This article has been accepted for inclusion in a future issue of this magazine.

Fog Native Architecture:

Intent-Based Workflows

to Take Cloud Native Towards the Edge

Merlijn Sebrechts*, Bruno Volckaert*, Filip De Turck*, Kun Yang', Mays AL-Naday'
*IDLab, Department of Information Technology (intec), Ghent University - imec, Belgium
TSchool of Computer Science and Electronic Engineering, University of Essex, UK

Abstract—The cloud native approach is rapidly transforming
how applications are developed and operated, turning monolithic
applications into microservice applications, allowing teams to
release faster, increase reliability, and expedite operations by
taking full advantage of cloud resources and their elasticity.
At the same time, ‘“fog computing” is emerging, bringing the
cloud towards the edge, near the end user, in order to increase
privacy, improve resource efficiency, and reduce latency. Com-
bining these two trends, however, proves difficult because of
four fundamental disconnects between the cloud native paradigm
and fog computing. This article identifies these disconnects and
proposes a fog native architecture along with a set of design
patterns to take full advantage of the fog. Central to this
approach is turning microservice applications into microservice
workflows, constructed dynamically by the system using an
intent-based approach taking into account a number of fac-
tors such as user requirements, request location and available
infrastructure and microservices. The architecture introduces a
novel softwarized fog mesh facilitating both inter-microservice
connectivity, external communication, and end-user aggregation.
Our evaluation analyses the impact of distributing microservice-
based applications over a fog ecosystem, illustrating the impact of
CPU and network latency and application metrics on perceived
Quality of Service of fog native workflows compared to the
cloud. The results show the fog can offer superior application
performance given the right conditions.

Keywords—fog native, cloud native, fog computing, edge com-
puting, microservices, intent-based management, orchestration,
compute-network softwarization, service management

I. INTRODUCTION

The cloud native paradigm advocates for developing ap-
plications and network services to run intrinsically in the
cloud, rather than merely transitioning to it [1], [2]. The
objective is to realize applications at scale and provide ca-
pabilities including dynamic scaling, automatic recovery and
seamless roll-out. This requires turning monolithic applica-
tions into microservice applications [3] by decomposing them
into self-contained components interconnected by Application
Programming Interfaces (APIs). The added complexity of
managing microservices has been widely studied [4], [5],
[6]. The considerable increase in message exchange between
microservices, however, has been largely overlooked because
it has not posed a major challenge given cloud providers’ tight
control over internal network bandwidth and latency.

At the same time, more and more companies are combining
cloud applications with edge computing [7]. The Netflix
Open Connect program, for example, invites ISPs to place
Netflix caching servers in the edge, in order to increase

Cloud
— /
Cloudlets B Fog
Edge nodes
= \ / =
/l \< o g \" End users
True edge @ jnég '

Fig. 1. The OpenFog reference architecture showing a three-tier fog connected
by a softwarized network controllable by management functions.

user experience and decrease strain on the network. These
capabilities are opened up to a much broader industry by fog
computing, which extends the cloud towards the edge. This
creates a new economic market where even small players can
run applications over a mixture of cloud and edge resources.
This enables application developers to increase privacy [§]
and reducing latency [9], and helps ISPs to ensure more
efficient resource usage. On a technical level, this is enabled by
providing both cloud and edge resources in a unified platform
such as the OpenFog reference architecture [10] shown in
Figure 1.

Taking full advantage of the fog requires an approach sim-
ilar to cloud native paradigm. Naively applying this paradigm
and tools to the fog, however, results in inefficient resource
utilization and sub-optimal compute distribution; potentially
negating the proximity benefits of the fog. These possibly
counter-productive results are caused by a number of cloud
native assumptions which do not always hold true in the fog.

e The cloud is relatively homogeneous and seamlessly
hides the specifics of the underlying infrastructure from
the end user, while the fog is inherently heterogeneous,
accompanied with operational complexity.

o While clouds have an overabundance of relatively cheap
resources, resource constraints become more apparent
closer towards the edge of the fog.

e While clouds offer reliable low-latency and high-
bandwidth communication between internal nodes, fog
nodes are fully distributed and connected by a network
with highly variant latency and bandwidth.

o The cloud is central with a relatively limited number of
geographical locations, while the fog is dispersed with a
much higher number of geographical compute locations
offered by edge tiers.

