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A B S T R A C T   

Background and purpose: The geometrical accuracy of auto-segmentation using convolutional neural networks 
(CNNs) has been demonstrated. This study aimed to investigate the dose-volume impact of differences between 
automatic and manual OARs for locally advanced (LA) and peripherally located early-stage (ES) non-small cell 
lung cancer (NSCLC). 
Material and methods: A single CNN was created for automatic delineation of the heart, lungs, main left and right 
bronchus, esophagus, spinal cord and trachea using 55/10/40 patients for training/validation/testing. Dice score 
coefficient (DSC) and 95th percentile Hausdorff distance (HD95) were used for geometrical analysis. A new 
treatment plan based on the auto-segmented OARs was created for each test patient using 3D for ES-NSCLC 
(SBRT, 3–8 fractions) and IMRT for LA-NSCLC (24–35 fractions). The correlation between geometrical metrics 
and dose-volume differences was investigated. 
Results: The average (±1 SD) DSC and HD95 were 0.82 ± 0.07 and 16.2 ± 22.4 mm, while the average dose- 
volume differences were 0.5 ± 1.5 Gy (ES) and 1.5 ± 2.8 Gy (LA). The geometrical metrics did not correlate 
with the observed dose-volume differences (average Pearson for DSC: − 0.27 ± 0.18 (ES) and − 0.09 ± 0.12 (LA); 
HD95: 0.1 ± 0.3 mm (ES) and 0.2 ± 0.2 mm (LA)). 
Conclusions: After post-processing, manual adjustments of automatic contours are only needed for clinically 
relevant OARs situated close to the tumor or within an entry or exit beam e.g., the heart and the esophagus for 
LA-NSCLC and the bronchi for ES-NSCLC. The lungs do not need to be checked further in detail.   

1. Introduction 

Lung cancer is the second most frequent cancer worldwide, with a 
global incidence of over 2.2 million cases in 2020, representing 11.4 % 
of all cancer diagnoses, only just overtaken by breast cancer (11.7 %). It 
is the first cause of cancer death [1]. Surgery remains the treatment of 
choice for early-stage non-small cell lung cancer (ES-NSCLC) without 
lymph node invasion (stage I and IIA disease), but patients with unre-
sectable tumors or unwilling to undergo surgery are candidates for 
stereotactic body radiation therapy (SBRT), especially if the tumor is 

peripherally located. In case of stage III disease, also referred to as 
locally-advanced NSCLC (LA-NSCLC), the loco-regional treatment 
strategy can consist of a surgical or a non-surgical multi-modality 
approach [2]. In the latter case, radiotherapy will be delivered, all or not 
in combination with chemotherapy and/or immunotherapy. 

As such, radiotherapy is a very important part of lung cancer treat-
ment, where errors in target volume (TV) and organ at risk (OAR) 
delineation may lead to suboptimal tumor control and/or increased 
toxicity. Model-based segmentation [3,4], atlas-based segmentation 
[5,6] and deep learning [7–9] methods have been investigated in the 
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hope to enhance the quality of the radiation treatments delivered by 
improving delineation accuracy and decreasing inter-observer vari-
ability. Currently the most investigated method for auto-segmentation 
of medical images is the use of convolutional neural network (CNN)- 
based deep learning algorithms [7]. Automatic contours are increasingly 
used in the clinic, but time-consuming manual adjustments are often still 
made. Vaassen et al. have drawn up recommendations for manual 
checks of automatically contoured OARs in NSCLC, based on the dose- 
volume effect of contour variations for patients receiving 60 Gy in 30 
fractions [10]. The clinical impact of (atlas-based or deep-learning 
based) automatic contours for thoracic OARs has been assessed by 
means of observers’ rating [8,11,12], concordance indices [13], 
geometrical metrics [14,15] and dose statistics [16,10]. 

