter in bilinear mixing models corresponding to
ei and ej

P the probability that a light ray undergoes additional
interactions with endmembers

Q spatial fraction of shadow
K a strength factor of neighbor interactions, denoting the

fraction of the scattered light from the neighborhood that is
received by the pixel

eN (i, j) the neighborhood spectrum of target pixel x(i, j)
D Euclidean distance between two pixels in the spatial domain
W weight factor according to inverse distance between

neighboring and target pixels
RE mean reconstruction error
SRE spectral reconstruction error
AE mean abundance error

B. The impact of shadow on reflectance

A single element detector of a spectrometer receives the
back-scattered solar radiation of a ground pixel, determined
by the Instantaneous Field of View (IFOV) from different
radiation paths. The back-scattered radiation contains two
contributions: 1) the radiation, scattered by the atmosphere
to the single element detector without interacting with the
ground surface (path radiance); 2) the radiation interacting
with the ground surface and scattered back to the single
detecting element (reflected radiation). Following the theory
of radiation propagation [7, 37], the incoming solar radiation
reaching the ground surface mainly consists of two portions.

The most significant portion is the ”direct solar irradiance
(direct sunlight)”, i.e., the direct solar illumination propagating
through the atmosphere and reaching the ground surface. The
remaining portion is the ”diffuse solar irradiance (skylight)”,
i.e., the solar radiation dispersed in the atmosphere before
reaching the ground surface. The contribution of skylight as
an illumination source is significantly smaller with respect to
direct sunlight, but it is non-negligible in some situations, such
as overcast sky and shadowed areas [37].

Let us assume that the ground targets are located on a flat
terrain, and behave as a Lambertian surface. Then, at each
wavelength λ, the at-sensor radiance L(λ) for a ground pixel
with reflectance r(λ) can be written as:

L(λ) = Lp(λ) +
δτdir(λ)El(λ)r(λ)

π

+
τdiff (λ)Es(λ)r(λ)

π

(1)

where Lp(λ) is the path radiance, El(λ) the direct solar
irradiance and Es(λ) the diffuse solar irradiance on the ground
target. The transmittances of the direct and diffuse solar
radiation are τdir(λ) and τdiff (λ), respectively, while δ is
a binary value indicating if the ground surface receives any
direct solar irradiance. In traditional atmospheric correction
algorithms, δ is set to 1 , as the ground surface is usually
assumed to be horizontal and unobstructed, i.e., it ”sees” the
entire hemisphere above. Thus, given the at-sensor radiance
L, atmospheric correction is applied and r̂(λ) is derived by
inverting Eq. (1):

r̂(λ) =
π(L(λ)− Lp(λ))

τdir(λ)El(λ) + τdiff (λ)Es(λ)
= r(λ) (2)

However, a pixel may not or only partly receive direct
sunlight, due to occlusion by ground objects. The at-sensor
radiance L′(λ) of a fully shadowed pixel, containing one
material with reflectance r(λ), is given by Eq. (1) with δ = 0:

L′(λ) = Lp(λ) +
τdiff (λ)Es(λ)r(λ)

π
(3)

When standard atmospheric correction (Eq. (2)) is applied
on such a pixel, then the reflectance r̂s(λ) is computed as:

r̂s(λ) =
π(L′(λ)− Lp(λ))

τdir(λ)El(λ) + τdiff (λ)Es(λ)

=
τdiff (λ)Es(λ)r(λ)

τdir(λ)El(λ) + τdiff (λ)Es(λ)

(4)

in which Eq. (3) is substituted.
As reflectance represents an intrinsic property of a material,

and should not change according to illumination conditions,
we expect that r̂s(λ) = r̂(λ) = r(λ). However, during at-
mospheric correction, the direct solar irradiance is incorrectly
assumed to be an illumination source in shadowed regions. As
a consequence, the computed reflectance values in these areas
are much smaller than their correct values, and a wavelength-
dependent deviation exists between r̂s(λ) and r(λ).

If no occlusion occurs on a ground pixel, the diffuse
radiation comes from all directions of the sky dome. Other-
wise, the diffuse irradiance decreases by the sky view factor
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F ∈ [0, 1], representing the fraction of sky that a ground pixel
can ”see”. Following previous works, we model the decrease
of the diffuse-to-direct solar irradiance as the wavelength
goes up through a power function, which describes stronger
atmospheric scattering at short wavelengths [37, 39, 41, 42]:

τdiff (λ)Es(λ)

τdir(λ)El(λ)
= F (k1λ

−k2 + k3) (5)

with k1, k2, k3 > 0.
Combining equations (4) and (5), we derived an expression

for the reflectance of a ground material in fully shadowed
regions with respect to the reflectance of the same material
exposed to direct sunlight as:

r̂s(λ) =
F (k1λ

−k2 + k3)

1 + F (k1λ−k2 + k3)
r̂(λ) (6)

The derived relationship between the reflectances of the
same material in different illumination conditions is only valid
in the following simplified scenario. First, each ground pixel
contains only one material. Second, illumination interacts only
once with a ground pixel before being scattered back to the
sensor. Third, a ground pixel can only be either fully sunlit
or fully shadowed. In reality, a ground pixel can be composed
of multiple materials, and illumination sources can interact
multiple times with ground materials. In addition, pixels
may only be partly shadowed. To include these situations, a
shadow-aware nonlinear spectral mixture model is required.

III. MIXTURE MODELS AND THEIR GRAPH
REPRESENTATIONS

The mixture models describe the optical interactions to a
certain degree of complexity in the imaging chain [9, 10].
Following the work in [28, 29], we present state-of-the-art
spectral mixture models, based on a ray-based approximation
of light and a graph-based representation of the optical interac-
tions. We notate an observed pixel as a d-dimensional vector x
and p endmember spectra as p d-dimensional vectors {ei}pi=1,
where d denotes the number of spectral bands.

The entire process of the incoming light from the illumina-
tion sources undergoing optical interactions, and each sensitive
element of the spectrometer recording the back-scattered light
from the corresponding ground pixel can be described as a
discrete-time stochastic process [29]. A light path is defined
by the random variable {Xn}n≥0 with ∀n Xn ∈ S, and the
discrete set S contains all possible interactions that a light ray
can undergo before reaching the observer. In passive optical
imaging, the light path always starts from the illumination
source X0 = s0. States in which the light ray interacts with
a ground material are indicated as {Xi = si}Li=1. Since we
consider only the scattered light eventually received by the
observer, a light path ends with the observer state XL+1 = o.
L ∈ [1,∞] is the path length, indicating the number of optical
interactions that a light ray underwent before being scattered
back to the observer.

The probability of observing a certain path of length L is
given by:

P (path) = P (X0 = s0, X1 = s1, · · · , XL = sL, XL+1 = o)
(7)

It is assumed that this stochastic process follows the Markov
property:

P (Xn+1|X0, · · ·Xn) = P (Xn+1|Xn) (8)

At each state, the optical properties of the light ray will
be altered. This alteration describes a relative change in the
spectrum of the light ray, according to the reflectance of the
object associated with that state. If T (si) is the operator that
acts on the light ray in state si, the total effect of path ={
X0 = s0, X1 = s1, · · · , XL = sL, XL+1 = o} on a light ray
is given by

∏L
i=0 T (si). The operator T (si) is associated with

the state si.
• For states {Xi = si}Li=1 representing ground materials,

T (si) = ei.
• For the state {XL+1 = o} presenting the observer,

T (o) = 1.
• For the state {X0 = s0} representing the illumination

source(s), T (s0) is a constant vector and corresponds to
the illumination source.

Thus, an observed pixel x is described as the weighted
average over all possible paths:

x =

∞∑
L=1

(
∑
s0∈S

∑
s1∈S

· · ·
∑
sL∈S

)P (path)

L∏
k=0

T (sk) (9)

Table II shows a summary of light paths, their corresponding
probabilities and spectral contributions for different mixing
models. In the next sections, we will describe in more detail
these models and their graph representations.

A. Linear mixing model (LMM)

The LMM assumes that the incoming light interacts only
once with a set of endmembers before being scattered back to
the sensor (L = 1). The probability of an incoming light ray
from the illumination source s that interacts with the ground
surface with endmember el, (l = 1, · · · , p) and is scattered
back to the observer o is proportional to the abundance al, (l =
1, · · · , p). Thus: P (path) = P (X0 = s0, X1 = s1, X2 =
o) = al, and

∏L
k=0 T (sk) = T (s0)T (s1), with T (s0) = 1

and T (s1) = el. According to Eq. (9), the LMM is written
as:

x =
∑
s0∈S

∑
s1∈S

alT (s0)T (s1) =

p∑
i=1

aiei (10)

where
∑p

i=1 ai = 1 and ∀i: ai ≥ 0.