Authorized licensed use limited to: University of Gent. Downloaded on July 13,2022 at 09:01:14 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this magazine. »

Current efforts applying cloud native technologies to the
edge do not fully address these issues. KubeFed, for example,
allows creating federations of Kubernetes clusters, but is
focused on the cloud instead of the fog. KubeEdge aims to
shrink Kubernetes to fit on edge nodes, but does not address
the fog’s operational complexity and dispersion.

This paper identifies four fog native challenges and pro-
poses an architecture that instigates a paradigm shift by
defining applications as microservice workflows, constructed
dynamically using intent-based matching of user requirements.
This microservice workflow is an evolution from Service
Function Chaining of Virtual Network Functions (VNFs),
addressing its limitation of hard dependencies. This approach
also provides better alignment with cloud-native norms and
offers uniform representation of ‘logic-execution’ elements in
the fog. Moreover, the architecture introduces a novel fog
mesh enabling seamless internal/external communication and
flexible grouping of end-users. The architecture is evaluated
in terms of distributing workflows over the fog to provide a
baseline assessment on the impact of heterogeneity as well as
the characteristics of microservices in a workflow on QoS and
resource utilization.

This paper starts off by identifying four disconnects between
cloud native and the fog in Section II. Section III introduces
the fog native architecture addressing these challenges. Sec-
tion IV outlines a pathway towards implementation through a
sample use case. Section V provides a baseline assessment of
workflow performance in the fog. Finally, Section VI draws
conclusions and outlines future work.

II. DISCONNECT BETWEEN CLOUD NATIVE AND THE FOG

This section identifies four key incompatibilities between
cloud native and the fog. They stem from four assumptions
about the underlying infrastructure and context that do not
hold true in the fog.

A. Operational Complexity

Clouds present themselves as relatively homogeneous of-
ferings, allowing developers to reason about what products
and infrastructure to use for building an application. As a
result, cloud applications are designed as rigidly connected mi-
croservices described using desired-state models [2]. Although
these descriptions often use over-simplified assumptions of
underlying operational complexity, this is not an issue in the
relatively homogeneous-looking cloud.

The fog, however, is inherently heterogeneous from a devel-
oper standpoint. Providers cannot abstract away the underlying
complexity because nodes have varying capabilities and avail-
ability of functionality is highly dependent on location, fog
tier, and current resource usage [7]. Designing applications for
a common denominator risks losing out on an untapped wealth
of useful-but-not-ubiquitous features of fog nodes. Moreover,
since resources in the fog are not infinitely scalable, design-
time assumptions about infrastructure availability might not
hold true anymore when the application is deployed.

B. Resource constraints

Clouds offer the illusion of infinite capacity at a relatively
cheap price. Consequently, cloud native technologies do not
necessarily optimize resource usage. Service meshes, for ex-
ample, typically duplicate the number of containers needed to
run a microservice application [4]. These meshes are dedicated
infrastructure layers that manage communication between
microservices to improve observability, control and security
of inter-microservice communication. They commonly use a
“sidecar” approach in which each containerized microservice
is accompanied by a containerized proxy which acts as an
intermediate in all communications for that microservice. This
approach works without code changes to the microservices
themselves, but introduces significant resource overhead.

These inefficiencies are generally tolerable in a cloud envi-
ronment with abundant resources. The fog, however, has strict
constraints on resource consumption [7] that may not tolerate
such waste.

C. Latency

Clouds offer reliable internal networks which enable low-
latency and high-bandwidth communication between nodes.
As a result, many cloud schedulers do not consider inter-
service dependencies and network latency when placing ser-
vices because their impact on performance is often negligible.
This is not the case in the fog, however, due to its heteroge-
neous and turbulent internal network latency. As the evaluation
in Section V shows, not taking into account inter-service
dependencies and network parameters during scheduling of
microservices in the fog results can negate much of the locality
benefits of the fog.

A second issue arises in common cloud native patterns
such as API gateways [5], which sit between a client and
a microservice application, acting as the ingress endpoint for
all external connections [6]. This pattern enables microservice
applications to use asynchronous communication internally,
and centralizes concerns such as compression, response ag-
gregation and authorization [5]. However, given the aim of
the fog is to bring compute closer to the edge, centralized
gateways are antithetical to it, negating the latency [7] and
privacy [8] benefits of keeping data and compute at the edge.