This study aimed to assess the dose-volume impact of CNN-based 
auto-segmentation of OARs in a cohort of lung cancer patients, where 
ES-NSCLC was treated with SBRT and LA-NSCLC with standard or 
moderately hypo-fractionated schedules. The correlation between 
geometrical metrics (Dice score coefficients and 95th percentile Haus-
dorff distances) and dose-volume histogram (DVH) values was investi-
gated, and any outliers were further examined. The impact of auto- 
segmentation on treatment plan acceptance based on clinical goals 
was also evaluated. 

2. Material and methods 

2.1. Patient data 

CT images and manual OAR delineations of the heart, lungs, left and 
right main bronchus, esophagus, spinal cord and trachea were retro-
spectively collected from 105 lung cancer patients with LA-NSCLC or 
peripherally located ES-NSCLC treated at our institution between 
February 2019 and March 2021. All patient data were processed and 
analyzed anonymously according to the guidelines of Ghent University 
Hospital’s Ethics Committee. Detailed patient characteristics can be 
found in Supplementary table S1. 

All OARs were manually delineated by two experienced dosimetrists 
and subsequently checked by an experienced radiation oncologist (RO). 
Manual segmentation of the lungs was performed using the automatic 
region growing tool in RayStation 6 (RaySearch Laboratories, Stock-
holm, Sweden) after which the dosimetrists manually corrected the 
contours. The gross target volumes (GTVs) of all patients were delin-
eated on a thoracic CT scan with a slice thickness of 2 mm by a RO. For 
ES-NSCLC the delineations were aided by the maximum intensity pro-
jection (MIP) scan, derived from the 4D-CT scan. For LA-NSCLC the 
delineation was supported using a contrast agent administered during 
CT-simulation. The clinical target volume (CTV, for LA-NSCLC), plan-
ning target volume (PTV) and any planning risk volumes (PRVs) were 
derived from the GTV and OARs according to in-house standardized 
protocols. 

Forty out of the 105 patients were used for CNN testing through 
geometrical analysis and for the subsequent dose-volume-based evalu-
ation. Twenty patients had an early-stage peripheral lesion (ES-group), 
while 20 patients suffered from locally advanced disease (LA-group). In 
the ES-group, all patients had T1a-T3N0 NSCLC except for one patient 
that had a stage IV NSCLC with oligoprogression on immunotherapy in 
the original primary tumor. All received 3 to 8 fractions with SBRT up to 
a dose of 60 Gy to the PTV-D95 using a 3D conformal treatment tech-
nique because of robustness. In the LA-group, all patients were treated 
with step-and-shoot intensity-modulated radiotherapy (IMRT). Half of 
them had concurrent chemo-radiotherapy and received between 30 and 
35 fractions of 2 Gy to the PTV-D50, while the other 10 patients received 
radiotherapy alone or sequentially to chemotherapy and were treated 
with hypofractionated radiotherapy (24 fractions of 2.75 Gy to the PTV- 
D50). 

All patients were treated on an Elekta Synergy Agility or Varian 
Clinac iX linear accelerator using 6 and/or 15 MV photons. Clinical goals 

in terms of dose-volume statistics were defined for each patient sepa-
rately by the RO, depending on the dose prescription and the location of 
the tumor. Six to 9 beams were used for each patient based on a standard 
9-beam template with the following gantry/collimator/table angles: 
155◦/0◦/0◦, 0◦/0◦/0◦, 205◦/0◦/0◦, 315◦/45◦/45◦, 30◦/45◦/45◦, 60◦/ 
45◦/45◦, 45◦/45◦/315◦, 330◦/315◦/45◦, 300◦/45◦/315◦, adjusted ac-
cording to the individual patient anatomy by an experienced 
dosimetrist. 

2.2. Convolutional neural network 

A CNN for auto-segmentation of OARs was developed using data 
from 55 patients (14 599 images) for training, 10 patients (2 705 im-
ages) for validation and 40 patients (10 615 images) for testing. The 
CNN was trained on individual CT images with a batch size of 8. 