B. Bilinear mixing models

In bilinear models, a light ray from the illumination source
can either interact with an endmember once before being
scattered back the sensor, i.e., L = 1, or it can have mul-
tiple interactions with endmembers up to the second order,
i.e., L = 2. Thus, we have two possible light paths, with
probabilities: P (path) = P (X0 = s0, X1 = s1, X2 = o) = al
and P (path) = P (X0 = s0, X1 = s1, X2 = s2, X3 =

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3188896

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, 5

TABLE II
PROBABILITIES OF LIGHT PATHS AND THEIR SPECTRAL CONTRIBUTIONS IN DIFFERENT MIXING MODELS

Path Probability Contribution Parameters Model
s0 − ei − o ai ei / LMM [13]

s0 − ei − o
s0 − ei − ej − o

ai
γi,jaiaj

ei
ei ⊙ ej

γi,j = 0, if i ≥ j
γi,j = 1, if i < j

Fan [22]

γi,j = b PPNM [23]
γi,j = 0, if i ≥ j

γi,j ∈ [0, 1], if i < j
GBM [24]

s0 − ei − o
s0 − ei − ej − o

s0 − ei − ej − ek − o
· · ·

s0 − ei − ej − ek · · · eR − o

ai(1− P )
aiaj(1− P )P

aiajak(1− P )PP
· · ·

aiajak · · · aR(1− P )PR−1

ei
ei ⊙ ej

ei ⊙ ej ⊙ ek
· · ·

ei · ej ⊙ ek · · · eR

P ∈ [0, 1] MLM [28]

s0 − ei − o (1−Q)ai ei / SLMM [28]
s0 − ei − o

s0 − ei − ej − o
s0 − ei − ej − ek − o

· · ·
s0 − ei − ej − ek · · · eR − o

(1−Q)ai(1− P )
aiaj(1− P )P

aiajak(1− P )PP
· · ·

aiajak · · · aR(1− P )PR−1

ei
ei ⊙ ej

ei ⊙ ej ⊙ ek
· · ·

ei ⊙ ej ⊙ ek · · · eR

P,Q ∈ [0, 1] SMLM [29]

s0glob − ei − o
s0glob − ei − ej − o

s0diff
− ei − o

(1−Q)ai
aiaj
Qai

ei
ei ⊙ ej

e′i

/ Fansky [39]

o) = γm,naman. Different bilinear models can be derived
by constraining the free parameter γm,n (Table II). Then:

x =
∑
s0∈S

∑
s1∈S

alT (s0)T (s1)+∑
s0∈S

∑
s1∈S

∑
s2∈S

γm,namanT (s0)T (s1)T (s2)

=

p∑
i=1

aiei +
∑
i

∑
j

γi,jaiajei ⊙ ej

(11)

C. Multilinear mixing (MLM) model

Recently, authors in [28] extended bilinear mixing models
to the multilinear mixing (MLM) model that regards all
orders of optical interactions. Similar to the case of linear
and bilinear models, this assumes that a light ray incoming
from the illumination source will interact with at least one
material. Besides, the MLM model introduces a new parameter
P : after each interaction with a material, the light ray will
have a probability P of undergoing further interactions and
a probability (1 − P ) of escaping the scene and reaching
the observer. Following these assumptions, a light ray from
the illumination source can interact with ground objects up
to an infinite amount of times before being scattered back
to the sensor, i.e., L ∈ [1,∞]. Given a light path path =
{X0 = s0, X1 = s1, X2 = s2, · · · , XL = sL, XL+1 = o}, its
probability is given by: P (path) = (1−P )PL−1ai1ai2 · · · aiL .
The spectral contribution of this path is:

∏L
k=0 eik with eik

representing the endmember of the material that the ray
interacts with the kth time, and aik its abundance.

Thus:

x =

∞∑
L=1

(
p∑

i1=1

· · ·
p∑

iL=1

)
(1− P )PL−1

L∏
k=1

(aikeik)

=(1− P )

p∑
i=1

aiei + (1− P )P

p∑
i=1

p∑
j=1

aiajei ⊙ ej + · · ·

=
(1− P )

∑p
i=1 aiei

1− P
∑p

i=1 aiei
(12)

D. Shadow LMM model (SLMM)

The SLMM extends the endmember library with a ”zero-
reflectance” spectrum. Numerically, this technique is equiva-
lent to including a parameter Q ∈ [0, 1], which represents the
spatial fraction of shadow in a pixel [28]. Values of Q = 0
and Q = 1 indicate a fully sunlit and fully shadowed pixel,
respectively, while Q ∈ (0, 1) describes a partly shadowed
pixel. This model can estimate abundances under the shadow
by setting Q = 0 during pixel reconstruction. Similar to the
LMM, the light path of the SLMM is P (s0, el, o) = (1−Q)al
with the spectral contribution of el. Thus:

x =
∑
s0∈S

∑
s1∈S

(1−Q)alT (s0)T (s1) =

p∑
i=1

(1−Q)aiei

(13)

where
∑p

i=1 ai = 1 and ∀i: ai ≥ 0.

E. Shadow Multilinear mixing (SMLM) model

The SMLM model [29] extends the MLM model from [28]
in order to deal with shadows. It is assumed that shadowed
regions do not receive direct sunlight, but only multiple
reflections of direct sunlight. The SMLM model uses the
parameter Q to represent the shadow fraction within a pixel.
Thus, the light paths and probabilities of the SMLM model
are the same as those of the MLM model except for the first
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order, which is rescaled with (1−Q), hereby subtracting the
shadow fraction from the direct sunlight term in a spectrum.
Thus:

x =

1∑
L=1

(
p∑

i1=1

· · ·
p∑

iL=1

)
(1−Q)(1− P )

L∏
k=1

(aikeik)+

∞∑
L=2

(
p∑

i2=1

· · ·
p∑

iL=1

)
(1− P )PL−1

L∏
k=2

(aikeik)

=(1−Q)(1− P )

p∑
i=1

aiei+

(1− P )P

p∑
i=1

p∑
j=1

aiajei ⊙ ej + · · ·

=
(1− P )

∑p
i=1 aiei

1− P
∑p

i=1 aiei
−Q(1− P )

p∑
i=1

aiei

(14)

F. Mixture model with multiple light sources

The work in [39] allows different illumination conditions
in sunlit and shadowed regions and regards the shadow effect
in a wavelength-dependent manner. In this work, sunlit areas
receive the entire solar radiation, i.e, direct as well as diffuse
solar radiation, while the shadowed regions only receive dif-
fuse radiation. Hence, in the graph representation, two illumi-
nation sources, each with its own state, are considered: global
radiation s0glob and diffuse radiation s0diff

. Specifically, s0glob
is equivalent to s0, where only one illumination source is
considered. The model accounts for the light paths from the
global radiation up to the second order, leading to two possible
light paths: P (pathglob) = P (X0 = s0glob , X1 = s1, X2 =
o) = (1 − Q)al for L = 1 and P (pathglob) = P (X0 =
s0glob , X1 = s1, X2 = s2, X3 = o) = aman for L = 2. The
spectral contribution of two light paths is T (s0glob)

∏L
k=1 ek,

with L = 1 and L = 2, respectively. Moreover, the
model assumes that diffuse solar radiation interacts not more
than once with ground materials, resulting in the light path
P (pathdiff ) = P (X0 = s0diff

, X1 = s1, X2 = o) = Qal,
where L = 1 and Q is the spatial fraction of shadow in a
pixel. The spectral contribution is

∏L
k=0 T (s0diff

)
∏L

k=1 el,
where L = 1. Since the light paths at the second-order
(L = 2) is equivalent to the Fan model, we refer to this
model as the Fansky model in this paper. From Eq. (5) follows
that T (s0diff

) =
τdiff⊙Es

τdir⊙El+τdiff⊙Es
. Then, the mixture model

can be written as the contribution of all possible light paths,
initiated from two illumination sources:

x =

2∑
L=1

(
∑

s0glob∈S

· · ·
∑
sL∈S

)P (pathglob)T (s0glob)

L∏
k=1

T (sk)+

1∑
L=1

(
∑

s0diff
∈S

· · ·
∑
sL∈S

)P (pathdiff )T (s0diff
)

L∏
k=1

T (sk)

=(1−Q)

p∑
i=1

aiei +

p∑
i=1

p∑
j=i

aiajei ⊙ ej +Q

p∑
i=1

aie
′
i

(15)

where e′i =
τdiff⊙Es

τdir⊙El+τdiff⊙Es
with El and Es are the vector

forms of El(λ) and Es(λ), respectively.

