
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO. , MAY 2021 1

Optimal energy-aware task scheduling for
batteryless IoT devices

Carmen Delgado1,2 and Jeroen Famaey1

1IDLab, University of Antwerp - imec, Antwerp, Belgium
2i2CAT Foundation, Barcelona, Spain

Abstract—Today’s IoT devices rely on batteries, which offer stable energy storage but contain harmful chemicals. Having billions of IoT
devices powered by batteries is not sustainable for the future. As an alternative, batteryless devices run on long-lived capacitors
charged using energy harvesters. The small energy storage capacity of capacitors results in intermittent on-off behaviour. Traditional
computing schedulers can not handle this intermittency, and in this paper we propose a first step towards an energy-aware task
scheduler for constrained batteryless devices. We present a new energy-aware task scheduling algorithm that is able to optimally
schedule application tasks to avoid power failures, and that will allow us to provide insights on the optimal look-ahead time for energy
prediction. Our insights can be used as a basis for practical energy-aware scheduling and energy availability prediction algorithms. We
formulate the scheduling problem as a Mixed Integer Linear Program. We evaluate its performance improvement when comparing it
with state-of-the-art schedulers for batteryless IoT devices. Our results show that making the task scheduler energy aware avoids
power failures and allows more tasks to successfully execute. Moreover, we conclude that a relatively short look-ahead energy
prediction time of 8 future task executions is enough to achieve optimality.

Index Terms—Internet of Things (IoT); batteryless IoT devices; task scheduler; energy-aware; low-power wide-area networks
(LPWAN); energy harvesting; optimization; Mixed Integer Linear Programming (MILP)

F

1 INTRODUCTION

THE Internet of Things (IoT), where tens of billions
of interconnected devices communicate and cooperate

with each other over the Internet, is getting more and more
attention nowadays. This is due to many reasons, but the
most important ones are that these devices aim at support-
ing and improving daily life, they are cheap, and they are
easy to use. Normally, these devices are equipped with a
battery, a radio chip, a microcontroller unit (MCU) and one
or more sensors and/or actuators. With the advancements
in low-power and miniature electronics and in low power
radio technologies, there has been a clear increase of IoT
applications covering a wide range of application areas [1],
such as home automation, wearable devices and industrial
or agricultural monitoring.

However, since their inception, batteries have been one
of the main drivers of these IoT devices. But batteries are not
only incompatible with a sustainable IoT since they contain
harmful chemicals [2], they are also sensitive to tempera-
ture changes, dangerous when not carefully protected, and
short-lived, requiring costly maintenance and replacement
every few years at best. Although rechargeable batteries in
combination with energy harvesters can somehow offset this
problem, they still suffer from capacity degradation due
to frequent charge-discharge cycles, as well limiting their
lifetime to a few years. This results in millions upon millions
of discarded IoT batteries every year, filled with dangerous
chemicals that significantly affect our environment and ecol-
ogy. Moreover, batteries are susceptible to current peaks,
which makes them degrade faster. Sadly, IoT devices often

Corresponding author: carmen.delgado@i2cat.net

suffer from such peaks, due to the fact they spend most of
their time in a low-power (sleep) state. When they wake
up to transmit or receive data, their power consumption
jumps up many orders of magnitude, resulting in short-
lived current peaks. To address all these IoT-related battery
problems, researchers have recently started investigating
batteryless IoT devices and networks [3].

These batteryless devices run on small but long-lived
capacitors for energy storage, charged using various forms
of energy harvesting (e.g., thermal, solar, vibration), which
make them more environmentally friendly, cheaper to main-
tain, easy to recycle and more resistant to temperature
variations and charge-discharge degradation. This makes
them especially suitable for applications in hard-to-reach
locations (e.g., intra-body health monitoring, remote-area
sensing) and large-scale deployments (e.g., dense building
automation networks, smart cities). However, the combina-
tion of small energy storage capacities and stochastic energy
harvesting behaviour causes batteryless devices to intermit-
tently turn on and off due to frequent power failures (c.f
Figure 1). This results in a power failure when the capacitor
voltage drops below the turn-off threshold. When the device
harvests enough energy, it will turn on again when the turn-
on voltage threshold is reached.

Such intermittency challenges the fundamental assump-
tion that devices can operate uninterrupted to perform their
tasks, and requires rethinking computing, communications
and networking paradigms. In this paper we focus on
the computing part, where we present an optimal energy-
aware task scheduling algorithm for batteryless devices.
We propose a Mixed Integer Linear Programming (MILP)

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. https://doi.org/10.1109/TETC.2021.3086144

https://doi.org/10.1109/TETC.2021.3086144

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO. , MAY 2021 2

Turn-on threshold

Turn-off threshold
ONOFF

Time

Vo
lta
ge

Maximum capacity

Fig. 1: Batteryless device intermittent behaviour

optimization framework which intelligently decides when
to execute which task, according to the energy harvested
and stored, energy consumed by the tasks and their pri-
ority. We follow the same approach as in [4], where the
programmer decomposes the application into a collection
of interconnected atomic tasks. The runtime keeps track of
the active task, re-executing it after a power failure, and
keeping its output in non-volatile (i.e., permanent) memory
after successful completion for use as input to other tasks.
However, our approach is able to avoid power failures,
improving the overall performance of the scheduler. The
proposed optimal algorithm not only shows the potential
maximum performance improvement that can be achieved
with energy-aware scheduling compared to non-energy-
aware scheduling, but it also offers insights in the look-
ahead window in terms of predicting the future available
energy that is needed to achieve such a gain. This means
that thanks to our approach, designers will be able to
define their energy harvesting prediction windows, as well
as expected tasks to be executed. Although the presented
MILP formulation cannot be directly solved in real-time on a
batteryless IoT device, the proposed scheduling formulation
and obtained insights can be used as a basis for the design
of fast heuristic scheduling algorithms that can be executed
in real-time on batteryless devices.

The remainder of this paper is organized as follows.
Section 2 provides an overview of the related work in the
field of batteryless computing and tasks schedulers. Sec-
tion 3 describes the proposed system model. In Section 4, we
introduce our optimization framework. The evaluation of
the optimal task scheduling is provided in Section 5. Finally,
conclusions and future work are discussed in Section 6.

2 RELATED WORK

The batteryless vision requires computing mechanisms to
deal with this intermittent behaviour. Traditional sequen-
tial computing models and programming languages cannot
handle such abrupt intermittent behavior, as they assume
uninterrupted execution of programming instructions and
rely on volatile memory to keep application execution
progress. Different computing models and schedulers to
overcome the intermittent execution in batteryless devices
have already been proposed. In their recent work, Sandhu
et al. survey existing task scheduling schemes for energy
harvesting IoT, which aim at ensuring optimal utilization of
harvested energy to extend system lifetime as well to pro-
vide highest activity detection/monitoring performance [5].
They analyze the three major strategies employed: Dynamic
Voltage and Frequency Scaling (DVFS), decomposing and
combining of tasks and duty cycling. First, DVFS adjusts

the voltage level and the frequency to power the active
hardware module. Second, large tasks can be decomposed
into smaller atomic subtasks. Finally, duty cycling is an-
other task scheduling mechanism that allows controlling
the consumed energy by the nodes when they are not per-
forming any useful operation. DVFS algorithms are difficult
to implement on these energy-constrained sensor nodes,
due to the stringent requirement of complex circuitry that
provides various voltage levels for different components of
the node [5]. For this reason, in this work we propose a new
optimization algorithm that uses the other two strategies:
we divide tasks into atomic subtasks and we also use duty
cycling in order to let the device intelligently sleep in order
to harvest more energy that will benefit the execution of
future tasks.

The two main computing strategies are checkpointing-
and task-based models, where these last ones are based
on the task decomposing strategy described above. While
checkpointing-based models such as Mementos [6] and
Clank [7] are not scalable due to the time and energy
cost to create checkpoints, which increases with the size of
the volatile memory, task-based models are more suitable
for batteryless devices. As mentioned before, these models
divide the program into different atomic subtasks. The
output of a task is stored in non-volatile memory when it
successfully completes. To reduce the overhead, task-based
models have been proposed, dividing the program into
different atomic subtasks. The output of a task is stored in
non-volatile memory when it successfully completes. Other
approaches considering non-volatile processors, that not
only integrate non-volatile memories but also non-volatile
registers and flip-flops, have been proposed [8]. However,
the cost in terms of hardware (increased power consump-
tion, increased area, and decreased frequency) results in
significant software slowdowns and complexity overhead.