Pre-processing of the training and validation data for the CNN was 
performed by generating organ masks based on the Digital Imaging and 
Communications in Medicine (DICOM) CT images and DICOM RT Struct 
files for each patient. Organ masks were created by activating the image 
voxels included within each contour for the OAR on each CT image slice. 
For the CT images, data normalization was performed through a linear 
projection of the HU from the [-1000, 3095] interval to [0, 1] [17]. Each 
image was cropped from 512x512 voxels to the most central 256x256 
voxels as all OARs were present in this region. This reduced the input 
into the CNN fourfold, speeding up the training process. The body 
outline was not always entirely present in the cropped images. Data 
augmentation was performed by rotation of the CT images over a range 
of [-5, 5] degrees and scaling over a factor [0.9, 1.1] [18]. Because the 
model was trained for 100 epochs, this effectively created 1 459 900 
different training images. 

A U-Net model [19] was trained on the High-Performance 
Computing Infrastructure at Ghent University using two 2.8 GHz 
cores, two 32 GB GPUs and 275 GB usable memory. Pre-trained encoder 
weights were used from ImageNet [20] as proven useful in previous 
similar studies [21]. The U-Net based model was provided by the python 
module “segmentation models” [22]. During training the following loss 
metric was used: 1–2(|X||Y|)/(|X|+|Y|), where |X| and |Y| represent the 
number of voxels within the manual and auto-segmented areas. To 
classify multiple OARs in a single CNN model, an averaged loss was used 
for training [23]. The input format of the CNN model was a 256x256x1 
matrix corresponding to the cropped CT image, while the output format 
was a 256x256x7 matrix containing the voxel-wise probability p̂ for 
each OAR (7 in total). A voxel was assigned to a certain OAR if p̂ ≥ 0.5. 

The geometrical performance of the CNN was assessed using both the 
Dice score coefficient (DSC) and the 95th percentile Hausdorff distance 
(HD95). DSC was defined as 2(|X||Y|)/(|X|+|Y|), while HD95 was 
defined as the 95th percentile of the ordered distance measures for the 
maximum distance to agreement between the manual and the automatic 
OAR. The correlation between DSC and HD95 was assessed by means of 
the Pearson correlation coefficient. 

Further details regarding the CNN model, in line with the Checklist 
for Artificial Intelligence in Medical Imaging (CLAIM) guidelines [24], 
can be found in Supplementary material. 

2.3. Dose-volume-based evaluation 

For each of the 40 patients in the test set, a new treatment plan was 
created based on the auto-segmented OARs without any further manual 
adjustments, while keeping the target volumes from the manual de-
lineations. Each new plan was optimized according to our standard 
clinical procedure, using the same beam setup and the same clinical 
goals as for the original plan but re-adapting the optimization objectives 
when necessary. Finally, each new plan was evaluated on both the auto- 
segmented (“auto”) and the manual OARs (“manual”). 

The dose-volume statistics listed in Table 1 were compared and ab-
solute dose-volume differences were calculated for each patient as 
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follows: |Dauto – Dmanual| or |Vauto – Vmanual|. 
A Wilcoxon rank sum test () was performed to assess the statistical 

significance of the dose-volume differences between the automatic and 
manual delineations. The Pearson correlation coefficient was also 
calculated for the dose-volume differences between both contour sets, as 
well as between each geometrical metric (DSC and HD95) and the dose 
difference. 

3. Results 

On average, the highest DSC (0.98 ± 0.01) and lowest HD95 (6.9 ±
21.8 mm) were found for the lungs, while the lowest DSC (0.72 ± 0.15) 

was found for the esophagus and the largest HD95 (29.6 ± 29.6 mm) for 
the spinal cord (Table 2 and Supplementary table S3). The mean Pearson 
correlation coefficient between DSC and HD95 over all OARs was –0.35, 
with the highest correlation found for the lungs (-0.51) and the lowest 
for the heart (0.09). The similarity of the DSC values for different 
thresholds of p̂ indicated the robustness of the CNN model for threshold 
variations (Supplementary table S2). 