IV. PROPOSED METHOD

We propose an extended SMLM (ESMLM) model by al-
lowing multiple illumination sources, i.e., direct and diffuse
solar radiation. Moreover, apart from the optical interactions
occurring in a ground pixel determined by its IFOV, a pixel
can also receive additional illumination from its neighboring
pixels through secondary reflections. Fig. 1 depicts the occur-
ring optical interactions for five different scenarios that are
considered in this model. As the path radiance is assumed
to be removed by atmospheric correction [7], the model
describes three types of light paths, corresponding to three
illumination sources: global solar illumination s0glob , diffuse
solar illumination s0diff

and neighboring illumination s0N .
The light paths together with their probabilities and spectral
contributions for the three illumination sources in the proposed
model are presented in Table III, followed by the physical
assumptions and a detailed explanation for each illumination
source in the remaining part of this section. In brief, the
mixture model is computed as the sum of the contributions
from all illumination sources in Eqs. (16) and (17), and
contains four physically explainable parameters:

• P : the probability that a light ray undergoes additional
interactions with endmembers,

• Q: the spatial fraction of shadow,
• F : the sky view factor,
• K: a strength factor of neighbor interactions, denoting

the fraction of the scattered light from the neighborhood
that is received by the pixel.

x =

2∑
L=1

(
∑

s0glob∈S

· · ·
∑
sL∈S

)P (pathglob)T (s0glob)

L∏
k=1

T (sk)+

+

1∑
L=1

(
∑

s0N ∈S

· · ·
∑
sL∈S

)P (pathN )T (s0N )

L∏
k=1

T (sk)+

1∑
L=1

(
∑

s0diff
∈S

· · ·
∑
sL∈S

)P (pathdiff )T (s0diff
)

L∏
k=1

T (sk)

=(1−Q)(1− P )

p∑
i=1

aiei + P

p∑
i=1

p∑
j=1

aiajei ⊙ ej+

(1−Q)(1− P )K

p∑
i=1

aiei ⊙ eN +QT (s0diff
)

p∑
i=1

aiei

(16)

In sunlit regions, the global solar illumination s0glob is the
main illumination source, and the proposed model retains
most of the assumptions for s0glob made by the SMLM
model. One difference is that we constrain the parameter P
within [0, 1], in order to preserve its physical interpretation.
Moreover, with the aim of keeping all types of nonlinear
interactions up to the same order, the proposed model limits
nonlinear interactions of an incoming light ray up to the
second order. In the specific, the following assumptions for
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(a) (b) (c)

(d) (e)

neighboring illumination

path radiance

direct solar illumination

diffuse solar illumination

Fig. 1. Solar radiation paths when a pixel is: (a) exposed to direct sunlight; (b) fully shadowed; (c) receiving secondary illumination from neighbors; (d)
partly shadowed with sunlit and shadowed regions spatially separated in a pixel; (e) partly shadowed with sunlit and shadowed regions not spatially separable
in a pixel.

TABLE III
PROBABILITIES OF LIGHT PATHS AND THEIR SPECTRAL CONTRIBUTIONS IN THE PROPOSED MODEL

Path Category Path Probability Contribution parameters

Pathglob
s0glob − ei − o (1−Q)(1− P )ai ei

P,Q,K ∈ [0, 1]
s0glob − ei − ej − o Paiaj ei ⊙ ej

Pathdiff s0diff
− ei − o Qai T (s0diff

) · ei
PathN s0N − ei − o (1−Q)(1− P )ai KeN ⊙ ei

s0glob are made:

• An incoming light ray from the global illumination source
will interact with at least one material in a pixel. After
each interaction with a material, the ray will have proba-
bilities P and (1−P ) of undergoing further interactions
within the current pixel or escaping the current pixel,
respectively.

• As the shadowed part of a pixel does not have a direct line
of sight to the sun, the probability that the reflected light
escapes a partly shadowed pixel after the first interaction
is re-scaled with (1 − Q), with Q ∈ [0, 1] the fractional
value of the shadow in the pixel. Thus, after the first
interaction with a material, the light ray will have a
probability (1−Q)(1−P ) of escaping the current pixel.
On the other hand, the shadowed part of a pixel can
receive reflected light from s0glob , thus the probability
of a secondary reflection remains P without re-scaling
with (1−Q).

These assumptions for the global illumination source lead to
two possible light paths: P (pathglob) = P (X0 = s0glob , X1 =
s1, X2 = o) = (1 − Q)(1 − P )al, (l = 1, · · · , p) for L = 1
and P (pathglob) = P (X0 = s0glob , X1 = s1, X2 = s2, X2 =
o) = Paman, (m,n = 1, · · · , p)) for L = 2. The spectral
contribution of these two light paths is T (s0,glob)

∏L
k=1 ek,

with L = 1 and L = 2, respectively.

In addition to receiving global illumination, the target
pixel receives secondary reflections from its neighborhood.
The neighbor illumination source s0N follows the following
assumptions:

• By keeping all types of nonlinear effects up to the second
order, only neighboring regions having a direct view
of the sun can contribute to the target pixel. Thus, the
neighboring effect corresponds to the reflected light of a
pixel after receiving the global illumination s0glob .

• Following the Lambertian law, by escaping the pixel, the
scattered light ray from s0glob is reflected in all directions,
including towards the sensor and neighboring pixels, with
equal probability of (1−Q)(1− P ).

• By assuming a homogeneous local neighborhood, the
probability that a pixel scatters light to its neighboring
pixels is equal to the probability that the neighboring
pixels scatter light to the pixel, and is given by (1 −
Q)(1− P ).

• We define an additional parameter K ∈ [0, 1], i.e., a
strength factor of neighbor interactions, denoting the
fraction of the scattered light from the neighborhood that
is received by the pixel.
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Thus, the probability of the light paths, corresponding to the
neighbor illumination source are: P (pathN ) = P (X0 =
s0N , X1 = s1, X2 = o) = (1 − Q)(1 − P )al, (l = 1, · · · , p)
for L = 1. The spectral contribution is T (s0N )

∏L
k=1 ek where

T (s0N ) = eN . The neighborhood is defined by a radius R.
The neighborhood spectrum eN (i, j) of target pixel x(i, j) is
computed as the average spectrum of its neighboring pixels,
weighted by their inverse distance to the target:

eN (i, j) =

∑R
s=−R

∑R
t=−R x(i+ s, j + t)W (s, t)∑R

s=−R

∑R
t=−R W (s, t)

(17)

where W (s, t) = δ
D((i,j),(i+s,j+t)) and D denotes the Eu-

clidean distance between two pixels in the spatial domain.
Since only neighboring regions having a direct view of the
sun can contribute to the target pixel, we exclude (partly)
shadowed pixels when computing eN , by using the δ symbol,
where δ = 1 in full sunlit pixels with Q < 0.1, and δ = 0
otherwise.

Last but not least, the diffuse solar illumination s0diff

plays an important role in shadowed regions. The diffuse
solar illumination is the scattered light by the atmosphere in
all directions. Since we aim to keep all types of nonlinear
interactions up to the same order, i.e., the second order, we
regard only the linear interactions for s0diff

. In the proposed
model, the following assumptions hold for s0diff

:
• A light ray from the diffuse solar illumination source

will interact with at least one material. After the first
interaction, the light ray will escaping the pixel with a
fraction of Q and reaching the observer.

Hence, the light path corresponding to the diffuse solar illu-
mination source is: P (Pathdiff ) = P (X0 = s0diff

, X1 =
s1, X2 = o) = Qal, (l = 1, · · · , p) with the spectral contribu-
tion for L = 1. The spectral contribution is T (s0diff

)
∏L

k=1 ei
where T (s0diff

) =
τdiff⊙Es

τdir⊙El+τdiff⊙Es
.

