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A B S T R A C T

This paper explores the use of neural network pruning for transfer learning applications for more
resource-efficient inference. The goal is to focus and optimize a neural network on a smaller
specialized target task. With the advent of IoT, we have seen an immense increase in AI-based
applications on mobile and embedded devices, such as wearables and other smart appliances.
However, with the ever-increasing complexity and capabilities of machine learning algorithms,
this push to the edge has led to new challenges due to the constraints imposed by the limited
availability of resources on these devices. Some form of compression is needed to allow for state-
of-the-art convolutional neural networks to run on edge devices. In this work, we adapt existing
neural network pruning methods to allow them to specialize networks to only focus on a subset
of what they were originally trained for. This is a transfer learning use-case where we optimize
large pre-trained networks. This differs from standard optimization techniques by allowing the
network to forget certain concepts and allow the network’s footprint to be even smaller. We
compare different pruning criteria, including one from the field of Explainable AI (XAI), to
determine which technique allows for the smallest possible network while maintaining high
performance on the target task. Our results show the benefits of using network specialization
when executing neural networks on embedded devices both with and without GPU acceleration.

. Introduction

In state-of-the-practice IoT platforms, complex decisions are generally made in the cloud rather than on the edge devices. Data
rom each sensor is sent to the cloud, and based on this, a decision is sent back to the actuators on the edge. This centralized
etup can lead to problems, for example, for real-time applications where variable communication latency can result in failure to
eet a deadline. Therefore, we deem it necessary to push the decision-making process closer to the edge where the sensors and

ctuators are located. This, however, leads to new challenges due to constraints imposed by the limited availability of resources
e.g., computing power, memory, energy) on the edge devices.

In many state-of-the-art applications, Deep Convolutional Neural Networks (CNNs) are being used for a variety of applications.
NNs have proven to possess incredible predictive power in many application domains. They are being heavily used in computer
ision tasks [1–3], natural language processing [4], speech recognition [5], and many more. In many IoT applications, these networks
re not executed on edge devices as these networks are too expensive both storage-wise and computationally. CNN’s and other
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architectures (for example, transformer networks [4]) consist of billions of parameters and Floating-Point Operations (FLOPs), which
are not feasible for edge devices to compute within required deadlines. Therefore, in order to push the decision-making to the edge,
compression of these networks is needed.

Recently there has been an increasing interest in AI component adaptation. This includes making components of an AI application
djustable to specific environmental characteristics and constraints. Therefore, we investigate the feasibility of pruning techniques
or network subtask specialization. This involves optimizing a pre-trained network specifically for a subset of its original trained task.

e call this network specialization. This way, we can save resources by only focusing on the subset for a particular environment. As
n example, consider object detection or classification models. These models detect a range of classes with a specific accuracy for
ach class. However, these accuracy levels might not always be needed in all application contexts. It might be favorable to reduce
he accuracy in favor of resource gain—for example, a visual classification task, where a model is trained to classify traffic signs.

e could optimize this model for highway operation by abstracting the types of signs (rural roadway signage, for instance) it still
eeds to classify accurately. Making these abstractions will lower the classification accuracy of certain output classes; however, the
odel will be able to be executed with fewer resources and can be evaluated faster, which is beneficial on highways where fast

esponse times are essential. Furthermore, we can create multiple optimized versions of an off-the-shelve pre-trained network, each
pecialized for a different subset. This allows us to optimally switch between the optimized versions in order to save resources in
ynamic environments. This way, we can have a version of the network specialized for people detection that is used in a city center
nd a version specialized for cars and traffic signs for highways.

In order to generate these versions, we adapt existing neural network pruning methods to allow them to specialize networks
o only focus on a subset of what they were initially trained for. Large pre-trained models are widely and publicly available. With
he methods we use in this work, these networks can be optimized and specialized to match a user’s application needs without
he need for training a network from scratch. This work compares different pruning criteria in a structured, iterative layerwise
runing strategy. The main goal is to find the smallest possible network while maintaining high performance on the target task. By
mallest possible network, we mean a network consisting of the least amount of parameters and requiring the least amount of FLOPs
o evaluate. In Section 4, we explain how we accomplish network specialization using neural network pruning. It is important to
ote that there is almost always a trade-off between the number of parameters and the FLOPs. In a neural network, the bulk of
he parameters are in the fully connected layers, while the bulk of FLOPs are located in the convolutional layers. The priority of
educing the number of parameters or FLOPs should be updated depending on the target application and available hardware.