Bland-Altman plots for the absolute dose-volume differences are 
shown in Figs. 2 and 3. The largest absolute difference was noted for ES – 
main right bronchus D2 (15.09 Gy), while the smallest absolute differ-
ence could be seen for the mean lung dose (ES) (0.01 Gy). The only 
statistically significant differences were observed in the ES group for the 
lungs Dmean (p = 0.001) and V20 (p = 0.019) (Table 1). However, as the 
absolute differences were very low (<0.3 Gy and 0.61 %) this was not 
clinically relevant. Apart from the mean dose to the esophagus in the ES 
group, all Pearson correlation coefficients between the manual and 
automatic contour-based dose-volume statistics were higher than 0.9. 
The lower value for the mean esophagus dose (0.775) was due to an 
extreme outlier (-3.77 Gy) (Fig. 2d). After visual inspection of the 3D 
dose distribution in the treatment planning system, all outliers were 
found to be related to delineation differences within high dose gradient 
regions and/or passing an entry or exit beam (see Fig. 4). 

The Pearson correlation coefficient between HD95 and the absolute 
dose differences varied between 0.004 (ES, esophagus D2) and 0.69 (LA, 
esophagus D2), the average correlation coefficient over all OARs was 
0.19 ± 0.22 for the LA group and 0.07 ± 0.25 for the ES group. The 
average correlation coefficient between the DSC and the absolute dose- 
volume difference was –0.09 ± 0.22 for the LA group and –0.27 ± 0.18 
for the ES group. 

All clinical goals continued to be achieved for the new treatment 
plans when evaluating the dose distributions on the manually 
segmented OARs. 

4. Discussion 

To assess the dose-volume impact of auto-segmentation of OARs for 

Table 1 
Pearson correlation coefficients and Wilcoxon rank sum test p-values for the 
difference in dose-volume statistics between the auto-segmented and manually 
delineated OARs for each patient group. Statistically significant differences (p <
0.05) are written in bold and marked with an *. D2 corresponds to the dose that 
the OAR receives on 2 % of its volume and V20 and V5 correspond to the per-
centage volume of the organ receiving at least 20 Gy and 5 Gy, respectively. 
Dmean corresponds to the mean dose.  

OAR Dose-volume 
statistic 

Early-stage Locally advanced 

P- 
value 

Pearson P- 
value 

Pearson 

Lungs Dmean 0.001* 0.999 0.509 0.999  
V20 0.019* 0.998 0.944 0.999  
V5 0.254 0.998 0.529 1.000 

Heart Dmean 0.865 0.977 0.529 0.969  
D2 0.689 0.966 0.503 0.913 

Esophagus Dmean 0.889 0.775 0.682 0.986  
D2 0.313 0.994 0.857 0.990 

Main left 
bronchus 

D2 0.749 0.987 0.453 0.995 

Main right 
bronchus 

D2 0.575 0.932 0.412 0.998 

Spinal cord D2 0.267 0.998 0.857 0.999 
Trachea D2 1.000 0.998 0.944 0.990  

Table 2 
OAR volume and Dice score coefficients between the manual and automatic contours and a summary of average Dice score coefficients for automatic segmentation 
methods (including CNN methods) of thoracic OARs found in literature. If multiple values are reported in a single reference, they are mentioned between square 
brackets.  

OAR Volume of the manual 
delineation (mean ± 1 SD) 
[cm3] 

Volume of the automatic 
delineation (mean ± 1 SD) 
[cm3] 

Average DSC 
± 1 SD 

Average DSC from previous 
studies on auto-segmentation 

Average DSC from previous studies 
on inter-observer variability 

Lungs 3780 ± 1004 3708 ± 1000 0.98 ± 0.01 0.97 [40] 0.97 [26] 
0.95 [39] [0.98,0.97] [38] 
0.99 [43] 0.95 [39] 
0.97 [16] 0.98 [44] 