Alpaca [9], Mayfly [10] and InK [4] are the most relevant
state-of-the-art task-based computing models and sched-
ulers. The first two only consider static task flows, and if
any task cannot be completed due to the energy level at that
time, it will be executed again. However, if a specific task is
not able to be completed or if the energy conditions of the
capacitor or energy harvester change, any other tasks will
starve, waiting for the current one to be tried over and over
again. To overcome this problem, InK [4] considers a dy-
namic scheduler based on priorities and event-triggers (e.g.,
timers, energy level triggers, sensor value triggers), which
are defined in advance by the programmer. This allows
the application to adapt to changes in available energy and
variations in sensing behavior. However, it places the entire
burden of adapting the application logic and task selection
on the programmer. This requires them to have in-depth
knowledge on the energy consumption of tasks, as well as
the energy life-cycle of the device, which is generally not
known before deployment of the device. If the device does
not know how much energy will be available in the future,
it can spend energy on a task or chain of tasks without
knowing if it will have enough energy for completing it
before the deadline. If the harvested energy is insufficient,
tasks will not be completed, and energy and time will be
wasted. To overcome this issue, and fully automate the
problem of task selection, in this paper we propose an

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO. , MAY 2021 3

energy-aware task scheduler. We consider the task chains’
priorities and deadlines, but also the available energy of
the device, the energy cost of the tasks and the (predicted)
energy harvesting budget, to decide which task should be
completed first, making it more intelligent and resource-
efficient. Although Mayfly [11] and InK [4] consider dead-
lines and data freshness in the form of expiration timers,
they do not consider deadlines across the different tasks
of a chain. AsTAR [12] also presents an energy-aware task
scheduler and an associated reference platform that aims
to lower the burden of developing sustainable applications
through self-adaptative task scheduling. It does not need
any pre-configuration and supports platform heterogeneity.
However, it does not consider different types of application
requirements nor different priorities in their design. More
recently, Islam et al. [13] have proposed two scheduling
algorithms for batteryless devices where the energy of the
capacitor and the deadline of the tasks are taken into ac-
count. However, they assume that the capacitor follows a
linear charging behaviour, harvesting and computing are
exclusive and applications have all the same priority. In
our work, we follow a different approach, where we use
an exponential capacitor charging model, and we let the
harvester and the device to work simultaneously. We also
define different task priorities, to allow more power hungry
tasks to be executed if they are more beneficial for the
specific use case.

Other scheduling algorithms have also been proposed.
Caruso et al. proposed a dynamic programming algorithm
for the optimization of the scheduling of the tasks in IoT
devices that harvest energy by means of a solar panel [14].
They used estimations of the solar energy that is produced
in each slot of time to compute the optimal scheduling in
advance. SolarCore [15] also presents a solution for solar
energy harvesting. It includes a power management scheme
to optimize the power obtained from a solar panel thanks
to the maximal power provisioning control and workload
optimization. However, in our work we present a more
generic task scheduling solution that does not rely on any
specific energy source and whose main constraint is the en-
ergy scarcity available in the capacitor. A simple scheduler
model that does not consider different tasks, nor a harvest-
ing source is proposed in [16], where authors explain the
importance of taking into account the energy consumption
of the memory for backing up and restoring the data to
and from non-volatile memory when a power failure occurs.
They claim that expending energy on instructions whose
output is not saved before a power outage is wasteful.
The authors in [17] present the modified earliest deadline
first (MEDF) algorithm based on super capacitors and en-
ergy harvesting that takes into account energy and time
constraints of the tasks. However, in their algorithm they
do not avoid energy violations (when the voltage of the
capacitor falls below the turn-off threshold), but only count
how many occur. Counting how many energy violations
happen without avoiding them or considering the device
needs to turn-off is not realistic and something we address
in this paper. Furthermore, they assume the tasks to be
independent and nonpreemptable, while we not only avoid
power failures but also consider tasks dependency in our
work.

A more practical scheduling algorithm has been pre-
sented in [18], where the authors optimally set the overall
node power consumption based on the utility, and on the
energy required by tasks. It is implemented on an Arduino
node, equipped with a small (portable) solar panel, and
attached to a small wind turbine. In [19], Srbinovski et al.
present an energy aware adaptative sampling algorithm,
where the node manages its activity in the network ac-
cording to its energy levels. However, the user needs to
define the critical battery level at which it becomes energy
conservative by reducing the sampling rate. This is the
same approach followed by AsTAR [12]. In a more general
scenario where a server farm needs to be optimized, Blink
[20] proposes to frequently adjust the servers’ duty cycle (to
turn on and off the servers) to adapt to power variations,
while maintaining a certain synchronization between them
when needed. And in [21] an energy-aware scheduling
algorithm that is able to configure the hardware of a Field-
Programmable Gate Array (FPGA) based on the weather
forecast solar energy available is proposed. However, we
look at the optimal scheduling of application tasks on a
constrained IoT device without batteries, which is a problem
with significantly different constraints and requirements.

Although ILP-based approaches have already been pro-
posed, they are not intended to work for batteryless devices.
In fact, [22] presented an ILP approach to be used with
multiprocessor partitioned scheduling and assume that any
task may be interrupted at any instant in time, and its
execution resumed later with no cost or penalty, which
might not be realistic in batteryless devices. The same as-
sumption is also used in [23], where the authors present
an optimal scheduling algorithm for rechargeable batteries
or supercapacitors, although their energy model is very
simplistic. In [24] a task scheduling algorithm for Simultane-
ous Wireless Information and Power Transfer (SWIPT) IoT
devices is proposed, where only one device can be charged
at a time. As we target environmental sources (e.g., solar), all
devices could be charged at the same time. Although in their
evaluation they use a rechargeable battery and a capacitor
as storage elements, they consider that both follow a linear
charging behaviour. We have also presented an energy-
aware algorithm for batteryless LoRaWAN devices using
energy harvesting, where we evaluate the performance of
these constrained devices when allowing sleeping between
tasks or letting them turn off [25]. We showed that sleeping
between tasks normally performs better, and for this reason,
in this work we present a more generic task scheduler where
we follow this approach. Finally, in order to reduce energy
consumption, task offloading could be used, as authors in
[26] have used in smart mobile devices. The task offload-
ing could be combined with our scheduling algorithm for
constrained batteryless IoT devices where, according to the
available energy, the scheduler should decide whether to
transmit data towards the edge cloud where computing
should take place rather than performing computations on
the device itself.

3 SYSTEM MODEL

In this section we give a brief overview of the considered
batteryless IoT device model (more details are provided in

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO. , MAY 2021 4

I rh
C

V0
RL-

+

-

v(t)

Harvester Capacitor Load: CPU, radio…

+

vC(t)

Fig. 2: Electrical circuit model of a batteryless IoT device
using a current source energy harvester

our previous work [27]) and how the energy-aware task
scheduler for these batteryless devices works.

3.1 Batteryless model
Batteryless IoT devices are equipped with a harvester mech-
anism, a capacitor, an MCU, a radio unit and the needed
peripherals. In order to model the behaviour of these de-
vices, we have considered the electrical circuit presented in
[27] and shown in Figure 2, where the circuit is divided into
three main parts: the harvester (source of the energy), the
capacitor (storage of the energy) and the load (consumer of
the energy: MCU, radio, peripherals).

We have considered a generic and simplified approach,
where only the generated power is taken into account. Since
photovoltaic cells are modeled as current harvester sources
[28], we have considered the current source model presented
in [27], where the harvester is modeled as an ideal current
source composed by a real current source in parallel with an
internal resistance (denoted by I and rh, respectively). The
parallel resistance rh (in Ω) limits the power of the harvester
and its value is calculated using the following equation:

rh =
V 2
max

Pharvester
(1)

where Pharvester is the power of the harvester source, which
can vary greatly depending on the type of energy harvesting
considered (e.g., up to 1mW/cm2 for indoor natural light,
and up to 100mW/cm2 for outdoor sun) [29], and Vmax

(in Volts) is the maximum voltage supported by the circuit
elements, which is determined by the load. And the value
of the current I (in Amperes) can be calculated as follows:

I =
Vmax

rh
(2)

The capacitor is the part of the circuit where the energy
is stored. As shown in Figure 1, the behaviour of the system
is a succession of intervals, where the capacitor is being
charged or discharged. Each interval is characterized by a
specific state of the load components (e.g., MCU is active
and radio is transmitting). We characterize the voltage of
the capacitor throughout each interval using V0 and vC(t).
V0 represents the initial voltage of the capacitor at the
beginning of the interval (i.e., time t0), and vC(t) is the
temporal evolution of said voltage at time t (relative to
t0). Both V0 and vC(t) are included in the circuit as an
ideal voltage source and the voltage over time of an ideal
capacitor respectively, as shown in Figure 2.