V. EXPERIMENTAL SETUP

This section introduces three datasets to evaluate the spectral
mixing methods quantitatively or qualitatively by considering
the shadow and nonlinear effects. One difficulty for the quan-
titative evaluation of the shadow-aware unmixing methods is
that the ground truth of abundances and shadow fractions is not
available, and very difficult to acquire in the case of shadows.
Thus, we first validate our method on a simulated dataset with
known abundances and parameters for a quantitative evaluation
of the performance of the mixture models. Furthermore, we
compare the unmixing methods on a real image with simulated
shadowed pixels. Finally, we show experimental results on real
airborne hyperspectral imagery without ground truth data, both
quantitatively and qualitatively.

A. Datasets

1) Synthetic Dataset: Considering that a validation dataset
with (partly) shadows is not available and very difficult to
acquire, we validate our method on a simulated dataset to eval-
uate the mean reconstruction error RE and mean abundance
error AE quantitatively.

We randomly select 10 endmembers from the United States
Geological Survey (USGS) spectral library of minerals 1,
where each material comprises 224 spectral bands ranging
from 383 nm to 2508 nm. Abundances are then randomly gen-
erated following the Dirichlet distribution that automatically
enforces the ANC and ASC constraints. Then, hyperspectral
data are generated following each of the considered mixing
models, i.e., LMM, Fan, SLMM, SMLM, Fansky and the
proposed ESMLM. Parameters P are randomly generated
based on the half-normal distribution with δ = 0.3. Values
larger than one are set to zero, following the work in [28].
Other parameters including Q ∈ [0, 1], F ∈ [0, 1], K ∈ [0, 1], γ
∈ [0, 1], b ∈ [−1, 1] are generated following the uniform distri-
bution. k1, k2, k3 are chosen the same as the ones used for the
real hyperspectral imagery in Section V-C. Furthermore, we
add white noise with signal-to-noise ratios SNR = [50, 100]
to the simulated dataset to assess the noise impact on different
unmixing methods.

2) Real dataset: DLR HyperSpectral Unmixing (DLR
HySU) benchmark dataset: The image was acquired over
Oberphaffenhofen, Bavaria, Germany with a HySpex push-
broom camera, resulting in a ground sampling distance of
0.7 meters. The image comprises 135 spectral bands ranging
from 417.4 nm to 902.8 nm. This dataset [43] contains ground
targets with five materials (bitumen, red-painted metal sheets,
blue fabric, red fabric, and green fabric) and the background
material (grass), thus a total of 6 endmembers are known from
the dataset. In our experiment, we use targets with side lengths
of 3 meters, and the target area can be translated in number of
pixels in the image, and is going to be used as the ground truth
for the abundances (Table IV). Fig. 2 shows the hyperspectral
image as true-color composite and the endmembers.

In order to validate shadow-aware models quantitatively, we
simulate shadows partially covering the shadow-free image in
Fig. 2 (a). Firstly, we manually draw a shadowed region in the
center of the image to shade a part of all targets, resulting in
a binary shadow mask. Then we apply a Gaussian filter with
size 3 ∗ 3 to the shadow mask and generate a soft shadow
mask Q (Fig. 2 (d)). After that, given a pixel yi in the real
image, we simulate the shadow-included image in Fig. 2 (c)
using Eq. (18). Ts0,diff

is computed with F = 1 based on
the field knowledge, and parameters k1, k2, k3 are set as in
Section V-C.

xi = (1−Qi)yi +QiTs0diff
yi (18)

It is worth noticing that Eq. (18) implicitly embeds nonlinear
effects contained in pixel yi, so we do not add additional
nonlinear effects in this image. However, since the study area
is located in the middle of a field with flat terrain, and we
quantitatively validate solely the abundances of the ground
targets made of synthetic materials, the nonlinear effect plays
a minor role (see Table VIII and Fig. 5).

3) Real dataset: airborne hyperspectral imagery: A real
airborne hyperspectral image (see Fig. 3 (a)) is selected from
a scene acquired over Oberpfaffenhofen, Bavaria, Germany

1https://speclab.cr.usgs.gov/spectral-lib.html
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TABLE IV
GROUND TRUTH OF ABUNDANCES IN THE HYSU DATASET

Endmember Target area [pixel]
bitumen 18.429

red-painted metal sheets 18.061
blue fabric 18.245
red fabric 18.798

green fabric 18.521
Total 92.054

(a) (b)

(c) (d)

Fig. 2. DLR HyperSpectral Unmixing (HySU) dataset with simulated
shadowed pixels. (a) hyperspectral image as a true color composite including
five ground targets with side lengths of 3 meters; (b) endmember library
containing five ground materials (bitumen, red-painted metal sheets, blue
fabric, red fabric, and green fabric) and grass; (c) hyperspectral image with
simulated shadowed pixels; (d) soft shadow map.

between 8:42 and 8:56 a.m. (Central European Summer Time
(CEST)) on June 4th, 2018 with a HySpex VNIR sensor
[44], flying at an altitude of 1615 m above ground level,
resulting in a ground sampling distance of 0.7 m. The image
comprises 160 spectral bands ranging from 416 to 988.4
nm and has been atmospherically corrected using ATCOR
[6]. After removing water vapor bands, a total of 101 bands
have been kept for further processing. A spectral library of
endmembers is generated by manually selecting pure pixels
of relevant materials in fully sunlit pixels of the image (Fig.
3 (b)). We select endmembers manually, as the endmembers
should be extracted from fully sunlit pixels. In other words,
to be able to use an automatic endmember extraction method,
one would have to find an shadow detection method that can
distinguish fully sunlit pixels from other pixels with ideally
100% accuracy, which is not easy to achieve in reality. For
validation and comparison of the proposed model, we selected
two subsets from the entire image (Fig. 3 (c) and (d)), which
are dominated by shadow effects and cover three different
shadow types, described in Fig. 1 (b),(d),(e).

B. Quantitative measures

For validation and comparison, a number of quantita-
tive measures have been applied. Denote xi and x̂i as

(a) (b)

(c) (d)

Fig. 3. Hyperspectral dataset: (a) hyperspectral image as a true color com-
posite acquired by the HySpex sensor in the study area of Oberpfaffenhofen,
Bavaria, Germany; (b) endmember library, manually selected from (a); (c)
and (d) true color composites of subsets selected from image (a).

the observed and reconstructed spectrum, respectively, of
pixel i, where xi = [xi,λ1

, xi,λ2
, · · · , xi,λd

] and x̂i =
[x̂i,λ1

, x̂i,λ2
, · · · , x̂i,λd

]. The mean reconstruction error RE is
written as:

RE =
1

N

N∑
i=1

√√√√ d∑
j=1

(xi,λj
− x̂i,λj

)2 (19)

In order to evaluate the spectral behaviour of the recon-
struction errors, we calculate the spectral reconstruction error
SRE as a function of wavelength λ, averaged over N pixels:

SRE(λ) =
1

N

N∑
i=1

|xi,λ − x̂i,λ| (20)

In addition, the mean abundance error (AE) is computed as:

AE =
1

pN

N∑
i=1

p∑
j=1

|ai,j − âi,j | (21)

C. Unmixing procedure

In this paper we compare the proposed model (ESMLM)
with the following state of the art mixture models: LMM [13],
Fan [22], SLMM [28], SMLM [29], and Fansky [39].

All algorithms were developed in MATLAB and run on
an Intel Core i7 −8650 U CPU, 1.90 GHz machine with
4 Cores and 8 Logical Processors. We use the MATLAB
function FMINCON to perform the nonlinear optimization.
The processing time depends on the number of input pixels and
endmembers. Table V shows the running time of the compared
models in the two subsets of the real airborne hyperspectral
imagery. The function and constraint tolerance are set to 10−10

and 10−8, respectively. The initial values of the abundances

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3188896

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, 10

TABLE V
RUNNING TIME OF COMPARED MODELS IN THE TWO SUBSETS

Model Running time (s)
subset1 (3135 pixels) subset 2 (3328 pixels)

LMM 26.04 20.71
Fan 55.89 41.99

SLMM 34.23 24.50
SMLM 57.47 45.31
Fansky 522.28 381.49

ESMLM 203.72 204.83

(a) (b)

Fig. 4. Selection of 10 pairs of sunlit and shadowed pixels. (a) an example
of the pixel selection for computing parameters k1, k2, and k3; (b) ratios
computed from 10 pairs of pixels.

are set to 1
p and the initial values of the unknown parameters

F , Q, P , K are set to [1, 1, 0, 0].
For the methods considering skylight, i.e., the Fansky and

ESMLM model, ten pairs of pixels have been selected in the
scene to compute the parameters k1, k2, and k3 by using Eq.
(6). Specifically, we select fully sunlit and shadowed pixels
of the same pure material on the high-resolution hyperspectral
image, assuming that two pixels near a shadow boundary are
composed of the same material. Besides, we avoid vegetation
materials during the pixel selection to avoid nonlinear effects.
Fig. 4 (a) shows an example of selecting one pair of pixels. Fig.
4 (b) presents the ratios computed by 10 pairs of fully sunlit
and fully shadowed pixels. Assuming that the atmospheric
conditions are constant in the entire region, these parameters
are assumed to be constant, and were set as: k1 = 1.296;
k2 = 6.068; k3 = 0.442.