D. Dispersion

The cloud provides a relatively limited number of geo-
graphical compute locations, often called ‘“regions”. As a
result, developers normally manually plan the geographical
distribution of their microservices based on (predicted) user
demand.

The fog, however, has a very high number of geographical
compute locations [7], making it difficult to manually select
where an application needs to run. Moreover, automatically
distributing fog native applications based on individual end
user requests can be challenging because of the sheer volume
and diversity of them. Although this might be feasible for
relatively static requirements such as a home automation
system, it falls short at the scale and variability of applications
such as video streaming and social networking.

Authorized licensed use limited to: University of Gent. Downloaded on July 13,2022 at 09:01:14 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this magazine. 3

III. DESIGNING A FOG NATIVE ARCHITECTURE

This section introduces a number of fog native design
patterns which fit together into an architecture that tackles
the aforementioned challenges of bringing the cloud native
paradigm to the fog.

A. Overview

The proposed fog native architecture instigates a paradigm
shift where developers no longer define what should be
deployed. Instead, they define the desired behavior of the
application using intents. The system then dynamically com-
poses and deploys workflows of microservices, taking into
account a number of factors such as user location, network
topology, available infrastructure, and existing services. This
intent-based workflow construction permits much larger flex-
ibility than the traditional desired-state approach because the
orchestrator can change application topology and interchange
application components depending on where user demand is
for certain functionality and what infrastructure is available at
that location.

Figure 2 shows an overview of the proposed fog native
architecture, consisting of three conceptual components.

e The discovery service is a registry of individual mi-
croservice templates enriched with metadata about their
functionality, characteristics and dependencies. This reg-
istry also tracks the offerings of the fog provider and
the functionality of already deployed microservices and
workflows.

o The workflow manager responds to user requirements
and either identifies a running workflow or uses intent-
based workflow construction, explained further in Sec-
tion III-B, to create a new workflow from scratch to
satisfy the user request.

o The fog mesh enables communication both between
microservices, and to end-users. It consists of a set
of interlinked service proxies, each of which provides
softwarized network services to a regional cluster of mi-
croservices, saving up valuable resources by removing the
one-to-one relationship between proxy and microservice.

The remainder of this section explains in detail the four
key innovations of this fog native architecture compared to a
traditional cloud native approach.

B. Intent-based workflow construction

As Section II-A explains, the fog’s heterogeneity escalates
the complexity for developers to describe their application’s
desired state. To tackle this challenge, we propose to dy-
namically create workflows based on user intents. This gives
the system flexibility to dynamically update the desired state
based on user demand, location and available infrastructure.
Following this approach, user requests provide a description
of the desired functionality, constraints, and tolerances. De-
velopers advertise microservice templates annotated with rich
metadata describing the functionality of each component, its
infrastructure requirements and its dependencies. End users re-
quest certain functionality, for example using using semantic-
based addressing similar to that proposed by Al-Naday et

4« Discovery

IS
{Workﬂow Manager |

Edge computing device

Intent-based
requests

microservice

icroservice icrosen
microservice

A
A
/ \

Fig. 2. A fog native architecture showing a fog mesh supporting both internal
and external communication, and a workflow manager using a discovery
service to design and deploy microservice workflows based on user requests.

Microservice
templates

Intent-based

User Request Intents

Intent Parsing Workflow Manager Discovery

Deployment

Fig. 3. Intent-based construction of a new workflow.

al. [11]. The system parses this request and matches the
intents with microservices, active workflows, fog offerings and
VNFs. The system then either directs the request towards an
existing workflow or dynamically constructs one that meets the
demand. The resulting workflow can consist of microservices,
VNFs, and XaaS offerings.

As shown in Figure 3, when constructing a new workflow,
the workflow manager selects a number of microservices and
offerings using a matching logic which takes into account the
locality of the end-user and workflow constraints in order to
ensure the required QoS. The resulting workflow takes the
form of a desired state model that contains multiple connected
components such as microservices and offerings. This model
is delegated to lower-level orchestrators such as Kubernetes
and/or deployed as VNFs. As a result, the practical implemen-
tation of requested functionality is different depending on the
geographic location of the end-user, available infrastructure,
and available microservices. Note that this work is focused on
laying the foundations of intent-based workflow construction;
leaving optimization solutions for future work.