The load of the model corresponds to the set of compo-
nents that consume the stored energy in the capacitor per
task being executed, such as the MCU, radio or sensors.
Each of these components is characterized by a specific
power consumption in each of its states (e.g., active, sleep-
ing, off). Therefore, they can be modeled as a load resistance
denoted by RL (in Ω), which can be calculated as follows:

RL =
E

Iload
(3)

where E and Iload can be defined either theoretically or
empirically. Theoretically, E is the operating voltage of
the circuit elements, which is given in the datasheet, and
Iload is the sum current consumption of all components for
the specific task to be executed, which can also be found
in the corresponding datasheets. In order to calculate it
empirically, E is the corresponding voltage value at which
the device is being powered while Iload is the current
consumption measured per each task. RL thus varies across
different tasks depending on the state of each component
(i.e., radio, MCU, or sensors) during that specific task. Please
note that Iload is renamed as ej to be consistent with the
scheduler formulation in the energy-aware task scheduler
in Section 4.

To determine if the device has enough energy at a
specific time t to perform its tasks (e.g., transmit data), it is
needed to calculate the voltage across the load of the model
v(t):

v(t) = IReq(1− e(
−t

ReqC)
) + V0e

(−t
ReqC) (4)

where C is the capacitance in Farads, t is the time (in
seconds) spent in the current task, and Req is the equivalent
resistance of the circuit (in Ω), computed as:

Req =
RLrh
RL + rh

(5)

The value of v(t) provides the voltage available in the
load, which will be used to determine if a specific task
(e.g., transmit, listen, sense) can be performed during an
interval, according to the needed time t it will take, the
energy harvesting rate Pharvester, the specific load Iload,
and the capacitor voltage V0 at the start of the execution
of such tasks. Note that v(t) can be increasing or decreasing
depending of the specific parameters, and if it goes below
the turn-off threshold, the device (which is represented as
the load in Figure 2) will turn off.

3.2 Energy-aware task scheduling concept
As mention in Section 2, in this work we propose a new
optimization framework that uses two approaches: we first
divide tasks into atomic subtasks and second, we use duty
cycling, meaning that we let the device sleep to replenish
energy when there are no tasks to be executed or if there is
not enough energy, so it will harvest more energy benefiting
the successful completion of future tasks.

The state-of-the-art schedulers introduced in Section 2,
often do not consider the energy in their algorithms, while
we argue in batteryless devices, energy is the main concern.
In Figure 3 we show the comparison of the behavior of the
state-of-the-art approach and our energy-aware approach.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO. , MAY 2021 5

Energy-
unaware

Energy-
aware

Sense Process Transmit

de
ad
lin
e

Retransmit

Turn-on threshold

Turn-off threshold Time

Vo
lta
ge

Maximum capacity

OFF ON OFF ON
OFF ON

Sense Process Transmit

Fig. 3: Energy-unaware vs energy-aware task schedulers in
batteryless devices

In this example, the temperature update application is com-
posed of three tasks: sense, process and transmit. As can be
seen, it first performs the sensing task, which corresponds
to take measurements from the environment, for example,
reading the temperature. Then, the data is processed and
transmitted to the central controller in the following two
tasks, completing the task chain for this event. However,
existing task schedulers for intermittent computing select
the next task to execute based on simple priority rules
[4], leading to potential deadlocks or wasting of the scarce
available energy on task chains that cannot be completed on
time anyway.

As also reflected in Figure 3, we are targeting applica-
tions and tasks with deadlines, since for example, data fresh-
ness is important in monitoring applications (e.g., sending
a heart rate measurement of several minutes old might
be useless). So we consider a device trying to complete
a task chain within a deadline. If it is energy-unaware
(depicted in grey), it will try to complete every task one after
another. However, when it tries to transmit the data in the
example, there is not enough energy to complete this task,
and a power failure occurs. In this case, the device needs to
harvest additional energy before it reaches its voltage turn-
on threshold and is able to retransmit the data. However,
by the time this happens, the deadline is missed (depicted
by the red line), which means that the data is not ”fresh”
anymore, and useless to the backend application that uses it.

To solve this problem, our energy-aware scheduler in-
stead decides to wait till enough energy is available to be
able to transmit the data before the deadline. In order to do
so, in this work we are assuming we have knowledge of the
energy consumption of the tasks and the energy that is being
harvested over a certain look-ahead time window. The first
assumption is easy to fulfill since we can either use the data
sheet consumption values of the reference platforms used
or by measuring it before device deployment. Moreover, we
can assume we have the knowledge of the future energy
that can be harvested for some predictable and controllable
sources such as RF or indoor light [30].

The proposed energy-aware task scheduler will deter-
mine which task should be executed and when, according
not only to the three main batteryless components: the
energy available in the capacitor, the energy that is being

Task1 Task2

Task3
Task5

Task6

Task4

Condition?

Periodicity

True

Fig. 4: General overview of the atomic tasks model

harvested, and the the energy consumption of the device
performing the tasks; but also the tasks requirements (ar-
rival time, execution time, priority, deadline and order of
the tasks). The main goal of the energy-aware scheduler is
to execute the maximum number of tasks, prioritizing its
priority status. The most common types of tasks on the IoT
node include sampling of information, processing the data,
data transmission, data reception or the use of the actuators.

We consider a task as a sequence of atomic operations
that are executed on a node. Typical IoT applications are for
example report sensor values, relay data or use an actuator.
We divide these applications into tasks. For example, report
sensor values can be divided into sense the environmental
variable (e.g., temperature) and transmit the data, relay data
can be divided into receive and transmit and use an actuator
can be divided into receive the order and actuate. Every
tasks will be characterized by its arrival time, execution
time, deadline, priority, order and energy consumption. We
consider that the energy consumption of the tasks already
take into account the consumption of the memory for back
up and restore, as mentioned in [16]. It is also important to
mention that although some tasks such as receiving are very
technology specific (LoRaWAN and BLE have different be-
haviours), they can also be considered as a single task where
the different parameters of the optimization framework (i.e.,
execution time will determine the whole BLE transmission
over the three channels) will need to be defined accordingly.

In Figure 4 we show an example of how we have
modeled the atomic tasks. Every task is defined by execution
time, deadline, priority and energy consumption. Some of
the tasks are also characterized by an order. This is the case
for Task3, that has two parents which are Task1 and Task2,
or Task6, which has a Task5 as a parent. Finally, the arrival
time will depend on the specific task. For example, the ar-
rival time of Task1 and Task2 should be given as an input,
while the arrival time of Task5 is periodic. Furthermore,
Task4 will only arrive if the condition of Task3 is satisfied.

4 OPTIMIZATION FRAMEWORK

This section formally describes the energy-aware task
scheduling problem which aims to maximize the success-
ful task execution rate (weighted by task priority). We
formulate the optimization problem as a MILP that uses,
among others, the energy that its being harvested, the tasks
execution time and the tasks energy consumption as input
and decides on the optimal way of executing the tasks
avoiding power failures and missing deadlines. The MILP
will provide the globally optimal if we assume a total
knowledge of the expected tasks to be executed and the

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO. , MAY 2021 6

TABLE 1: Set of parameters of the optimization framework

Parameter Definition
T = {t1, t2, ..., t|T |} Set of time instants; subscript index t

refers to time instant tt
A = {a1, a2, ..., a|A|} Set of tasks to be executed; subscript

index j refers to task aj
Rj = {pj , tej , taj , dj , ej} Requirement vector of task j (priority,

execution time, arrival time, deadline
and current consumption)

Pj Subset of tasks that need to be
executed before task j is executed

yjt Binary decision variable indicating
if task j starts executing at time t

zjt Binary decision variable indicating
if task j is being executed at time t

Vt The voltage of the capacitor at time
instant t

energy that is being harvested. However, given knowledge
about the tasks to execute and (predicted) energy harvested
over a certain look-ahead time window, the scheduler can
calculate a sub-optimal solution that is optimal over that
specific time window. Furthermore, since energy harvest-
ing is normally not known in advance, energy harvesting
predictors can be used [31]. The remainder of this section
describes the different aspects of the MILP formulation and
Table 1 summarizes the notations used.