. Related work

Neural network compression is not a new field. There are numerous methods for accelerating and shrinking a neural network.
echniques like pruning, weight sharing [6,7], quantization [8] and knowledge distillation [9] have proven to be very effective.
urthermore, the lottery ticket hypothesis [10] reveals that training large overparameterized networks makes it easier to find
ubnetworks that, when trained from scratch, can match the large network’s performance. This also points to the advantages of
etwork compression over training smaller networks. In this work, we focus on neural network pruning performed after training
or compressing and specializing neural networks.

Neural network pruning has been around since the beginning of deep learning. In general, neural network pruning consists of
emoving irrelevant parameters from the network. One of the simplest methods from Hagiwara [11] is to use a threshold 𝛾 that

dictates which weights or nodes are removed. Since then, many other pruning methods have been proposed. LeCun et al. [12]
proposed a pruning method based on the second-order derivatives in their paper about optimal brain damage. This led the way
to other pruning methods based on weights [13,14], activations [15], and gradients [16–18] in the network. For instance, Lee
et al. [19] use a saliency-based criterion consisting of the lowest absolute value of the normalized gradient multiplied by the weight
magnitude for a given set of mini-batch inputs.

In this paper, we focus on pruning for the specialization of the network. The goal is to achieve smaller and faster networks for
inference by removing unnecessary trained concepts from the network. This comes down to localizing knowledge concepts inside a
network and using these locations to propose optimization. This localization is related to the field of explainable and interpretable
AI (XAI). This also inspired us to use an XAI-based pruning criterion. More specifically, in this work, we use Layer-wise Relevance
Propagation (LRP) [20]. LRP is a saliency method that uses decomposition to calculate the most relevant pixels of the input and
thus is capable of highlighting the most relevant parts of a network for a given task. The pruning method that we use is inspired
by the work of Yeom et al. [21]. In that work, the authors propose to use LRP to guide the network pruning. Their results focus
on the classical compression use-case of preserving all knowledge in the network. In Balemans et al. [22] the authors also propose
to use LRP as guide for pruning. Molchanov et al. [23] proposed a similar criterion based on a Taylor expansion. They propose an
iterative approach in their work, however, which can be very time-consuming. Finally, Lee et al. [24] also propose a saliency-based
method, which is data-driven. This alleviates the dependency on weights and enables them to prune the network before training.

Neural network specialization can be seen as a form of transfer learning as we start from an original trained model and only
want to extract the necessary knowledge for the specialization. Transfer learning using pruning can be found in literature as well.
Lui et al. [25] propose a similar pipeline as in our work and use target-aware weight importance to guide the pruning. Some applied
research can also be found [26,27]. This seems to point to the interest from both research and industry for smaller, faster networks
that can be adapted and optimized from off-the-shelve, general trained networks. In our work, we focus on the subtask specialization
for AI component adaptation as explained in Section 1. Finally, we optimize networks to run on edge devices. In this area, there
have been other advances as well. Alippi et al. [28] introduce a methodology for the design and porting of CNNs to embedded
systems limited in resources. They use approximation techniques to reduce the computational load. In Section 5.5, we show the
2

results of our method on embedded platforms both with and without GPU acceleration.
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3. Contributions

Our main contributions in this paper include:
1. The introduction of the network specialization use-case. A form of transfer learning by compressing the network and

optimizing it for a specific subtask. This has great potential for making AI applications context- and resource-aware.
Specialization pruning in combination with intelligent switching between different optimized versions can reduce the
computational load of an AI application substantially.

2. The use of an Explainable AI pruning criterion, i.e., LRP, for calculating importance scores for the neurons of a neural network.
This allows for learned concepts inside the network to be located and serves as a guide for pruning. This is explained in
Section 4.

3. We show comparative results of a commonly-used, structured iterative layerwise pruning schedule in combination with
different pruning criteria. This can be found in Sections 4.1 and 5.