Trachea 36 ± 13 36 ± 12 0.84 ± 0.06 0.93 [23] 0.97 [26] 
0.91 [42] 

Esophagus 46 ± 40 31 ± 9 0.72 ± 0.15 0.73 [40] 0.64 [26] 
0.86 [23] [0.77,0.76] [38] 
0.64 [39] 0.83 [39] 
0.82 [43]  
0.75 [16]  

Heart 691 ± 150 694 ± 142 0.91 ± 0.06 0.85 [40] 0.92 [26] 
0.94 [23] [0.86,0.87] [38] 
[0.87,0.88] [41] 0.94 [39] 
0.91 [39] 0.91 [44] 
0.94 [43]  
0.87 [16]  

Spinal cord 56 ± 11 51 ± 9 0.80 ± 0.06 0.88 [40] 0.74 [26] 
[0.69,0.81] [41] [0.70,0.80] [43] 
0.76 [39] [0.81, 0.76] [38] 
0.90 [16] 0.80 [39]  

0.81 [44] 
Main left 

bronchus 
9 ± 4 8 ± 4 0.75 ± 0.08   

Main right 
bronchus 

10 ± 4 9 ± 3 0.78 ± 0.05    
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lung cancer patients, a U-Net CNN model was trained and new treatment 
plans were generated based on the automatic contours. DSC and HD95 
were calculated for geometrical analysis, while the dose-volume impact 
was evaluated by comparing dose-volume differences. Overall, dose- 
volume differences were small but poor correlation was observed with 
the geometrical metrics. Visual inspection of the outliers revealed dif-
ferences between both contour sets in regions with a high dose gradient 

i.e., close to the tumor or at entry or exit beams. 
With regard to the geometrical analysis, the CNN model was very 

consistent for the lungs (Fig. 1). The other OARs showed decreasing DSC 
in the following order: heart, trachea, spinal cord, main right bronchus, 
main left bronchus and esophagus (Table 2). The location of the heart in 
the human body influences the position and shape of the left bronchus, 
therefore making the left bronchus more complex and somewhat less 

Fig. 1. Boxplots of (a) DSC and (b) HD 95 between the manual and automatic CNN delineations. The horizontal line is the median value, the triangle is the mean 
value, the borders of the box are the 1st and 3rd quartiles. The whiskers are the lowest and highest value within 1.5 times the interquartile range measured from the 
lower, respectively upper quartile. Datapoints outside the range of the whiskers were defined as outliers. For better visualization one outlier of the right bronchus 
(HD95 = 248.5 mm) was taken out. 
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consistent over all patients than the right one. The esophagus showed 
the least contrast with the surrounding tissues on CT images and varied 
substantially in shape and location, making it harder to train a model for 
this OAR. The DSC results from the present study were in line with the 
available literature on auto-segmentation of OARs for lung cancer as 

well as published data on inter-observer variability (Table 2). 
The ascending order of OARs for HD95 (Table S3) differed slightly 

from the DSC results. The largest values were observed for the spinal 
cord due to differences in the length of the contour (number of con-
toured CT images). All outliers in terms of HD95 were due to either a 

Fig. 2. Absolute difference in dose values between the automatic and manual OAR (on the Y-axis) against the average of the dose between the automatic and manual 
delineation (on the X-axis). Each data point represents a patient from the test set (n = 40). The empty grey circles correspond to LA tumors and the full black discs and 
triangles to ES tumors. The triangles refer to patients with a right-sided tumor while the dots refer to patients with a left-sided tumor. The median (full line), the mean 
(dash-dotted line) and the mean ± 2 SD (dashed lines) of the absolute difference are indicated on each graph (LA = grey; ES = black). Any datapoints outside of the 2 
SD limits were considered as outliers. 
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misdelineation by the CNN of a small fragment far away from the 
anatomic location of the OAR, or due to a delineation extending above 
and/or below the manual delineation. This could be solved by fast, 
(semi-)automatic post-processing of the auto-segmented OARs. The 

HD95 results from the present study were not as good as the available 
literature, as we did not post-process the automatic contours (Table S3). 