4.1 Input variables

Let T = {t1, t2, ..., t|T |} be the ordered set of time instants
where the set A = {a1, a2, ..., a|A|} of tasks need to be
scheduled. To simplify notation, in the following we will
use the subscript index t to refer to a instant of time
tt and the subscript index j to refer to a task aj . Each
task j ∈ A is characterized by its requirement vector
Rj = {pj , tej , taj , dj , ej}, where pj is the priority, tej is the
execution time of the task, taj is the arrival time, meaning
that the task cannot be scheduled before this time, and dj
is the task deadline to guarantee the freshness and usability
of the data and tasks outputs, and ej is the average current
consumption of the task (which is considered constant per
each task). Furthermore, in order to guarantee the task chain
order, every task j ∈ A has a set of parents Pj ⊂ A, which
contains the set of tasks that need to be executed before the
execution of task j. The set of parents Pj can also be empty.

4.2 Decision variables

There are two decision variables in the MILP, yjt and
zjt ∀j ∈ A,∀t ∈ T , which represent the specific task
scheduler decisions. While yjt is the binary variable indi-
cating if task j starts executing at time t, zjt is the binary
variable indicating if task j is being executed at time t.
This means that if a task j starts executing at time t and
its execution time is tej = 2, yjt = 1, zjt = 1, zjt+1 = 1 and
for the rest of the elements in the set T , yjt and yjt are equal
to 0.

4.3 Objective function and constraints

The main goal of the energy-aware task scheduler is to max-
imize the number of tasks successfully scheduled multiplied

by their priority:

max
∑
j∈A

∑
t∈T

yjt × pj (6)

The presented objective function is restricted by some
constraints. First of all, two tasks cannot be scheduled at the
same time, but also a task j should only be scheduled once,
as specified in Equations 7 and 8 respectively:∑

j∈A
zjt ≤ 1 ∀t ∈ T (7)

∑
t∈T

yjt ≤ 1 ∀j ∈ A (8)

We need to ensure that task j is only successful if it is
deployed for all its execution time (tej) (see Equation 9) but
also that if a task j starts its execution at time t, it is being
executed from time t until t+ tej , as Equation 10 defines.∑

t∈T
yjt =

1

tej

∑
t∈T

zjt ∀j ∈ A (9)

zjt =
∑

u∈[t−tej+1,t]

yju ∀j ∈ A,∀t ∈ T (10)

Furthermore, task j cannot be scheduled before its ar-
rival nor after its deadline, and Equation 11 guarantees it.∑

dj<t<taj

zjt = 0 ∀j ∈ A (11)

Every task j needs to be executed after all its parents in
the set Pj have finished their executions:∑

u≤t
yju ≤

∑
u≤t

ypu ∀j ∈ A,∀p ∈ Pj ,∀t ∈ T (12)

As mentioned in Section 3.1, we are assuming every
device is equipped with a harvester and a capacitor to store
the harvested energy from the environment. The voltage
across the capacitor for every instant of time t is defined by
the continuous variable Vt ∀t ∈ T . It is important to note
that Vt is the discrete time version of v(t) of Equation 4.
We need to guarantee that the voltage across the capacitor
is enough to execute the scheduled tasks. For this reason,
we first need to ensure that this voltage remains between
the minimum and maximum supported values (Vmin and
Vmax). Vmax was already defined in Section 3.1, and Vmin

corresponds to the voltage turn-off threshold of Figure 1 and
Figure 3.

Vmin ≤ Vt ≤ Vmax ∀t ∈ T (13)

The voltage across the capacitor needs to be calculated
for every time instant and depends on the specific energy
harvested and the energy consumed by the tasks per every
time instant. Applying Equation 4 to our variables, we
obtain the following constraint:

Vt =
∑
j∈A

zjt× (14)(
ItReqj,t(1− e

(−4t
Reqj,t

C)
) + Vt−1e

(−4t
Reqj,t

C)
)
∀t ∈ T

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO. , MAY 2021 7

where 4t corresponds to the amount of time (in seconds)
between two instants of time in T (i.e., 4t = time(tt −
tt−1)), V−1 is the known initial voltage of the capacitor, C
is the capacitance in Farads of the capacitor. As explained
in Section 3.1, the harvester is modeled as a real current
source composed of an ideal current source and a parallel
resistance. Since these values can vary over time, we now
denoted them by It and rht

, respectively. The value of It (in
Amperes) is calculated as follows:

It =
Vmax

rht

∀t ∈ T (15)

where the parallel resistance rht
(in Ω), that limits the power

of the harvester, is calculated using the following equation
(similar to Equation 1):

rht =
V 2
max

Pharvester,t
∀t ∈ T (16)

where Pharvester,t is the power of the harvester source
at time instant t, in Watts. Finally, Reqj,t is the equivalent
resistance of the circuit (in Ω) at time instant t, which
depends on the specific task j that is scheduled at that time,
and is computed as:

Reqj,t =
RLj

rht

RLj + rht

∀j ∈ A,∀t ∈ T (17)

where RLj (in Ω) is the load of the model (it corresponds to
the set of components that consume the stored energy in the
capacitor when executing the scheduled task j), which can
be calculated as follows:

RLj
=
E

ej
∀j ∈ A (18)

where E is the operating voltage of the circuit elements and
ej is the current consumption of task j, defined in the Rj

vector.
In order to compute Equation 14, it is needed to define

all Vt for all values of t. However, if at a certain point in
time the device is sleeping and no task is being executed,
zjt = 0 for all values of j. For this reason, we need to adapt
and reformulate Equation 14 as follows:

Vt =∑
j∈A

zjt ×
(
ItReqj,t(1− e

(−4t
Reqj,t

C)
) + Vt−1e

(−4t
Reqj,t

C)
)

+

(1−
∑
j∈A

zjt)×
(
ItReqs,t(1− e

(−4t
Reqs,tC)

) + Vt−1e
(−4t
Reqs,tC)

)
∀t ∈ T (19)

where Reqs,t is calculated when the device is in sleep
mode, which means we use the current consumption of
the sleep mode for calculating it. And we can reformulate
Equation 19 as follows:

Vt −
∑
j∈A

zjt×(
ItReqj,t(1− e

(−4t
Reqj,t

C)
)− ItReqs,t(1− e

(−4t
Reqs,tC)

)

)
−∑

j∈A
zjt × Vt−1 ×

(
e
(−4t
Reqj,t

C)
− e(

−4t
Reqs,tC)

)
−

Vt−1e
(−4t
Reqs,tC) − ItReqs,t(1− e

(−4t
Reqs,tC)

) = 0 ∀t ∈ T (20)

Considering that Vt−1 is dependent on the decision
variable zjt, the multiplication zjt×Vt−1 is no longer linear.
To linearize it, we can define a new continuous variable
Υjt = zjt × Vt−1, and Equation 20 can be reformulated as:

Vt −
∑
j∈A

zjt×(
ItReqj,t(1− e

(−4t
Reqj,t

C)
)− ItReqs,t(1− e

(−4t
Reqs,tC)

)

)
−∑

j∈A
Υjt ×

(
e
(−4t
Reqj,t

C)
− e(

−4t
Reqs,tC)

)
− Vt−1e

(−4t
Reqs,tC)

=

ItReqs,t(1− e
(−4t
Reqs,tC)

) ∀t ∈ T (21)

where, since Vt−1 is bounded below by zero and above
by Vmax, the variable Υjt needs to fulfill the following
restrictions:

Υjt ≤ zjt × Vmax ∀j ∈ A,∀t ∈ T (22)

Υjt ≤ Vt−1 ∀j ∈ A,∀t ∈ T (23)

Υjt ≥ Vt−1 − (1− zjt)× Vmax ∀j ∈ A,∀t ∈ T (24)

Υjt ≥ 0 ∀j ∈ A,∀t ∈ T (25)

To sum up, we define our MILP scheduler by the objec-
tive function in Equation 6 subject to the constraints of the
Equations 7, 8, 9, 10, 11, 12, 13, 21, 22, 23, 24 and 25, and
where Equations 15 - 18 are not constraints but helpers for
Equation 21.