C. Fog mesh providing inter-microservice connectivity

Internal connectivity in a cloud native environment is fa-
cilitated by a service mesh. As stated in Section II-B, the
current generation of service meshes are not well adapted to
the resource constraints of the fog. Addressing this challenge
requires removing the one-to-one relationship between sidecar
proxies and microservices, and adding regional awareness
from a network standpoint. The resulting fog native service
mesh, “fog mesh”, automatically groups microservices into
a number of regional clusters based on network constraints.

Authorized licensed use limited to: University of Gent. Downloaded on July 13,2022 at 09:01:14 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this magazine. +

For example, microservices which are close to each other
from a latency and network bandwidth perspective could
share a single sidecar proxy. This vastly reduces the overhead
required for the sidecar approach. Moreover, using this fog
mesh, inter-microservice communication can use performant,
not necessarily user-friendly, protocols. This mesh can be
implemented as a flexible network of decentralized network
functions.

D. Fog mesh providing external connectivity

The API gateway pattern is difficult to implement in the
fog due to the heterogeneous network latency and possible
spread of workflows over multiple regions, as explained in
Section II-C. Therefore, this architecture automatically dis-
tributes the API gateway functionality by merging it into the
fog mesh. Each fog mesh proxy acts as an ingest point for the
microservices connected by the proxy, providing service-based
handling of internal-external communication, automatically
configured based on local needs. This effectively merges the
concepts of “service mesh” and “API gateway” into a single
“fog mesh”, which provides this functionality in a distributed
manner.

This has two advantages: firstly, it regionally distributes API
gateway functionality automatically based on microservices
and network constraints as explained in Section III-C. As a
result, user requests and responses can be handled by the
gateway in the region closest to the user, without the need for
redirection to a central API gateway. Secondly, it removes the
need for an additional service: fog mesh proxies handle both
internal and external communication. This results in lower
resource usage overhead.

Additionally, to fully utilize the potential for optimized
communication, responses from microservices to end-users do
not leave the fog mesh from the proxy closest to the last
microservice, but from the proxy closest to the client. This
fog mesh then translates the communication into a protocol
tailored to the end user device, such as HTTPS in case of a
browser. Notably, narrowing down the requests admitted by a
proxy to those targeting the proxy’s microservices combined
with having a generally smaller number of users by virtue of
locality is foreseen to incur a manageable state in the proxy.

E. Fog mesh providing end-user aggregation

In a cloud environment, the geographical distribution of
an application is often manually designed by the application
developer based on historic records of use and availability
of cloud regions. This is infeasible in the fog, however, due
to its high number of geographical compute locations as
outlined in Section II-D. Thus, a fog native scheduler is needed
which distributes a microservice workflow based on end-user
demand. Automating this distribution, however, is non-trivial
due to the higher dispersion of users, causing higher demand
variation and thus increased pressure on the fog scheduler.

To address this challenge, this architecture includes the
novel design pattern of aggregating end-users and their work-
flow requests by the fog mesh. This allows the scheduler to
make decisions on aggregations of end-user requests instead

of individual requests, lowering the demand for scheduling
decisions. Since, as explained in Section III-D, fog mesh
proxies act as the ingress point for local end-user requests,
they have the required information to aggregate user requests
for similar functionality into regional groups.

This, however, means that the end-user from a scheduling
perspective is an aggregate and not the actual end-user. Since
the fog mesh uses the scheduling information in order to
manage communication, it will only be able to manage the
connection up to the component acting as the aggregator. To
ensure the aggregate component knows how to manage the
connection to the end-user, this pattern introduces a response-
path token uniquely identifying the end-user. This way, a
workflow which, from a scheduling perspective, has a single
end-user, can fan-out to an aggregate of nearby users.

IV. EXAMPLE: DECISION-SUPPORT IN THE FOG

This section outlines a pathway towards system-level im-
plementation of the architecture, through an example use
case of UAV-based disaster management; enabling a dynamic
decision-support system based on live drone feeds for aiding
first responders. Autonomous drones observe the incident area,
interpret the data and provide an action list prioritized on
urgency or danger to responders as shown by Moeyersons et
al. [12].