D. Experimental design

Experimental results are shown in the following sections. In
section VI we perform a quantitative analysis of the RE and
AE on the synthetic dataset simulated by the USGS spectral
library. In section VII, we evaluate the unmixing results on the
DLR HySU dataset [43]. Specifically, the five ground targets
are used to validate abundance errors. Section VIII evaluates
the spectral mixing models on the real hyperspectral imagery
without ground truth data, quantitatively and qualitatively.
In Section VIII-A, we perform a quantitative analysis of
the spatial and spectral reconstruction errors. Moreover, we
generate shadow-removed images in VIII-B. This can be
achieved by ”lightening up” the shadow fraction in a mixture
model, if applicable. Some of the unmixing methods output
physically interpretable parameters, which provide valuable
information about the observed surface. We discuss qualitative
results of output parameters and abundances in VIII-C and

VIII-D. In section VIII-E, we conduct an ablation study of the
proposed model and analyze the impact of each parameter on
the experimental results. Section VIII-F discusses the impact
of endmember extraction methods on the unmixing results.
Finally, we demonstrate our proposed model on the entire test
image in section VIII-G.

VI. SYNTHETIC DATASET

Table VI and Table VII present the mean reconstruction
error (RE) and mean abundance error (AE) of mixture models
at different noise level following Eq. (19) and (21), respec-
tively. The columns represent the spectral mixture models
according to which mixtures are generated, and the rows
correspond to the methods that were used to unmix the
data. The last column conveys the mean performance of each
unmixing method for all types of generated mixtures. For each
type of mixture, the first and second best unmixing methods
have been highlighted in red and green colors, respectively. For
all mixtures generated by the different models, the proposed
unmixing method obtained the best or second-best RE and
AE among all comparing methods, and achieved the best
results on average. Results indicate that the ESMLM model
can tackle different kinds of mixtures.

TABLE VI
MEAN RECONSTRUCTION ERROR (RE) FOR THE SYNTHETIC DATASET

Noiselss LMM Fan SLMM SMLM Fansky ESMLM Mean
LMM 0 0.9134 1.219 1.133 0.731 0.865 0.810
Fan 0.125 0 1.318 1.235 0.721 0.895 0.716

SLMM 0 0.913 0 0.122 0.262 0.248 0.258
SMLM 0 0.913 0.007 0.005 0.232 0.216 0.229
Fansky 0.054 0 0.050 0.052 0 0.060 0.036

ESMLM 0.002 0.050 0 0.013 0.018 0.002 0.014
SNR100 LMM Fan SLMM SMLM Fansky ESMLM Mean

LMM 0 0.915 0.038 0.242 0.723 0.606 0.421
Fan 0.124 0 0.159 0.353 0.043 0.232 0.152

SLMM 0 0.915 0 0.111 0.723 0.589 0.390
SMLM 0 0.915 0 0 0 0.565 0.367
Fansky 0.053 0 0.053 0.048 0 0.129 0.047

ESMLM 0.003 0.045 0.001 0.008 0.034 0.006 0.016
SNR50 LMM Fan SLMM SMLM Fansky ESMLM Mean

LMM 0.029 0.916 0.043 0.243 0.723 0.607 0.427
Fan 0.128 0.035 0.160 0.353 0.051 0.234 0.160

SLMM 0.029 0.916 0.017 0.114 0.723 0.590 0.398
SMLM 0.029 0.916 0.017 0.016 0.723 0.567 0.378
Fansky 0.061 0.035 0.056 0.052 0.022 0.134 0.060

ESMLM 0.029 0.064 0.017 0.020 0.045 0.029 0.034

VII. REAL DATASET: HYSU

Fig. 5 presents the obtained RE in fully sunlit pixels,
(partly) shadowed pixels, and the entire image, respectively,
and Table VIII compares the AE of the ground targets made
of synthetic materials.

In fully sunlit pixels, reconstruction errors of linear and
nonlinear models are similar, indicating that the nonlinear
effect plays a minor role in the study scene. On the other
hand, RE largely varies in (partly) shadowed pixels. When the
shadow effect is taken into account, RE significantly decreases
in (partly) shadowed pixels and the lowest reconstruction
errors are obtained when considering the skylight.

Using the ground truth data from Table IV, the total number
of pixels for each material is representative for the total
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TABLE VII
MEAN ABUNDANCE ERROR AE FOR THE SYNTHETIC DATASET

Noiselss LMM Fan SLMM SMLM Fansky ESMLM Mean
LMM 0 0.082 0.121 0.126 0.096 0.104 0.088
Fan 0.049 0 0.138 0.139 0.101 0.115 0.090

SLMM 0 0.082 0 0.031 0.044 0.046 0.034
SMLM 0 0.082 0.010 0.006 0.044 0.046 0.031
Fansky 0.032 0 0.067 0.036 0 0.031 0.028

ESMLM 0.001 0.010 0 0.007 0.013 0 0.005
SNR100 LMM Fan SLMM SMLM Fansky ESMLM Mean

LMM 0 0.082 0.121 0.126 0.096 0.104 0.088
Fan 0.049 0 0.137 0.139 0.101 0.115 0.090

SLMM 0 0.082 0 0.031 0.044 0.046 0.034
SMLM 0 0.082 0.010 0.006 0.044 0.046 0.031
Fansky 0.032 0 0.067 0.036 0 0.031 0.028

ESMLM 0 0.010 0 0.007 0.013 0 0.005
SNR50 LMM Fan SLMM SMLM Fansky ESMLM Mean

LMM 0.001 0.082 0.121 0.126 0.096 0.104 0.088
Fan 0.049 0.001 0.137 0.139 0.101 0.115 0.090

SLMM 0.001 0.082 0.004 0.031 0.044 0.046 0.035
SMLM 0.001 0.082 0.014 0.008 0.044 0.046 0.033
Fansky 0.032 0.001 0.067 0.036 0.001 0.031 0.028

ESMLM 0.002 0.010 0.005 0.008 0.014 0.003 0.007

corresponding abundance in the image. Thus, we represent
the abundance estimation error by the absolute difference
in number of pixels between ground truth and estimated
values over the five targets (Table VIII). In addition, we
present the total (absolute and in percentage) estimation error
by summing up the errors of all endmembers. Besides, we
compare abundance maps qualitatively for all materials in Fig.
6, where the first column shows the reference abundance maps
for easier comparison. Specifically, the reference abundance
maps are estimated using the shadow-free image through non-
negative least squares.

In sunlit regions, the LMM and the Fan model estimate
correct abundances, but show high abundance estimation er-
rors compared to other methods in (partly) shadowed pixels.
Among all materials, the largest abundance error appears
in bitumen, which has a relatively small reflectance and is
therefore easily confused with shadows. Besides, more confu-
sion between similar materials can be observed. An example
appears in shadowed pixels of grass, where the LMM and Fan
models confuse those regions with green fabric.

Compared to the LMM and the Fan model, the SLMM
and SMLM model perform slightly better. In partly shadowed
pixels, the SLMM and the SMLM model detect part of the
correct materials. However, some shadowed pixels of red
fabric, which have been estimated as bitumen by the LMM
and Fan model, are confused with red metal sheets.

The Fansky and ESMLM models outperform SLMM and
SMLM for the abundance estimation of all ground targets,
indicating that the wavelength-dependent skylight information
can not be well represented using a scaling parameter. Most
shadowed pixels have been detected as the correct material,
resulting in largely decreased abundance estimation errors.
The Fansky model confuses between materials with similar
spectra, such as green fabric and grass, as well as red fabric
and red metal sheets. In addition, it confuses blue materials
with bitumen. Compared to other models, the ESMLM model
achieves the best performance and can detect most ground
targets with a total abundance estimation error of 5.233 pixels
(corresponding to 5.68%). Specifically, the ESMLM model can

Fig. 5. Mean reconstruction error RE of fully sunlit pixels (in blue), (partly)
shadowed pixels (in orange), and the entire image (in yellow) in HySU dataset.
Fully sunlit and (partly) shadowed pixels are identified as Q ≤ 0.1 and
Q > 0.1, respectively.

better identify similar materials in shadowed pixels thanks to
the advantageous and flexible modeling of nonlinear effects.