Looking at individual patients, the model made a few non-physical 
predictions such as “missing” slices (i.e., CT images without a 

Fig. 3. (a-d) Absolute difference in dose values between the automatic and manual OAR (on the Y-axis) against the average of the dose between the automatic and 
manual delineation (on the X-axis). (e,f) Absolute difference in volume values between the automatic and manual OAR (on the Y-axis) against the average of the 
volume between the automatic and manual delineation (on the X-axis). Each data point represents a patient from the test set (n = 40). The empty grey circles 
correspond to LA tumors and the full black discs and triangles to ES tumors. The triangles refer to patients with a right-sided tumor while the dots refer to patients 
with a left-sided tumor. The median (full line), the mean (dash-dotted line) and the mean ± 2 SD (dashed lines) of the absolute difference are indicated on each graph 
(LA = grey; ES = black). Any data points outside of the 2 SD limits were considered as outliers. 
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predicted contour) for the spinal cord or abrupt transitions from heart to 
non-heart slices. A 3D CNN model that considers the CT image slice 
above and below each segmented slice might learn to avoid such aber-
rations [25]. 

Manual delineations, although performed by experts, are not 
necessarily perfect nor consistent between clinicians [26]. This affected 
the training as well as the achievable evaluation accuracy of the model. 
It is advisable to have a diverse set of manual delineations for CNN 
training, to account for the inter-observer variability. Common 

international guidelines on OAR delineation for lung cancer may help to 
lower the inter-observer variability and to create better and larger data 
sets for deep learning [27]. 

Although geometrical differences between automatic and manual 
contours occur for all auto-segmentation methods, the impact on treat-
ment plan evaluation has not been widely investigated yet. Dose- 
volume-based evaluations have been performed for inter-observer 
variability [28,29] and automated planning [30,31], while the impact 
of contouring variations on treatment planning for lung cancer has been 

Fig. 4. Example of a transverse CT image slice through the isocenter for a LA-NSCLC patient. (a) Comparison between manual (dotted lines) and auto-segmented 
OARs (full lines). (b) Dose distribution of the new treatment plan created based on the auto-segmented OARs (66 Gy in 33 fractions prescribed to the PTV-D50). GTV: 
red; CTV: pink; PTV: dark blue; trachea: green; spinal cord: yellow; lungs: light blue. 
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investigated by Vaassen et al. [10] and Dong et al. [16]. In the present 
study, dose-volume differences between the automatic and manual 
contours were compared and individual outlier inspection was per-
formed for both LA-NSCLC and ES-NSCLC. These outliers were also 
compared to the outliers of the geometrical results (DSC and HD95), but 
no correlation was observed. 

The mean dose difference for all OARs was <1.2 Gy in both groups, 
while the mean volume difference was <1 %. These results are in line 
with the available literature: Vaassen et al. [10] found average dose- 
volume differences <1 Gy/1%, whereas the mean dose results of Dong 
et al [16] were <1.5 Gy. For different tumor locations, similar studies 
have reported mean dose differences <2.2 Gy [32] and <1 Gy/ 1 % [33]. 
None of these studies included the bronchi nor the trachea. 

Overall, larger dose-volume differences were observed for OARs 
within a region with a high dose gradient, rather than when the delin-
eation was less accurate. For example, the dose-volume results were the 
best for the mean heart dose for right-sided tumors (<1.76 Gy) in the ES- 
group (triangles in Fig. 2e). This corresponds to the cases where the 
tumor is the furthest away from the heart. The spinal cord was always in 
a region with a low dose gradient, while for the lungs the geometrical 
accuracy was high. Moreover, (near-)maximum dose values are more 
sensitive to delineation differences than e.g., mean dose values, as was 
also observed by Vaassen et al. [10]. 