Due to the unexpected nature of most incidents, proactively
designing and deploying decision support pipelines on location
is not possible. Due to the high bandwidth and low latency
requirements of the decision support pipeline, running them
on a centralized data center will negatively affect both the end
user experience and strain the network resources. Therefore,
this requires a system that dynamically designs and schedules
local workflows based on responders’ needs (i.e. intents)

Figure 4 illustrates the example using the proposed fog-
native architecture. A subset of fog mesh proxies may already
be active at the responders’ site while others have yet to be
instantiated at the incident site. The proxy’s implementation
can build on experience gained from sidecar and API gateway
technologies. The workflow manager and discovery service
are placed in the network, possibly at the responders’ site,
having latency-bound communication with both end-user prox-
ies. Notably, this example assumes a single instance of each
management service controls the fog resources of both sites of
interest; otherwise, distributed instances of each service might
be needed.

In this example behavior, an emerging incident may trig-
ger an intent-based workflow request by the responders’
proxy (A), describing required tasks and data, including video
feeds. The workflow manager interacts with the discovery
service (B), to identify existing components and data. A subset
of microservices may already be available, while others - such
as the drone feed - are yet to be established. Upon arrival
to the scene, the drone uses a fog proxy to advertises an
intent-based description of its video stream to the discovery
service (C). The latter informs workflow manager to complete
the construction of the workflow. The deployment of the
workflow is delegated to lower-level orchestrators. In this

Authorized licensed use limited to: University of Gent. Downloaded on July 13,2022 at 09:01:14 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this magazine. s

Service Catalog
provisioned provisioned
microservices workflows

metadata-enriched microservice images

OVA VM

Web-assembly
module

OCI Container

orcon D)
relationships

Intent-based
Workflow request

Idecision-support,
drone,
incidet:5423

Helm chart

Intent-based
Data description

stream,drone,

———— ———— "lincident:5423 :
e AU :
g
)

Q.0-0-0

22— 8)

v
K3S

on edge node

i Cloudlet

Receiver
instructions

Emergency
response
dashboard

Fig. 4. Overview of the proposed fog native architecture enabling drone-based decision support for crisis response teams through matching of responders

intents with offered microservices and data.

example, the workflow manager contacts a K3S edge node and
uses a Kubernetes relationship orchestrator [13] to deploy an
undistributed composition of microservices (D). After a suc-
cessful deployment, the workflow manager instructs the drone
to start transmitting the video stream (E) to be processed by the
workflow, i.e. by the microservices following their dependency
map in a hop-by-hop fashion. The last microservice delivers
the decision support outcome to the responders’ dashboard
after it completes.

V. EVALUATION

This section analyzes the impact of distributing workflows
over a fog ecosystem using the discrete event simulation
framework simmer [14]. The analysis illustrates the impact
of internal network latency and application metrics on the
perceived Quality of Service (QoS) of workflows distributed
over the fog compared to undistributed workflow allocation
in cloud systems. We present our results in terms of the
latency residual budget, corresponding to QoS by measuring
the difference between the latency threshold of a workflow,
specified by the end-user, and the observed response time. A
negative value indicates a violation of the latency agreement.

A fog-native network is modeled as a set of fog nodes
overlaid on top of a softwarized routing network. Traffic per
workflow is modeled as a set of simmer trajectories starting
from the user to the fog node of the first microservice; and
ending from the fog node of the last microservice back to
the user. The CPU capacity of each node depends on the
node’s tier, with cloud nodes having the highest CPU capacity
and edge nodes having the lowest. Similarly, network links
are characterized by their bandwidth capacity (Mbps) and
length (Km) with core links having the largest bandwidth
and longest distance and edge links having the smallest and
shortest counterparts. Propagation latency and the queuing
counterpart at each routing node are calculated using link
attributes, current state and data size. The processing latency of
the deployed microservices are derived from the CPU capacity,
current workload of a fog node, and task size. The total

response time is then calculated as the additive accumulation
of all latencies, between ‘user-to-first-microservice’ and ‘last-
microservice-to-user’.