TABLE VIII
ABUNDANCE ERROR IN NUMBER OF PIXELS IN THE HYSU DATASET

Endmember LMM Fan SLMM SMLM Fansky ESMLM
bitumen 50.422 53.184 43.019 43.430 9.504 1.366

red-painted
metal sheets 6.529 6.051 2.234 2.286 4.097 0.702

blue fabric 12.232 12.299 10.234 10.356 0.837 0.108
red fabric 9.111 9.932 7.570 7.628 3.719 0.443

green fabric 6.471 6.229 10.020 10.029 1.832 2.614
Total 84.765 87.695 73.076 73.728 19.989 5.233

Total(%) 92.08 95.26 79.38 80.09 21.71 5.68

VIII. REAL DATASET: AIRBORNE HYPERSPECTRAL
IMAGERY

A. Reconstruction errors

The mean reconstruction errors RE (Eq. (19)) of each of
the two subsets for all compared methods is depicted in Fig. 7.
Separate results are shown for fully sunlit, (partly) shadowed
pixels and the entire image, respectively. (Partly) shadowed
pixels are identified using Q > 0.1, while fully sunlit pixels
are identified using Q ≤ 0.1, where Q values are computed
using the proposed model. Results suggest that reconstruction
errors highly depend on if and how the models consider
the illumination conditions and the nonlinearity. In (partly)
shadowed pixels, the reconstruction errors largely decrease
when using shadow-aware mixture models, i.e., the SLMM,
SMLM, Fansky and ESMLM models. Among all shadow-
aware models, the Fansky and ESMLM models consider
the skylight information, and thus outperform other models.
Compared to the Fansky model, ESMLM obtained the smallest
reconstruction errors in (partly) shadowed pixels, especially
when areas are shaded by vegetation, such as in subset 2.
Since both models consider skylight information, this implies
that the ESMLM model treats the nonlinearity better than the
Fansky model in (partly) shadowed pixels. In sunlit regions,
the reconstruction errors appear larger in subset 2, where the
ground surface is covered mostly by vegetation. The Fan
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Fig. 6. Abundance maps from the HySU dataset. Top to bottom: bitumen, red metal sheets, blue fabric, red fabric, green fabric, and grass. Left to right:
reference, LMM, Fan model, SLMM, SMLM model, Fansky model, and ESMLM model. The reference abundance maps are computed using the shadow-free
image through non-negative least squares.

and Fansky models attained slightly lower errors than the
linear models, but yielded higher errors than the ESMLM
model regarding the neighborhood interactions. Overall, the
ESMLM model attained the best pixel reconstruction and, in
this respect, it produced a better representation of the ground
mixtures.

Fig. 8 shows spectral reconstruction errors SRE(λ) (Eq.
(20)), which denote how well a spectral mixing model rep-
resent input pixels as a function of wavelength. When a
mixing model obtains a good spectral representation, we
expect the SRE values to be constant and small for all
wavelengths. Instead, if SRE largely varies as a function of
λ, the spectral unmixing method is not capable of dealing
with specific wavelength-dependent effects. As both subsets
contain large shadowed regions, the LMM and Fan models
obtained the largest errors over the entire wavelength range.
The SLMM and SMLM models obtained higher errors in

(a) (b)

Fig. 7. Mean reconstruction error (RE) of fully sunlit pixels (in blue), (partly)
shadowed pixels (in orange), and the entire image (in yellow), for subset 1 in
(a) and subset 2 in (b). Fully sunlit and (partly) shadowed pixels are identified
as Q ≤ 0.1 and Q > 0.1, respectively, where Q values are computed using
the ESMLM model.
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(a) (b)

Fig. 8. Spectral reconstruction errors (SRE) as a function of wavelength for
subset 1 in (a) and subset 2 in (b).

the lower spectral range of 400 − 500nm, because these
assume the shadow effects to be wavelength-independent, and
ignore the skylight which has the highest impact at shorter
wavelengths. In subset 2, the spectral reconstruction errors
appear larger at longer wavelengths, and the spectral behavior
of the errors shows vegetation characteristics. Compared to
the Fansky model, the ESMLM model shows less vegetation
characteristics, indicating that it provides a better spectral
reconstruction performance for vegetation.

B. Shadow-removed pixel reconstruction

For spectral mixture models containing the shadow-related
parameter Q, it is possible to perform shadow removal through
pixel reconstruction. The idea is to ”lighten up” the shadow
fraction in a pixel, by replacing the illumination source for
shadowed regions with the one for sunlit regions. In other
words, the restoration process simulates that shadowed regions
are exposed to direct solar illumination. Since SLMM and
SMLM models do not contain the diffuse illumination source
for shadowed regions, shadow removal can be performed
by setting Q = 0 in the mixture models. For the Fansky
and ESMLM models, we generate the restoration results by
replacing T (s0diff

) with T (s0glob) in the mixture models.
Fig. 9 shows the input and shadow-removed images for
visual comparison. Since the shadow removal is performed
by replacing the illumination sources in the mixture models,
the shadow fraction Q has been naturally embedded in the
restoration process, yielding physical-interpretable transitions
at shadow boundaries in the shadow-removed images. As the
values of Q are fractional in the range [0, 1], a more realistic
representation of shadows is provided.

Due to the lack of ground truth of the actual spectral
reflectance and thus the actual pixel composition under the
shadows, the shadow-removed images can only be qualita-
tively compared. For a more quantitative evaluation of the
performance of shadow removal, we additionally designed an
alternative test, by assuming that the region around a shadow
boundary should contain similar materials (see Fig. 10). In
each subset we selected 7 regions, each consisting of sunlit
pixels (located at the yellow markers) and (partly) shadowed
pixels (located at the cyan markers) around a shadow boundary
(Figs. 10 (a) and (e)). Spectra in sunlit pixels are selected from
the input image, while spectra in (partly) shadowed pixels are
selected from the restored image. In each region, the spectra of

sunlit and (partly) shadowed pixels are individually averaged,
resulting in 7 pairs of spectra, each consisting of a sunlit and a
shadowed spectrum around a shadow boundary. The band-wise
absolute differences between the sunlit and shadowed spectra
are averaged over all 7 pairs, and plotted as the spectral error in
Figs. 10 (b) and (f). In addition, in subset 1 we individually
consider shadows caused by man-made objects, completely
blocking direct sunlight, and shadows caused by vegetation
that can partly block direct sunlight (Figs. 10 (c) and (d)).

The visual comparison of Fig. 9 can be interpreted, depend-
ing on the skylight information being taken into account or
not. When excluding the skylight information (i.e., SLMM and
SMLM models), results show less noise in shadowed restored
regions. However, texture and spectral information can be lost
in shadow areas, leading to a non-natural restoration result, and
incorrect spectral information of the pixel composition under
the shadow. In addition, the SMLM model has not removed
all shadows, due to an inaccurate estimation of its parameters
(see Section VIII-C).

In contrast, the models that account for skylight show
increased noise levels (Fig. 9), but on average perform better
in restoring the spectral information in shadowed pixels (Fig.
10). The Fansky model behaves inconsistently in different
types of shadows. Specifically, it performs worse than SLMM
in the regions shadowed by vegetation (Fig. 10 (d) and (f)),
probably due to its specific modeling of the nonlinearities.
The proposed ESMLM model performs consistently better for
different types of shadows, indicating the importance of the
nonlinear modeling in shadow-aware mixture models.