5 EVALUATION

In this section we evaluate the performance of the proposed
energy-aware task scheduler. We first introduce the simula-
tion setup and the methodology used to evaluate the opti-
mal algorithm. Then, in order to validate its behaviour, we
compare it against one of state-of-the-art solution. Finally,
we provide some insights on how long in the future the
behaviour of the batteryless device needs to be predicted in
order to get the best performance and avoid power failures.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO. , MAY 2021 8

Sense

Compute

Every X seconds

No

Count = 0

Yes

Tx Averaged Data

Count = +1

Receive

Every
Z seconds

A
t i

ns
ta

nt
 z

Actuate

Request

Every
Y seconds

Sensible data
High priority
Short deadline

Response

A
t i

ns
ta

nt
 y

Count=avg?

A
t i

ns
ta

nt
 x

Fig. 5: Detailed tasks of the Smart Building Application

5.1 Simulation setup and methodology
As detailed in Section 3.1, we have considered a batteryless
device, composed of a harvester (e.g., a photovoltaic cell)
that is able to continuously harvest a power of Pharvester

[27], and that can store it when not used in its capacitor, with
a capacitance C . Let us name the harvested power as PH .

We consider a smart building application, composed of
three main commands: sense and transmit the average data,
request-response and receive&actuate, as can be seen in Fig-
ure 5. The first command is able to sense an environmental
variable (i.e., temperature) periodically every X seconds,
compute the average of avg samples and transmit it. Sec-
ondly, if the device receives a request, it will immediately
answer to it with the response task. This task needs to be
executed within a short deadline as it is considered contain-
ing sensible data. Finally, we have also considered that the
device can receive a message to enable one of its peripherals
(such as an alarming LED). In the detailed diagram it is
possible to see what are the periodicities considered and the
parents of the atomic tasks. For example, the Request task
will have a Y seconds periodicity and the Response task has
only one parent which is Request.

In order to be able to communicate, the device is also
equipped with a Bluetooth Low Energy (BLE) radio. It is
important to note that in order to simplify the problem,
we have considered that a transmission in the three adver-
tisement channels of BLE is an atomic task, and therefore
we have considered the average energy consumption of the
complete transmission, as no differences in the results were
observed after making this simplification. Furthermore, ev-
ery considered task also takes the energy consumption of
the backup memory and of restoring it from memory into
account, as already mentioned in Section 3.2.

For our simulations, we have considered that the sensing
task is executed every second (X = 1s) and its first arrival is
at time 0 (x = 0s). Additionally, we would like to compute
the average samples every 5 samples (avg = 5). The two
other commands of the diagram of Figure 5, Request and
Receive, arrive at the instants 1 and 3 seconds, and their
periodicity is 2 and 5 seconds, respectively. This is y = 1s,
z = 3s, Y = 3 and Z = 5.

In Table 2 we show all the parameters considered for
the atomic tasks. The priority has been determined based
on the type of the application, sensing periodically is not
as critical as responding to an urgent Request. The values
of the current consumption and execution time are based
on the specifications of the Nordic nRF52840 [32], and ej is

the theoretical value for obtaining Iload (see Section 3.1). As
such, Vmin has been defined as 1.8V (minimum operating
voltage) and E and Vmax have been defined as 3.3V (typical
operating voltage). The value of the deadline has been
taken according to the urgency of the tasks. For example,
executing a Response for the Request is considered critical,
and therefore its deadline is short. In contrast, the sensing
task has a deadline which depends on its periodicity, which
means that if its not being sensed in the first third of
its periodicity, that data is not longer ”fresh”. The needed
parameters of the batteryless devices are shown in Table 3,
unless explicitly specified.

To solve the optimization problem described in Section 4,
we have used Gurobi Optimization1. The output of the opti-
mizer is then fed into the event-based simulator in which we
evaluate the proposed solution. This event-based simulator
has been implemented in C++, and simulates the energy
level of the batteryless device according to the expected
energy to be harvested, and the scheduled tasks. Finally,
and as mentioned before, for simplicity of the analysis, we
assume a constant energy harvesting rate during a single
experiment, which is in line with the output of a buck
regulator [27]. Even if the input of the buck regulator is
not constant, it provides a constant output. However, both
the optimizer and the simulator allow to work with time-
varying harvesting power.

5.2 Energy-aware scheduler validation
In order to validate our energy-aware scheduler (E-Aware),
we compare its behavior against InK [4], one of the most
complete schedulers for batteryless devices of the state-
of-the-art. InK is a dynamic scheduler based on priorities
and deadlines, however, it is not energy-aware. Although
AsTAR [12] is energy-aware, it is only able to change the
rate at which applications are executed, and it cannot handle
different priorities nor deadlines. For this reason, we have
implemented InK in our event-based simulator and we
have evaluated the behaviour of InK and our energy-aware
scheduler. It is important to note that most of the parameters
are chosen by the application developer or are device-
specific, thus they are an input for our problem (i.e., they
are not configurable by the algorithm). These parameters
are the capacitor size (C), harvesting rate (PH), the voltage
parameters (Vmin, Vmax, V−1), tasks parameters (current
consumption values, priority, execution time, deadline, or-
der or arrival time). The only two parameters that can be
configured by the algorithm or the event-based simulator
are 4t and the voltage turn-on threshold, Vth, which is a
configurable parameter that corresponds to the voltage the
capacitor needs to reach after a power failure in order to
turn on again. While 4t is only used by the optimization
algorithm, Vth is only used by Ink, as our energy-aware
algorithm avoids power failures.

Figure 6a shows the voltage across the capacitor for
the two approaches (E-Aware and InK) when performing
a sequence of tasks that need to be executed during the 15
seconds of the simulation and with a harvesting power of
5 mW. As can be seen in the Figure 6b (where we show the
arrival time of the tasks), Sensing happens every 1 second,

1. https://www.gurobi.com/

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO. , MAY 2021 9

TABLE 2: Smart Building Tasks considered and their parameters

Task, j Priority, pj Execution Time, tej Current Consumption, ej Deadline, dj Comments
Sense 1 0.03s 1.7mA 1/3X Periodically sense

Compute 3 0.01s 1mA 1s Average the sensed data
Tx 3 0.19s 4.36mA 1s Tx the averaged data (4dBm)

Request 8 0.21s 4.61mA 0.2s Receive a request
Response 10 0.19s 4.36mA 0.02s Send a response (4dBm)
Receive 8 0.21s 4.61mA 0.2s Receive an order
Actuate 8 0.05s 9mA 1s Use an actuator

0 5 10 15
Simulation Time (s)

1.8

2

2.2

V
ol

ta
ge

 (
V

) E-Aware
Ink

0 5 10 15
Simulation Time (s)

1
2
3
4
5

T
as

ks

Sense
Compute
Tx
Request
Response
Receive
Actuate

(a) Voltage variations when executing different tasks when PH = 5mW
0 5 10 15

Simulation Time (s)

1.8

2

2.2

V
ol

ta
ge

 (
V

) E-Aware
Ink

0 5 10 15
Simulation Time (s)

1
2
3
4
5

T
as

ks

Sense
Compute
Tx
Request
Response
Receive
Actuate

(b) Task arrival time

Fig. 6: Voltage variations for InK and our approach and tasks to be executed

TABLE 3: Experiment setup

Definition Value
Vmin 1.8V
Vmax 3.3V

V−1 (initial capacitor voltage) 2.2V
C 4.7mF

Pharvester,t Constant ∀t ∈ T
4t 0.01s

Sleep Current Consumption 0.1mA
Turn On Current Consumption 3mA

Turn On Time 0.1s

while Request and Receive take place every 2 and 5 seconds,
respectively. On the other side, Compute takes place after
5 Sense tasks. In this case, from the 41 tasks that need to
be executed, InK is able to successfully schedule 21 tasks,
while our energy-aware scheduler is able to schedule 36.
While our solution is able to avoid power failures and never
goes below 1.8V, InK has 3 power failures, at 5.37, 9.43 and
13.64 seconds. At these points in time, the device turns off
(note the dashed line in Figure 6), consuming much less
energy (we have considered it negligible) than in sleep mode
(0.1 mA). However, when the voltage turn-on threshold is
reached (Vth = 2.2V), the device wakes up, which takes
0.1 seconds and consumes 3 mA. On the contrary, avoiding
these power failures is beneficial to not waste energy in
turning on and to not miss deadlines while in off.

To give a better overview of the improvement of our
energy-aware solution, in Figures 7 and 8 we show the
comparison between our energy-aware task scheduler and

InK. We have considered the experiment setup explained
in Section 5.1 with PH of 0.1mW, 0.5mW, 1mW and 5mW,
which are in line with the energy that can be obtained from
indoor light [29]. We show different values of Vth for Ink
but we do not need to define any turn on threshold for our
energy-aware formulation as we ensure that the device will
not turn off.