For application workflows, the evaluation considers two
forms of dependency maps: Chain and Hub and Spoke (H&S).
In a Chain map, microservices are serially related to each
other; whereas in a H&S map, the first and last microservices
are hubs and intermediary ones are spokes. A workflow may
either be distributed (i.e. microservices assigned) over multiple
fog nodes, hence classified as Distributed or all corresponding
microservices are assigned to one fog node and so deemed
Undistributed. Moreover, each workflow is characterized by
a latency budget indicating the maximum tolerable response
time. Each microservice has a task size measured in number of
CPU cycles, and input and output data measured in megabytes.

The simulation assumes 100 workflows offered in the
network, each of which consists of 5 microservices selected
from a catalog of 1000. Each workflow has either Chain or
H&S dependency map. The CPU and data specification per
microservice is defined per scenario. For the network, we
consider the topology of the AT&T MPLS network of 25 nodes
and 114 links [15]. It assumes a 3—Tier fog network with:
tier-0 central cloud (2 nodes), tier-1 the smaller cloudLets (4
nodes) and tier-2 the highly constrained edge (8 nodes). The
fog nodes in each tier are placed randomly in the network. In
all the results, the CPU and bandwidth capacities of any tier
are approximately 10% equivalent of the upper tier. Finally, the
simulation assumes each switching node to connect between
1000 and 4000 end-devices, generating requests for workflows
at a rate of approximately 1500 requests per second.

A. Latency vs. distributability

This evaluation analyzes the interplay between workflow
dependency and infrastructure distribution, and the impact on
latency perceived by end-user.

Figure 5 shows the latency residual budget when varying the
distribution of the fog infrastructure, extending from the typi-
cal central cloud to a hierarchically distributed fog. The results

Authorized licensed use limited to: University of Gent. Downloaded on July 13,2022 at 09:01:14 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this magazine. s

0.97

o
oo
~

°
N
o

©
~
N

Workflow Type
B Distributed H&S

Latency Residual Budget
o
[4)]
[e¢]

0.31 B Undistributed H&S
& Distributed Chain
B Undistributed Chain
0.18 ¢ .

1-Tier Central Clouds 2-Tier Cloud/Lets 3-Tier Cloud/Lets/Edge
Infrastructure Distribution

Fig. 5. The latency residual budget when varying the fog infrastructure from
central cloud to hierarchical fog.

are shown for both undistributed workflows and workflows
distributed randomly over multiple fog nodes. The observed
latency residual budget for distributed workflows is lower than
for undistributed variants, illustrating the impact of network
latency on overall response time. Notably, the average residual
budget of H&S workflows is approximately 20% higher than
that of chain workflows, showing improvement as a result of
parallelizing microservice execution. Moreover, the residual
budget for distributed workflows decreases as the infrastructure
changes from central to distributed. This increased response
time is caused by

« additional communication latency from distribution of the

workflow over a larger number of fog nodes, and

« increased computation latency from the lower CPU ca-

pacity of edge infrastructure.

Interestingly, undistributed workflows in a hierarchical fog
perform no different from their counterparts in central clouds,
showing the reduction in communication latency is countered
by increased computation latency.

B. Latency vs. application metrics

Figure 6 shows the latency residual budget when having
variant task and data size. The results show the response
time for workflows of large sized data, (approximately 2-4
megabyte) is on average 10-25% higher than for small data
(approximately 0.5-2 megabyte), irrespective of the task size.
Nonetheless, workflows with large task size have, on average,
a higher response time by approximately 5-20% compared
with workflows of small task size, for the same data size.
This reveals the significance of communication latency when
having to transmit large volumes of data. The dependency
map and distribution also impact the perceived response time.
H&S workflows incur the quickest response time, even when
comparing distributed ones to undistributed chains. This shows
the effect of parallel microservice execution and the interplay
with CPU and link bandwidth capacities. Although the last
microservice in a H&S workflow waits for all the intermedi-
aries to complete, the combined execution and waiting time
remains smaller than that in undistributed chains. Although

1.00

o
[
o

TT%T

o©
]
N

H% .ﬁﬂ

Workflow Type
& Distributed H&S

Latency Residual Budget
o o
~ o
S ©

0.31 B Undistributed H&S
°| & Distributed Chain
B Undistributed Chain
0.17

Large/Large Large/Small Small/Large Small/Small
Microservice Characterstic (task size/data size)

Fig. 6. The latency residual budget for variant task and data size in a 3-tier
fog.

distributing a workflow reduces residual latency, the budget is
not exceeded, which means it can be a valid option to reduce
workload congestion by spreading compute load.