C. Model parameters

Some of the compared spectral mixture models generate
physically interpretable pixel-wise parameters providing valu-
able information. Fig. 11 shows the output parameter maps.
All compared mixture models, except LMM and FAN, output
Q, representing the fraction of shadows at sub-pixel level.
Depending on the way the shadow effect is modeled, two
categories of Q maps can be differentiated. The SLMM and the
SMLM models treat shadow as a simple scaling effect without
including skylight information. Despite Q being the spatial
fraction of shadow in a pixel, it serves two functionalities
here. One is to reduce the observed reflectance by scaling
out the shadowed part Q of a pixel. The other is to use
the remaining fractional value 1 − Q to ”lighten up” the
shadowed regions. From the figure, on can clearly observe
that the Q values from SLMM and SMLM are consistently
underestimated in shadowed pixels, because even in heavily
shadowed regions the reflectance, although very small, is not
equal to zero. Compared to the SLMM, the SMLM model can
underestimate Q in (partly) shadowed pixels by overestimating
the P values, such as in vegetation shadows in subset 2 and
on the boundaries of the shadowed regions by the building in
subset 1. The inaccurate estimation of Q greatly decreases
the performance for shadow removal (Fig. 9). In contrast,
the ESMLM and Fansky models use the skylight to ”lighten
up” the shadowed areas, yielding a better estimation for Q.
Compared to the Fansky model, the ESMLM model generates
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Fig. 9. Shadow-removed reconstructed images (true color composites) of subset 1 (first row) and subset 2 (second row).
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Fig. 10. Spectral comparison between shadowed pixels in shadow-removed
images and their corresponding sunlit pixels belonging to the same material
in local neighborhoods. Subset 1: (a) locations of selected pairs of pixels,
sunlit pixels are marked in yellow and (partly) shadowed pixels are marked
in cyan; (b) spectral error (all regions); (c) spectral error in regions shadowed
by man-made objects; (d) spectral error in regions shadowed by vegetation.
Subset 2: (e) location of selected pairs of pixels, sunlit pixels are marked in
yellow and (partly) shadowed pixels are marked in cyan; (f) spectral error
over all regions (all regions are shadowed by vegetation).

better Q maps, thanks to its superior nonlinear modeling. In
subset 2, the ESMLM model estimates higher values of Q in
fully shadowed pixels and can detect partial shadows in the
bottom right area.

Beside shadows, the nonlinear behavior of the mixture
models is also an important aspect. Fig. 11 shows the two
parameters relevant to the nonlinearity, i.e., P and K, which
describe within- and between-pixel optical interactions at the
second order, respectively. The P parameter in the ESMLM
model follows the definition from [29]. Although P can be
negative in the SMLM model, we constrain P ∈ [0, 1] in
this paper in order to keep its physical interpretation. The P
maps of SMLM and ESMLM follow similar patterns, with
increasing values in vegetated regions. In SMLM, P can have
high values in (partly) shadowed pixels where Q is close to
zero. This artifact can be observed on shadow boundaries of
the building in subset 1, and tree-shadowed regions in both
subsets. The ESMLM model shows a better estimation of both
P and Q, due to the inclusion of skylight information.

The ESMLM model outputs high values of K, dominantly
in (partly) sunlit vegetated areas, where pixels are expected
to receive reflections from their neighborhood. Those regions
show significantly lower reconstruction errors in the ESMLM
model than in other models, indicating the advantage of
modeling the neighbor interactions in the ESMLM model.

Finally, models accounting for skylight (ESMLM and Fan-
sky) additionally output the topographic related parameter F ,
indicating the sky fraction that a ground pixel can ”see”. It
is worth noting that F is only valid in (partly) shadowed
pixels, as F is only involved in the skylight terms of the
ESMLM and Fansky models. In this paper, we set F = 0
in regions where Q ≤ 0.1. Compared to the Fansky model,
the ESMLM model is superior in estimating values of F in
regions shadowed by vegetation. An example is shown in the
upper-left corner of subset 2, where the Fansky model obtained
zero F , and thus merely reconstructs shadows by scaling sunlit
pixels. Instead, the ESMLM model can balance the values of
F by contributions of P . In regions where Fansky produces
F = 0, the reconstruction errors of the ESMLM model are
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Fig. 11. Output parameter maps, from top to bottom: F (sky view factor),
Q (spatial fraction of shadows), P (probability that a light ray undergoes
additional interactions with endmembers), K (a strength factor of neighbor
interactions, denoting the fraction of the scattered light from the neighborhood
that is received by the pixel). Compared models, from left to right: Fansky,
SLMM, SMLM, ESMLM.

consistently lower by a value of 0.03 on average.

D. Abundances

Besides parameters, the proposed method outputs abun-
dances that present the material components at sub-pixel level.
Since we do not have ground truth data for this real dataset, we
evaluate abundances qualitatively in this section. Fig. 12 and
Fig. 13 show the abundance maps for all comparing models
in two subsets. For each subset, we present two aggregate
abundance maps of impervious surfaces and vegetation, by
grouping materials with similar spectra.

Abundances in fully sunlit pixels are comparable among
all models, while abundance maps show noticeably different
patterns in (partly) shadowed pixels, depending on if and
how the shadow and nonlinear effects are considered. In the
LMM and Fan model, vegetation and impervious surface in

the (partly) shadowed pixels are detected indiscriminately as
impervious material. The reason is that the endmember library
contains some impervious materials with low reflectances that
are more similar to shadow spectra. Nevertheless, the LMM
and Fan model show large RE values in (partly) shadowed
pixels, indicating their unsatisfactory spectral representation
in shadowed areas.

Results largely improve when considering shadow as a
scaling effect, as is done by the SLMM and SMLM model. In
the shadowed vegetation areas, SLMM and SMLM perform
significantly better. Nevertheless, a small amount of imper-
vious surface remains in shadowed vegetation areas, because
it is used to compensate for the inaccuracy of the shadow
modeling.

The Fansky and ESMLM models, that consider the skylight
information, improve the performance in shadowed vegetation
regions while introducing more noise. Compared to the Fansky
model, the ESMLM model presents better results on vegetation
shadows, thanks to the advantageous modeling of the nonlinear
effects.

Some open questions remain for the deeply shadowed
pixels caused by vegetation. For example, abundances in the
shadowed impervious regions are not as large as expected in
subset 2. One reason can be that the incoming light from the
global illumination firstly interacts with trees before reaching
the road, mixing vegetation features in the back-scatted signal
in those regions. On the other hand, the LMM and Fan model
estimate those regions as pure impervious materials, but it
doesn’t mean that they perform better, because they mainly
confuse the shadowed pixels with impervious materials in the
entire region.

E. Ablation study

This section shows the results of an ablation study of the
ESMLM model and analyzes the impact of the parameters
P , Q, K by setting them to zero one at a time. Similar
to the above experiments, we analyze the results in terms
of reconstruction errors (Figs. 14 and 15), shadow-removed
reconstruction (Figs. 16 and 17), and output parameter maps
(Fig. 18). We discuss the effect of each parameter in the
following subsections.

1) The Role of Q: Q is the key parameter for modeling
shadows. When Q = 0, the skylight-related terms become
zero. Shadow removal cannot take place (Fig. 16), and mean
spectral errors would become undesirably large in Fig. 17. As
the shadow-related terms are removed, RE largely increases
in shadowed regions in subset 1. In addition, SRE goes up
for all wavelengths, and a significant increase is observed in
the spectral range of 400− 550nm. This change is caused by
the lack of skylight terms, which largely impacts on shorter
wavelengths. In subset 2, RE does not considerably increase
in (partly) shadowed pixels (Fig. 14 (b)), while SRE increases
at shorter wavelengths in the spectral range of 400− 500nm
(Fig. 15 (b)). The reason is that P replaces the role of Q
to compensate for the reconstruction loss. In Fig. 18, it can
be observed that the contribution of P increases. Despite a
better reconstruction, this leads to an incorrect estimation of
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Fig. 12. Abundance maps of the real hyperspectral imagery without ground truth for subset 1. First row: abundances of impervious materials; second row:
abundances of vegetation.

LMM Fan SLMM SMLM Fansky ESMLM

Fig. 13. Abundance maps of the real hyperspectral imagery without ground truth for subset 2. First row: abundances of impervious materials; second row:
abundances of vegetation.

(a) (b)

Fig. 14. Mean reconstruction error (RE) in the ablation study for subset 1
in (a) and subset 2 in (b). Blue: fully sunlit pixels; Orange: (partly) shadowed
pixels; Yellow: the entire image. Fully sunlit and (partly) shadowed pixels
are identified as Q ≤ 0.1 and Q > 0.1, respectively, where Q values are
computed using the full model.

the parameters. This indicates that reconstruction errors can
not be the only measure to evaluate the performance of mixture
models.