First, in Figure 7a we see how many power failures
occur in both approaches. And as expected, our energy-
aware scheduler avoids power failures in all the cases, while
InK is not able to manage them as it is not aware of the
energy. This is possible thanks to the fact that our approach
is able to completely avoid power failures only if we assume
perfect knowledge on the energy harvested (as it is the case
in this specific experiment). However, if this knowledge is
not perfect, some failures would occur. In order to provide
a fair comparison, we have considered the effect of different
values of the turn-on threshold voltage (Vth) for InK, and as
we have seen that higher values than 2.8V do not provide
better results, we only consider 1.9V (close to Vmin), 2.2V
and 2.8V.

For Ink we see that increasing the harvested power (from
0.1mW up to 5mW), for the lowest turn-on voltage threshold
(Vth = 1.9V) the number of power failures increases, while
for the case of 2.8V of threshold, there is only 1 power
failure. However, and as can be seen in Figure 7b, where
we show the total time the device is On, we can see that the
device is only awake for 3.5 seconds till 1mW (in which InK
is able to only schedule 5 tasks) and that in the case of 5mW
it stays on 5.34 seconds. However, this difference is due to

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO. , MAY 2021 10

0.1 0.5 1 5
Harvested Power (mW)

0

2

4

6

Po
w

er
 F

ai
lu

re
s

E-Aware
InK Vth=1.9V
InK Vth=2.2V
InK Vth=2.8V

(a) Number of power failures

0.1 0.5 1 5
Harvested Power (mW)

0

5

10

15

D
ev

ic
e

O
n

T
im

e
(s

) E-Aware
InK Vth=1.9V
InK Vth=2.2V
InK Vth=2.8V

(b) Total time the device is On

Fig. 7: Comparison between the energy-aware scheduler and
InK for different values of PH when varying the turn-on
threshold of InK

the fact that the device starts at 2.2V and the PH is enough
to be awake for more than 5 seconds, but after that, it is not
possible to reach the 2.8V to turn on again during the 15
seconds of the simulation. This is mainly due to the fact that
the harvested energy is too low to charge the capacitor up
to the voltage turn-on threshold. On the other side, and as
mentioned, the low energy harvesting rate is not an issue
for our energy-aware solution and the device remains On
all the time.

In Figure 8a we show the task success rate, and the
priority success rate is shown in Figure 8b. While the task
success rate only represents the rate of the tasks that can
get scheduled from the total number of tasks that need
to be scheduled, success priority rate is the success rate
multiplied by all the task priorities. The simulation time
for our experiments has been set to 15 seconds, where we
assume that we have total knowledge on all the tasks that
will be scheduled and the power that will be harvested
during the entire simulation period.

For all the values of harvested power considered, our E-
aware approach provides better results, no matter the turn-
on threshold voltage value chosen by InK. However, the
lower the harvested power is, the less improvement we are
able to see, as many of the tasks require more energy than
what is available in the capacitor. Since the 2.8V turn-on
threshold provides the worst success (priority) rate, and as
the lower one (1.9V) does not provide better results for InK
and can lead to more power failures, in the rest of the paper
we have considered Vth = 2.2V .

In order to reduce the time the capacitor needs to reach
the voltage turn-on threshold, we have also considered a
smaller capacitor. In Figure 9 we show the voltage variations

0.1 0.5 1 5
Harvested Power (mW)

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

E-Aware
InK Vth=1.9V
InK Vth=2.2V
InK Vth=2.8V

(a) Task Success Rate

0.1 0.5 1 5
Harvested Power (mW)

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

Pr
io

ri
ty

 R
at

e E-Aware
InK Vth=1.9V
InK Vth=2.2V
InK Vth=2.8V

(b) Priority Success Rate

Fig. 8: Performance comparison between the energy-aware
scheduler and InK for different values of PH and a 4.7mF
Capacitance when varying the turn-on threshold of InK

over time when executing some tasks for a capacitor of 4.7
mF and 0.47 mF when harvesting 1mW of power. For the
capacitor of 4.7 mF it takes longer to charge, and as can be
seen, the energy-aware solution keeps increasing its voltage
while executing non power hungry applications until time
instant 13.66 seconds, where it is able to execute a more
powerful task. However, InK turns off at time instant 3.35
seconds and it is not able to turn on again. When using a
smaller capacitor of 0.47 mF a complete different behaviour
is seen. Our energy-aware solution is able to schedule 18
applications, although all of them have low priority, result-
ing in a total profit of 24. In contrast, InK keeps turning
off and on. But the problem is that with this low energy
harvesting power and small capacitor, the energy needed
to turn on and just execute an immediate and powerful
task is not enough. Since InK is not aware of the energy,
it chooses the task with the highest priority which fulfills
the deadline constraints, without worrying about its energy
consumption. The problem is that while trying to execute
the task, its voltage drops to Vmin and the device turns off.
After reaching the turn-on threshold it turns on again and
tries to re-execute the same application if the deadline is
not reached yet. In this way, InK is only able to successfully
execute 2 tasks.

In Figure 10 we increase the harvested power to 5mW
(i.e., PH = 5mW), so more tasks are scheduled. For the
smaller capacitor (C = 0.47mF) we see how it gets charged
faster, and in the energy-aware scheduler, we see how it
intelligently decides to get almost fully charged to have
enough energy to be able to execute a more energy-hungry
task in the time instants 3.4, 7.96 and 13.1 seconds. In the

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO. , MAY 2021 11

0 5 10 15
Simulation Time (s)

1.8

1.9

2

2.1

2.2

2.3

2.4

V
ol

ta
ge

 (
V

)

E-Aware 4.7mF
InK 4.7mF
E-Aware 0.47mF
InK 0.47mF

Fig. 9: Voltage variations when executing different tasks for
1mW of PH

0 5 10 15
Simulation Time (s)

1.8

2

2.2

2.4

2.6

2.8

3

3.2

V
ol

ta
ge

 (
V

)

E-Aware 4.7mF
InK 4.7mF
E-Aware 0.47mF
InK 0.47mF

Fig. 10: Voltage variations when executing different tasks for
5mW of PH

meantime, if it can achieve a higher reward by executing a
less-power hungry task during the charging process, it will
do it. While InK is only able to schedule 7 tasks, our energy-
aware solution schedules 18 tasks. For the 4.7 mF capacitor,
we can observe that it takes longer to charge the capacitor,
but also the voltage drop is less abrupt. In this case, while
our energy-aware solution it is able to execute 36 tasks, InK
is only able to execute 21.

5.3 Influence of look-ahead window on performance

In the previous section, we showed the potential of energy-
aware scheduling, by evaluating the maximum gain in
performance when assuming perfect prediction of all future
tasks and energy harvesting power. In this section, we
evaluate how the size of the look-ahead window influences
the effective performance gain in a real system (as perfect
prediction over an infinite window is not achievable in
practice). In batteryless devices, energy consumption is the
main parameter to be aware off, and being able to predict
both the available energy and the energy to be consumed
will allow to better schedule the tasks. However, knowing
how much energy is expected in the future gets harder the
further in time it is predicted. And also, more memory is
needed to perform those calculations. For this reason, it is

0.25 0.5 1 2.5 5 12.5 25
Look-ahead Window (s)

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

E-Aware 5mW
E-Aware 1mW
E-Aware 0.5mW

(a) Task Success Rate

0.25 0.5 1 2.5 5 12.5 25
Look-ahead Window (s)

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

Pr
io

ri
ty

 R
at

e

E-Aware 5mW
E-Aware 1mW
E-Aware 0.5mW

(b) Priority Success Rate

Fig. 11: Performance of our energy-aware scheduler when
varying the look-ahead window time for V−1 = 2.2V

important to know how far in the future the scheduler needs
to look to achieve the best possible improvement.