VI. CONCLUSION

Operational complexity, stringent resource constraints, vary-
ing internal network latency, and high granularity of geo-
graphic regions make the fog inherently incompatible with
the cloud native paradigm. To address this challenge, this work
proposes a fog native architecture along a set of design patterns
to facilitate flexible and dynamic provisioning of microservice-
based applications over the heterogeneous fog. Using intent-
based workflow construction, applications are composed of
loosely-dependent microservices selected to best match user
requirements. A novel fog mesh enables microservice group-
ing under one proxy, seamless user-microservice and inter-
microservice communications, and request aggregation. To il-
lustrate a pathway towards implementation of the architecture,
this article describes an example use case of drone-based
decision support for first responders in the fog. Evaluation
shows the impact of running microservice-based applications
in a fog ecosystem, confirming, for example, network latency
plays a bigger part in distributed workflow response time in
the fog compared to the cloud.

Future work is foreseen to provide a prototype of the
fog mesh and further investigate algorithms, optimizations
and implementations for translating intents into desired state
models. It will also further investigate management of data at
rest in the fog.

REFERENCES

[1] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Migrating to cloud-native
architectures using microservices: An experience report,” in Advances
in Service-Oriented and Cloud Computing, A. Celesti and P. Leitner,
Eds. Springer International Publishing, 2016, pp. 201-215.

[2] T. Laszewski, K. Arora, E. Farr, and P. Zonooz, Cloud Native Architec-
tures: Design High-Availability and Cost-Effective Applications for the
Cloud. Packt Publishing, 2018.

[3] D. Gannon, R. Barga, and N. Sundaresan, “Cloud-native applications,”
IEEE Cloud Computing, vol. 4, no. 5, pp. 16-21, 2017.

Authorized licensed use limited to: University of Gent. Downloaded on July 13,2022 at 09:01:14 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this magazine. -

[4] A. El Malki and U. Zdun, “Guiding Architectural Decision Making on
Service Mesh Based Microservice Architectures,” in Software Architec-
ture, ser. Lecture Notes in Computer Science, T. Bures, L. Duchien, and
P. Inverardi, Eds. Cham: Springer International Publishing, 2019, pp.

3-19.
[S] D. Taibi, V. Lenarduzzi, and C. Pahl, “Microservices
Anti-patterns: A Taxonomy,” in Microservices: Science and

Engineering, A. Bucchiarone, N. Dragoni, S. Dustdar, P. Lago,
M. Mazzara, V. Rivera, and A. Sadovykh, Eds. Cham: Springer
International Publishing, 2020, pp. 111-128. [Online]. Available:
https://doi.org/10.1007/978-3-030-31646-4_5

[6] A. Akbulut and H. G. Perros, “Performance Analysis of Microservice
Design Patterns,” IEEE Internet Computing, vol. 23, no. 6, pp. 19-27,
Nov. 2019, conference Name: IEEE Internet Computing.

[71 P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog computing:
architecture, key technologies, applications and open issues,” Journal
of Network and Computer Applications, vol. 98, pp. 27-42, 2017.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1084804517302953

[8] C. Zhou, A. Fu, S. Yu, W. Yang, H. Wang, and Y. Zhang, “Privacy-
Preserving Federated Learning in Fog Computing,” IEEE Internet of
Things Journal, vol. 7, no. 11, pp. 10782-10793, Nov. 2020, conference
Name: IEEE Internet of Things Journal.

[9] I Pelle, J. Czentye, J. Déka, and B. Sonkoly, “Towards latency sensitive

cloud native applications: A performance study on aws,” in 2019 IEEE

12th International Conference on Cloud Computing (CLOUD), 2019,

pp. 272-280.

OpenFog Architecture Workgroup, “OpenFog Reference Architecture

for Fog Computing,” Feb. 2017.

M. Al-Naday and I. Macaluso, “Flexible semantic-based data networking

for iot domains,” in 2021 IEEE 22nd International Conference on High

Performance Switching and Routing (HPSR), 2021, pp. 1-6.