2) The Role of P : P is relevant for the within-pixel
nonlinear behavior. Removing P does not affect reconstruction
errors (Figs. 14 and 15), because Q and K compensate for
the reconstruction loss. However, removing P impacts the
estimation of other parameters (Fig. 18 (b)). When P = 0,
the neighbor effect term (1 − Q)(1 − P )K

∑p
i=1 aiei · eN

(a) (b)

Fig. 15. Spectral reconstruction error (SRE) as a function of wavelength in
the ablation study for subset 1 in (a) and subset 2 in (b).

becomes the only second-order reflection term in the model.
Thus, the ablated model will estimate inaccurate values for
Q, K, and F in vegetation shadows, where P is expected to
have contributed. In addition, P plays an important role in
removing shadow. When reconstructing the shadow-removed
images, the sunlit regions should remain unchanged. However,
we observed that the spectral distance using the l2 − norm
between input and restored images in sunlit regions increased
consistently by a value of 0.025 on average in sunlit regions
when P = 0, compared to the full model.
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Fig. 16. Shadow-removed reconstructed images (true color composites) in the ablation study for subset 1 (first row) and subset 2 (second row).

1

2

3

4
5

6

7

(a) (b)

(c) (d)

1

2

3
4

5

6

7

(e) (f)

Fig. 17. Ablation study: spectral comparison between shadowed pixels in
shadow-removed images and their corresponding neighboring sunlit pixels,
containing the same material. Subset 1: locations of selected pairs of pixels
in (a), spectral errors in all regions in (b), in regions shadowed by man-made
objects in (c), and in regions shadowed by vegetation in (d). Subset 2: location
of selected pairs of pixels in (e), spectral errors in all regions (all regions are
shadowed by vegetation) in (f). The ablated model with Q = 0 is not in the
comparison, because it would exclude the shadow effect, causing undesirably
large spectral errors.

3) The Role of K: K is related to the between-pixel optical
interactions that occur mainly in vegetated regions. When
K = 0, the reconstruction errors largely increase in (partly)
sunlit pixels (Fig. 14). In addition, SRE increases at longer
wavelengths, which is caused by not accounting for the multi-
ple interactions of vegetation in the local neighborhood. (Fig.
15). At shorter wavelengths, SRE only slightly increases,
because the ablated model contains the key parameter Q
for modeling shadows. The performance of shadow removal
decreases when K = 0: shadow-removed images lose textural
information (Fig. 16), and the mean spectral errors increase in
subset 2, where vegetation dominates (Fig. 17 (f)).

F. Comparison between manual and automatic endmember
extraction methods

In this section, we analyze the impact of endmember
extraction methods on the result of the two subsets of the
real hyperspectral image, and compare the unmixing results
using manually extracted endmembers with those using au-
tomatically extracted endmembers. Considering the shadow
issue, we designed a simple but effective method to select fully
sunlit pixels before automatic endmember extraction. First, we
carefully set an empirical threshold (set to 0.08 in this paper),
and then select pixels with mean reflectance larger than 0.08
as candidate sunlit pixels. However, candidate sunlit pixels
may include partly sunlit pixels located at shadow boundaries.
Thus, we additionally apply a Canny edge detector [45] to
remove all boundary pixels from sunlit pixels candidates.
In addition, considering endmember variability, we apply
the method in [46] to extract endmember bundles based on
Vertex Component Analysis (VCA) [47]. Finally, we merge
endmembers with similar reflectances and show the selected
endmembers in Fig. 19 (c).

We apply the automatically extracted endmembers to the
two subsets of the real airborne hyperspectral imagery with-
out ground truth. First, we compare the RE for subset 1
and 2 in Fig. 19 (f) and (g), respectively. Results depict
that RE in (partly) shadowed pixels is comparable between
automatic and manual endmember extraction methods. This
is expected because (partly) shadowed pixels are excluded
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Fig. 18. Parameter maps in the ablation study. From top to bottom: F (the
sky view factor), Q (the spatial fraction of shadow), P (the probability that a
light ray undergoes additional interactions with endmembers), K (a strength
factor of neighbor interactions, denoting the fraction of the scattered light
from the neighborhood that is received by the pixel). From left to right: the
ESMLM model, the ablated ESMLM models, with P = 0, K = 0, and
Q = 0 , respectively.

from the endmember extraction. In sunlit pixels, reconstruction
errors decrease for all unmixing methods while their relative
relationship remains, indicating that a better endmember li-
brary can be extracted using automatic endmember extraction.
Moreover, we compare the output parameters (F , Q, P , and
K) by the histogram of the parameter differences between
the manually and automatically endmembers in Fig. 19 (a),
(b), (d), (e). The differences between parameters estimated by
two endmember libraries remain small, implying that results
are not very sensitive to the endmember extraction method.
We can conclude that manually extracted endmembers can be

applied in our work.

G. Experimental results and discussion: the entire test image

Finally, we applied the proposed model to the entire test
image, resulting in mean reconstruction errors (RE) of 0.04
in fully sunlit pixels, 0.03 in (partly) shadowed pixels, and 0.03
in the entire image. The low variation of RE values between
different categories of pixels indicates that the ESMLM model
provides a robust pixel representation over various illumination
conditions and local structures. In addition, the output param-
eters of the entire image (Fig. 20 (b-e)) follow similar patterns
as in the subset images. By interpreting the parameters, one
can easily detect the different illumination conditions and local
structures illustrated in Fig. 1. Specifically, (partly) shadowed
pixels contain high Q values, while K mainly contributes in
(partly) sunlit vegetated regions, and becomes typically higher
when vegetation has larger height variations, such as trees.
Compared to K, P mainly plays a role in (partly) shadowed
pixels occluded by vegetation. Besides indicating the local
structures, output parameters also play an important role in
reconstructing the shadow-removed image shown in Fig. 20
(a).

IX. CONCLUSION

In this paper we proposed an extended shadow multilinear
(ESMLM) model for hyperspectral images based on radiative
transfer theory, addressing shadow and nonlinear effects. The
proposed model follows a graphical framework of mixture
models, and sums up all possible radiation paths initiated
by the illumination sources. Three illumination sources are
considered: direct, diffuse, and neighboring illuminations.
The proposed model considers different shadow variants, i.e.,
fully shadowed pixels, partly shadowed and spatially sepa-
rable pixels, and partly shadowed but spatially inseparable
pixels. Additionally, two types of nonlinear interactions for
different illumination conditions have been modelled. Physical
assumptions have been made to simplify the ESMLM model,
leading to four physically interpretable parameters: P (the
probability that a light ray undergoes additional interactions
with endmembers), Q (the spatial fraction of shadow), F
(the sky view factor), and K (a strength factor of neighbor
interactions, denoting the fraction of the scattered light from
the neighborhood that is received by the pixel). Given these
physically interpretable parameters as output, the proposed
model characterizes the local structures of the ground surface
and allows to reconstruct a shadow-removed image by simply
”lighten up” the shadow-related terms.

We compared the proposed model with state-of-the-art
mixture models on both synthetic dataset and real images
with qualitative and quantitative measures. We first analyzed
reconstruction and abundance errors on simulated data with
and without additional noise. After that, we simulated (partly)
shadowed pixels in a real hyperspectral imagery with known
abundance ground truth, and evaluated the performance of
different mixture models. Furthermore, we analyzed the un-
mixing models in airborne hyperspectral images with real
shadowed pixels. Specifically, we discussed the reconstruction
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Fig. 19. Comparison between manual and automatic endmember extraction methods. Automatically extracted endmembers in (c), RE computed by unmixing
methods with automatically extracted endmembers for subset 1 in (f)) and subset 2 in (g), where blue, orange, and yellow colors represent fully sunlit pixels,
(partly) shadowed pixels, and the entire image, respectively. Fully sunlit and (partly) shadowed pixels are identified as Q ≤ 0.1 and Q > 0.1, respectively,
where Q values are computed using the ESMLM model. Histogram of the absolute difference between manually and automatically extracted endmembers of
parameter F in (a), Q in (b), P in (d), and K in (e).

errors in spatial and spectral domains, and we compared
shadow-removed images and model output parameters. Exper-
imental results demonstrate that the proposed model performs
consistently better in different ground scenarios with various
illumination conditions. Moreover, we conducted an ablation
study of the ESMLM model, in which we studied the role
and significance of each parameter separately. Experimental
results demonstrate that the full model performs better than
the ablated models.

Several open problems remain. Firstly, when including
the skylight information, the shadow-removed images contain
higher levels of noise, caused either by the low signal-to-noise
ratio, or by strong nonlinear effects that take place in (partly)
shadowed pixels. In addition, spectral errors of the proposed
model, even though lower than in other models, remain large
in some shadowed regions. Future work concerns including
spatial information in the mixture model to promote spatial
correlations among pixels.
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