For this reason, in Figure 11 we show the task success
rate and the priority success rate of a simulation of 25
seconds when we let the scheduler look ahead only over
a limited look-ahead optimization window and re-execute
it at the start of each window. We define small look-ahead
optimization windows with different sizes starting from 0.25
seconds (meaning 100 look-ahead optimization windows)
up to 25 seconds, which means one look-ahead optimization
window. As expected, when increasing the look-ahead win-
dow time a better performance in terms of success priority
rate is achieved. However, in terms of tasks, it seems that
more tasks are executed if we optimize every 2.5 seconds
(c.f., Figure 11a), but since we are optimizing the priority of
these scheduled tasks, in Figure 11b we see that the profit
is not significantly improved after 1 second of look-ahead
window time. This means that when increasing the look-
ahead window, less tasks are executed, but that these tasks
have a higher priority. For this reason, if the aim is to only
maximize the number of tasks, a look-ahead window size of
1 second will be enough. However, only looking at a very
short look-ahead window, tasks that consume a lot of power
will never be executed. In our experiments, these tasks are
also the tasks that have a high priority, and for this reason
if more priority tasks need to be executed, a 5 seconds look-
ahead window size will be needed.

In general terms, and for the considered task set, if we
look at the look-ahead time window and the number of
tasks executed per second, we can say that a look-ahead
window that can look ahead up to 4 tasks will lead to a good
performance in terms of successful task executions, but if
more power hungry tasks need to be deployed, looking

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO. , MAY 2021 12

0.25 0.5 1 2.5 5 12.5 25
Look-ahead Window (s)

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

E-Aware 5mW
E-Aware 1mW
E-Aware 0.5mW

(a) Task Success Rate

0.25 0.5 1 2.5 5 12.5 25
Look-ahead Window (s)

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

Pr
io

ri
ty

 R
at

e

E-Aware 5mW
E-Aware 1mW
E-Aware 0.5mW

(b) Priority Success Rate

Fig. 12: Performance of our energy-aware scheduler when
varying the look-ahead window time for V−1 = 1.9V

ahead 8 tasks in the future is needed. To make sure that
our conclusions can be generalized to other initial capacitor
voltages V−1, we also show the results when the initial
voltage of the capacitor is V−1 = 1.9V in Figure 12. The
same conclusions are still valid, although a performance
reduction of 16% occurs for short look-ahead windows
(0.25 seconds). However, when increasing the look-ahead
window size to 12.5 seconds, the difference is only 0.016%.
This means that the bigger the look-ahead window time
is, the lower impact the initial voltage has, but also longer
experiment duration will diminish this effect.

6 CONCLUSIONS AND FUTURE WORK

In this paper we have shown that energy-aware scheduling
mechanisms are needed to improve the performance of suc-
cessful application execution on batteryless devices. These
tiny devices frequently turn on and off, and being aware
of the expected energy consumed and the energy that can
be harvested is crucial. For this reason, in this paper, we
provide theoretical insights into the achievable performance
gain of energy-aware task scheduling, compared to state of
the art non-aware batteryless application task schedulers.
Moreover, we study the influence of the size of the look-
ahead energy prediction window, as a first step towards
developing a practical scheduling heuristic that can run on
batteryless devices. To do so, we have proposed a new op-
timal energy-aware scheduling algorithm that takes into ac-
count the energy available in the capacitor and the expected
energy to be harvested to optimally schedule the tasks,
which are defined by their priority, arrival time, execution
time, energy consumption, and set of task parents that need
to be executed beforehand. We have compared our energy-
aware solution against InK, an energy-unaware dynamic

scheduler based on priorities and deadlines. Our results
show that making the task scheduler energy aware avoids
power failures, which allows more tasks to make their dead-
lines. And finally, we have evaluated how much look-ahead
window time in the future is needed to achieve optimal
performance, and we can conclude optimizing every 4 tasks
will optimize the task scheduled rate, but power-hungry
tasks will suffer from it. In fact, increasing the number of
optimized tasks up to 8 tasks will help to obtain a better
successful rate where all kind of tasks can be scheduled.

There are several future research directions. The results
presented in this work can now be used as a basis for
heuristic schedulers that can be executed in real-time on
batteryless devices, and can also be used to define the
requirements for energy harvesting and consumption pre-
diction techniques for such schedulers. However, there are
also several challenges and difficulties that should be taken
into account when applying the insights of this work in
real life. Firstly, distilling from the decisions made by the
MILP, more straight forward rules that are able to select a
task with very limited look-ahead calculations should be
considered. Secondly, and in order to make decisions, the
algorithm needs the inputs described in this paper. How-
ever, obtaining all this necessary information as inputs could
require some more advanced circuitry (i.e., obtaining the
capacitor voltage or the harvesting power), whose energy
consumption should also be taken into account. And thirdly,
a real implementation needs to consider (and minimize)
the energy consumed by the scheduler itself as well, but
also other factors such as the operating systems underlying
effects.

In order to tackle these challenges, first, we should
design a more light-computing suboptimal solution (i.e.,
heuristic approach), to be solved in these energy constrained
devices. There are different and straight forward solutions
(e.g., greedy approaches, genetic algorithms, simulated an-
nealing) that need to be investigated to determine which
one offers better performance. Second, a dedicated circuitry
module should be added to the design. This additional
module should efficiently read the voltage of the capacitor
with a resistor divider, but also should be able to obtain
the harvested power. This would depend on the type of
harvester to be used. For example, if a solar panel is used,
the circuitry should also be able to read the open circuit
voltage and the short circuit current of the photovoltaic cell,
which should be done periodically. To read these values, we
need to disconnect the photovoltaic cell from the capacitor,
incurring in some waste of energy that should also be con-
sidered when addressing the harvested power. However, as
an alternative to doing measurements, the use of prediction
methods could be used. These techniques normally depend
upon statistical and stochastic models of harvested energy
using linear regression, Exponential Weighted Moving Av-
erage, Markov chains or machine learning. Depending on
the look-ahead window, short-time prediction (but also low
complexity) techniques should be further investigated.

Finally, aiming at considering the energy consumption
of this circuitry, the scheduler and other factors such as the
effects of the underlying operating system, new energy mea-
surements would need to be taken. These measurements
should be performed in a huge variety of conditions and

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO. , MAY 2021 13

environments to have a broader view of the expected energy
consumption.

ACKNOWLEDGMENTS

Part of this research was funded by the Flemish FWO SBO
S004017N IDEAL-IoT (Intelligent DEnse and Long range IoT
networks) project, the University of Antwerp IOF funded
project COMBAT (Time-Sensitive Computing on batteryless
IoT Devices), the Flemish FWO SBO S001521N IoBaLeT
(Sustainable Internet of batteryless Things) project and the
CERCA Programme, by the Generalitat de Catalunya. The
computational resources and services used in this work
were provided by the VSC (Flemish Supercomputer Center),
funded by FWO and the Flemish Government - department
EWI.

REFERENCES

[1] D. Ma, G. Lan, M. Hassan, W. Hu, and S. K. Das, “Sensing,
computing, and communications for energy harvesting IoTs: A
survey,” IEEE Communications Surveys Tutorials, vol. 22, no. 2, pp.
1222–1250, 2020.

[2] J. Hester and J. Sorber, “The future of sensing is batteryless,
intermittent, and awesome,” in Proceedings of the 15th ACM
Conference on Embedded Network Sensor Systems, ser. SenSys
’17. New York, NY, USA: ACM, 2017, pp. 21:1–21:6. [Online].
Available: http://doi.acm.org/10.1145/3131672.3131699

[3] T. S. Muratkar, A. Bhurane, and A. Kothari, “Battery-less internet
of things –A survey,” Computer Networks, vol. 180, no. April, 2020.

[4] K. S. Yildirim, A. Y. Majid, D. Patoukas, K. Schaper,
P. Pawelczak, and J. Hester, “Ink: Reactive kernel for tiny
batteryless sensors,” in Proceedings of the 16th ACM Conference
on Embedded Networked Sensor Systems, ser. SenSys ’18. New
York, NY, USA: ACM, 2018, pp. 41–53. [Online]. Available:
http://doi.acm.org/10.1145/3274783.3274837

[5] M. M. Sandhu, S. Khalifa, R. Jurdak, and M. Portmann, “Task
scheduling for simultaneous IoT sensing and energy harvesting:
A survey and critical analysis,” 2020, arXiv:2004.05728. [Online].
Available: https://arxiv.org/abs/2004.05728

[6] B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for
long-running computation on RFID-scale devices,” in Proceedings
of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XVI.
New York, NY, USA: ACM, 2011, pp. 159–170. [Online]. Available:
http://doi.acm.org/10.1145/1950365.1950386

[7] M. Hicks, “Clank: Architectural support for intermittent
computation,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture, ser. ISCA ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 228–240.
[Online]. Available: https://doi.org/10.1145/3079856.3080238

[8] K. Ma, Y. Zheng, S. Li, K. Swaminathan, X. Li, Y. Liu, J. Sampson,
Y. Xie, and V. Narayanan, “Architecture exploration for ambient
energy harvesting nonvolatile processors,” in 2015 IEEE 21st In-
ternational Symposium on High Performance Computer Architecture
(HPCA), 2015, pp. 526–537.