On the other hand, for centrally located lung tumors the mediastinal 
organs such as the esophagus and the heart are generally located at 
important dose gradients and any misdelineation might lead to a 
wrongful dose to organ assessment. Moreover, for these tumors it has 
been shown that increased dose and related toxicity have a major impact 
on outcome [34]. Similarly, the LungTECH [35] and HILUS [36] trials 
on SBRT for centrally located ES-NSCLC have emphasized how critical 
the dose to the main bronchi is. Increasing attention is also being paid to 
cardiac toxicity. 

As a limitation, no centrally located ES-NSCLC patients were repre-
sented in the current study. For such patients the tumor would be much 
closer to the heart and the esophagus, resulting in a potentially larger 
dose-volume impact. Including more patients could further improve the 
CNN model and allow for more robust clinical evaluations. Moreover, 
the clinical impact of dose-volume differences also depends on the 
fraction size, and it is well-recognized that errors in dose calculation and 
dose delivery are less forgiving in SBRT than in more protracted 
schedules [37]. As such, another limitation of the present study was that 
the effect of the observed dose differences on tumor response and 
normal tissue toxicity could not be investigated from a radiobiological 
perspective. 

In conclusion, DSC and HD95 did not correlate with the observed 
dose-volume differences. Based on our observations, we recommend the 
following practical guidelines. All auto-segmentation contours should 
first be post-processed to insert missing slices and remove erroneous 
small fragments. This can be done quickly using standard tools available 
in the treatment planning system. Next, only the OARs for the most 
relevant dose-volume parameters should be critically assessed and 
manually adjusted, and only when they are situated close to the tumor or 
within an entry or exit beam. For the present study, this included the 
heart and the esophagus for LA-NSCLC and the bronchi for ES-NSCLC. 
Due to the performance of the CNN, no adaptation to the lungs is 
needed. Overall, most of the encountered dose-volume differences 
during the dose-volume-based evaluation were small and not clinically 
relevant. In the future, the need for manual corrections of auto- 
segmented structures could be further identified depending on the 
tumor stage and location as well as a combination of different metrics to 
better translate the geometric inaccuracies into the actual dose-volume 
and clinical impact. 
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[37] Fowler JF, Tomé WA, Fenwick JD, Mehta MP. A challenge to traditional radiation 
oncology. Int J Radiat Oncol Biol 2004;60:1241–56. https://doi.org/10.1016/j. 
ijrobp.2004.07.691. 

[38] Cui Y, Chen W, Kong FM, Olsen LA, Beatty RE, Maxim PG, et al. Contouring 
variations and the role of atlas in non-small cell lung cancer radiation therapy: 
Analysis of a multi-institutional preclinical trial planning study. Pract Radiat Oncol 
2015;5:e67–75. https://doi.org/10.1016/j.prro.2014.05.005. 

[39] Zhu J, Zhang J, Qiu B, Liu Y, Liu X, Chen L. Comparison of the automatic 
segmentation of multiple organs at risk in ct images of lung cancer between deep 
convolutional neural network-based and atlas-based techniques. Acta Oncol 2019; 
58:257–64. https://doi.org/10.1080/0284186X.2018.1529421. 

[40] Lei Y, Liu Y, Dong X, Tian S, Wang T, Jiang X, et al. Automatic multi-organ 
segmentation in thorax CT images using U-Net-GAN. Proceedings of SPIE 10950, 
Med Imaging. 2019: Computer-Aided Diagnosis; 2019 Mar 13, San Diego, Cal, 
USA. SPIE, 2019;10950:262–7. doi: 10.1117/12.2512552. 

[41] Fellin F, Amichetti M, La Macchia M, Cia,chetti M, Gianolini S, Paola V, et al. 
Systematic evaluation of three different commercial software solutions for 
automatic segmentation for adaptive therapy in head-and-neck, prostate and 
pleural cancer. Radiat Oncol 2012. https://doi.org/10.1186/1748-717X-7-160. 

[42] van Harten LD, Noothout JMH, Verhoeff JJC, Wolterink JM, Išgum I. Automatic 
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