J. Moeyersons, P.-J. Maenhaut, F. De Turck, and B. Volckaert, “Aiding

First Incident Responders Using a Decision Support System Based on

Live Drone Feeds,” in Knowledge and Systems Sciences, ser. Commu-

nications in Computer and Information Science, J. Chen, Y. Yamada,

M. Ryoke, and X. Tang, Eds. Singapore: Springer, 2018, pp. 87-100.

M. Sebrechts, S. Borny, T. Wauters, B. Volckaert, and F. De Turck,

“Service Relationship Orchestration: Lessons Learned From Running

Large Scale Smart City Platforms on Kubernetes,” IEEE Access, vol. 9,

pp. 133387-133401, 2021, conference Name: IEEE Access.

I. Ucar, J. A. Hernandez, P. Serrano, and A. Azcorra, “Design and

analysis of 5g scenarios with simmer: An r package for fast des

prototyping,” IEEE Communications Magazine, vol. 56, no. 11, pp. 145—

151, 2018.

S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,

“The Internet Topology Zoo,” IEEE Journal on Selected Areas in

Communications, vol. 29, no. 9, pp. 1765-1775, Oct 2011.

(10]

(11]

[12]

[13]

[14]

[15]

Merlijn Sebrechts received the M.Sc. degree in information engineering
technology from Ghent University, in July 2015, where he is currently
pursuing the Ph.D. degree with imec, IDLab, Department of Information
Technology (INTEC). He has worked on a number national and international
research projects. His research interests include simplifying the management
of complex applications in the cloud and beyond.

Bruno Volckaert (Member, IEEE) received the Ph.D. degree in resource
management for grid computing from Ghent University, in 2006. He is
currently a professor in advanced distributed systems at Ghent University and
senior researcher at imec. He has worked on over 45 national and international
research projects and is author or co-author of more than 150 peer-reviewed
papers published in international journals and conference proceedings. His
current research deals with reliable and high performance distributed software
systems for a.o. Smart Cities, scalable cybersecurity detection and mitigation
architectures and autonomous optimization of cloud-based applications.

Prof. Filip De Turck (Fellow, IEEE) leads the network and service man-
agement research group at Ghent University, Belgium and imec. He has
coauthored over 700 peer reviewed papers. His research interests include
design of secure and efficient softwarized network and cloud systems. He
was elevated as an IEEE Fellow for outstanding technical contributions. He
is involved in several research projects with industry and academia, served
as chair of the IEEE Technical Committee on Network Operations and
Management (CNOM), and steering committee member of the IFIP/IEEE
IM, IEEE/IFIP NOMS, IEEE/IFIP CNSM and IEEE NetSoft conferences.
He serves as Editor-in-Chief of IEEE Transactions on Network and Service
Management (TNSM).

Prof. Kun Yang (Senior Member, IEEE) received his PhD from the Depart-
ment of Electronic & Electrical Engineering of University College London
(UCL), UK. He is currently a Chair Professor in the School of Computer
Science & Electronic Engineering, University of Essex, UK, leading the
Network Convergence Laboratory (NCL). His main research interests include
wireless networks and communications, future Internet and edge computing.
He manages research projects funded by UK EPSRC, EU FP7/H2020 and
industries. He has published 300+ papers and filed 10 patents. He serves on
the editorial boards of a number of IEEE journals (such as IEEE TNSE,
WCL, ComMag). He is a Member of Academia Europaca (MAE), a Fellow
of IET/BCS and a Senior Member of IEEE.

Mays Al-Naday (Member, IEEE) received her PhD degree from the Uni-
versity of Essex, United Kingdom, in 2015. She is currently an Assistant
Professor in the School of Computer Science and Electronic Engineering,
University of Essex. She has actively worked on a number of EU H2020
research projects in the area of future networking architectures. Her current
research focuses on microservice networking, smart resource management, fog
computing networks, networks for federated learning and security and Quality
of Service in BSG/6G. She has been the organizer of prestigious workshops
in Sigcomm 17-18 and IFIP 17.

Authorized licensed use limited to: University of Gent. Downloaded on July 13,2022 at 09:01:14 UTC from IEEE Xplore. Restrictions apply.