[9] K. Maeng, A. Colin, and B. Lucia, “Alpaca: Intermittent
execution without checkpoints,” Proc. ACM Program. Lang., vol. 1,
no. OOPSLA, pp. 96:1–96:30, oct 2017. [Online]. Available:
http://doi.acm.org/10.1145/3133920

[10] J. Hester, K. Storer, and J. Sorber, “Timely execution on
intermittently powered batteryless sensors,” in Proceedings
of the 15th ACM Conference on Embedded Network
Sensor Systems, ser. SenSys ’17. New York, NY, USA:
Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3131672.3131673

[11] J. Hester and J. Sorber, “Flicker: Rapid prototyping for the
batteryless internet-of-things,” in Proceedings of the 15th ACM
Conference on Embedded Network Sensor Systems, ser. SenSys ’17.
New York, NY, USA: ACM, 2017, pp. 19:1–19:13. [Online].
Available: http://doi.acm.org/10.1145/3131672.3131674

[12] F. Yang, A. S. Thangarajan, W. Joosen, C. Huygens, D. Hughes,
G. S. Ramachandran, and B. Krishnamachari, “Astar: Sustainable
battery free energy harvesting for heterogeneous platforms and
dynamic environments,” in Proceedings of the 2019 International
Conference on Embedded Wireless Systems and Networks, ser. EWSN
’19. USA: Junction Publishing, 2019, pp. 71–82. [Online].
Available: http://dl.acm.org/citation.cfm?id=3324320.3324329

[13] B. Islam and S. Nirjon, “Scheduling computational and energy
harvesting tasks in deadline-aware intermittent systems,” in 2020
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), 2020, pp. 95–109.

[14] A. Caruso, S. Chessa, S. Escolar, X. del Toro, and J. C. López, “A
dynamic programming algorithm for high-level task scheduling
in energy harvesting iot,” IEEE Internet of Things Journal, vol. 5,
no. 3, pp. 2234–2248, 2018.

[15] C. Li, W. Zhang, C.-B. Cho, and T. Li, “Solarcore: Solar energy
driven multi-core architecture power management,” in 2011 IEEE
17th International Symposium on High Performance Computer Archi-
tecture, 2011, pp. 205–216.

[16] J. S. Miguel, K. Ganesan, M. Badr, and N. E. Jerger, “The EH Model:
Analytical Exploration of Energy-Harvesting Architectures,” IEEE
Computer Architecture Letters, vol. 17, no. 1, pp. 76–79, 2018.

[17] H. Yang and Y. Zhang, “A task scheduling algorithm
based on supercapacitor charge redistribution and energy
harvesting for wireless sensor nodes,” Journal of Energy
Storage, vol. 6, pp. 186–194, 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.est.2016.03.007

[18] S. Escolar, A. Caruso, S. Chessa, X. d. Toro, F. J. Villanueva, and
J. C. López, “Statistical energy neutrality in IoT hybrid energy-
harvesting networks,” in 2018 IEEE Symposium on Computers and
Communications (ISCC), 2018, pp. 00 444–00 449.

[19] B. Srbinovski, M. Magno, F. Edwards-Murphy, V. Pakrashi, and
E. Popovici, “An energy aware adaptive sampling algorithm for
energy harvesting WSN with energy hungry sensors,” Sensors
(Switzerland), vol. 16, no. 4, pp. 1–19, 2016.

[20] N. Sharma, S. Barker, D. Irwin, and P. Shenoy, “Blink:
Managing server clusters on intermittent power,” SIGPLAN
Not., vol. 46, no. 3, p. 185–198, Mar. 2011. [Online]. Available:
https://doi.org/10.1145/1961296.1950389

[21] Y. Li, J. Si, S. Ma, and X. Hu, “Using energy-aware scheduling
weather forecast based harvesting for reconfigurable hardware,”
IEEE Transactions on Sustainable Computing, vol. 4, no. 1, pp. 109–
117, 2019.

[22] S. Baruah and E. Bini, “Partitioned scheduling of sporadic task
systems: an ILP-based approach,” Proceedings of the International
Conference on Design and Architectures for Signal and Image Processing
(DASIP), 2008.

[23] C. Moser, D. Brunelli, L. Thiele, and L. Benini, “Real-time schedul-
ing for energy harvesting sensor nodes,” Real-Time Systems, vol. 37,
no. 3, pp. 233–260, 2007.

[24] H.-S. Lee and J.-W. Lee, “Resource and task scheduling for swipt
iot systems with renewable energy sources,” IEEE Internet of
Things Journal, vol. 6, no. 2, pp. 2729–2748, 2019.

[25] A. Sabovic, C. Delgado, D. Subotic, B. Jooris, E. De Poorter,
and J. Famaey, “Energy-aware sensing on battery-less
lorawan devices with energy harvesting,” Electronics,
vol. 9, no. 6, p. 904, May 2020. [Online]. Available:
http://dx.doi.org/10.3390/electronics9060904

[26] J. Bi, H. Yuan, S. Duanmu, M. Zhou, and A. Abusorrah, “Energy-
optimized partial computation offloading in mobile-edge com-
puting with genetic simulated-annealing-based particle swarm
optimization,” IEEE Internet of Things Journal, vol. 8, no. 5, pp.
3774–3785, March 2021.

[27] C. Delgado, J. M. Sanz, C. Blondia, and J. Famaey, “Battery-less
lorawan communications using energy harvesting: Modeling and
characterization,” IEEE Internet of Things Journal, 2020.

[28] Y. Mahmoud, W. Xiao, and H. H. Zeineldin, “A simple approach
to modeling and simulation of photovoltaic modules,” IEEE Trans-
actions on Sustainable Energy, vol. 3, no. 1, pp. 185–186, 2012.

[29] M. Shirvanimoghaddam, K. Shirvanimoghaddam, M. M.
Abolhasani, M. Farhangi, V. Z. Barsari, H. Liu, M. Dohler,
and M. Naebe, “Paving the path to a green and self-powered
internet of things,” Electrical Engineering and Systems Science, 2018.
[Online]. Available: http://arxiv.org/abs/1712.02277

[30] F. K. Shaikh and S. Zeadally, “Energy harvesting in wireless sensor
networks: A comprehensive review,” Renewable and Sustainable

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. , NO. , MAY 2021 14

Energy Reviews, vol. 55, pp. 1041 – 1054, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1364032115012629

[31] K. S. Adu-Manu, N. Adam, C. Tapparello, H. Ayatollahi, and
W. Heinzelman, “Energy-harvesting wireless sensor networks
(eh-wsns): A review,” ACM Trans. Sen. Netw., vol. 14, no. 2, apr
2018. [Online]. Available: https://doi.org/10.1145/3183338

[32] “nrf52840 product specification,”
https://infocenter.nordicsemi.com/pdf/nRF52840 PS v1.0.pdf,
accessed: 30 September 2020.

Carmen Delgado She received the M.Sc. in
telecommunications engineering, the M.Sc. de-
gree in biomedical engineering and a Ph.D. (cum
laude) in Mobile Network Information and Com-
munication Technologies from the University of
Zaragoza, Spain, in 2013, 2014, and 2018 re-
spectively. She joined the Internet Technology
and Data Science Lab (IDLab) of the University
of Antwerp, associated with imec, Belgium as
a post-doctoral researcher in 2018. She is cur-
rently working in the i2CAT Foundation as senior

researcher. Her research interests lie in the field of Internet of Things,
resource allocation, energy harvesting, low power communications, en-
ergy modeling and performance evaluation of wireless sensor networks.

Jeroen Famaey He is an assistant profes-
sor associated with imec and the University of
Antwerp, Belgium. He received his M.Sc. degree
in Computer Science from Ghent University, Bel-
gium in 2007 and a Ph.D. in Computer Science
Engineering from the same university in 2012.
He is co-author of over 120 articles published in
international peer-reviewed journals and confer-
ence proceedings, and 10 submitted patent ap-
plications. His research focuses on performance
modeling and optimization of wireless networks,

with a specific interest in low-power, dense and heterogeneous net-
works.