. Neural network pruning for specialization

In this section, we discuss the proposed pruning strategy and its variations. A pruning strategy is an algorithm for finding the
ptimal pruning rate for the network for which the impact on the performance of the network on the target task is minimal. For
uilding a pruning strategy, there are several considerations:

1. Structured and unstructured pruning. This has implications on which structures we remove from the network. In structured
pruning, we remove entire ‘block’-like structures from the network, i.e., filters or entire neurons. In unstructured pruning,
connections are removed individually. Structured pruning allows for the network to become physically smaller but has a
bigger impact on the network’s performance. In this research, we use a structured pruning method as it has a larger positive
impact on today’s hardware. Structured pruning directly alters the network’s architecture; therefore, fewer resources are
consumed. Later, we discuss the details of structured pruning for fully connected and convolutional layers.

2. Iterative retraining versus one-shot pruning. A common practice in pruning is to perform the removal of the least important
connections iteratively, accompanied by a fine-tuning (retraining) step. This allows for preserving the network accuracy while
pruning. However, this can be very time-consuming and not always necessary, as the accuracy can drop for certain outputs
when specializing the networks. Therefore, in this research, we look at pruning without fine-tuning (one-shot), as well. This
way, we can optimize networks quickly and with fewer resources.

3. Parameter attribution. In literature, this is also called a pruning criterion. In order for a pruning algorithm to select which
parts of the network it can safely remove, the pruning algorithm needs to be able to rank the parameters of the network
by their contribution to the target task. As mentioned earlier, our goal is to remove concepts from the network that are not
needed for a specifically selected target task. In order to accomplish this, we introduce an attribution method from the field
of XAI, called Layerwise Relevance Propagation [20]. We compare this to more traditional methods like weight-based [29],
activation based [30] and random attribution.

With these considerations in mind, we propose to use a structured layerwise iterative pruning strategy [31]. Layerwise means
e prune the network such that only one layer is considered for each iteration. This makes the strategy very flexible, as we can
recisely tune the network to our (computational) needs. However, this also means we need to find a specific optimal pruning rate
or each layer. We tackle this in an iterative way by pruning a layer for 𝑥% iteratively, checking each iteration if a stopping threshold

has been reached. The stopping threshold can, for instance, be the test accuracy of the network dropping below a certain value or
a maximum computational cost being reached. We start at the last layer of the network and work our way back to the start. After
each iteration, the attribution scores are recalculated in order to make sure the scores are redistributed over the remaining nodes.
This strategy can be used in two variations: The first one is pruning without fine-tuning; the second one is with fine-tuning. As
mentioned earlier, this is the difference between iterative retraining and one-shot pruning. The above-described algorithm can be
found in Algorithm 1.

4.1. Structured pruning

As mentioned earlier, we remove parameters in a structured manner based on attribution scores. This means locating block-like
structures of parameters that can be removed and thus change the network architecture. Currently, we target networks consisting
of fully connected layers and convolutional layers. In these layers, structured pruning is performed on neuron/filter level. It is
important to note that removing a neuron/filter in one layer does not only impact that layer, as removing a neuron/filter changes
the dimensions of the layer. Therefore, the subsequent layers also need to be adapted in order for the network to be still valid. In
this work, the network is optimized after attribution by removing zero neurons/filters while making sure the output dimensions still
match the subsequent layers input dimensions. In the following subsections, we describe the pruning procedures for fully connected
3

and convolutional layers.
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Data: Model: 𝑀 , Pruning Rate Step: 𝑝
esult: Compressed Model: 𝑀 ′

or layers 𝑙 of 𝑀 do
𝑥 = 0;
while (accuracy > threshold) and (𝑥 < maximum sparsity) do

calculate importance scores;
if 𝑙 is convolution layer then

calculate filter importance;
end
remove 𝑥% lowest neurons/filters;
𝑥 = 𝑥 + 𝑝;

end
if not one-shot then

fine-tune 𝑀 ;
end

nd
Algorithm 1: Structured Layerwise Iterative Pruning Algorithm

.1.1. Fully-connected layers
Consider a fully-connected layer with:
• Weight matrix 𝑊 (𝑘, 𝑙) where 𝑘 is the number of output features of the layer, and 𝑙 the number of input features
• Attribution matrix 𝑅(𝑁, 𝑘) where 𝑁 is the number of samples used in the evaluation dataset (or batchsize) and 𝑘 is the number

of output features. R contains 𝑘 attribution scores 𝑟 for each of the N samples. Depending on the configuration, the attribution
scores are averaged or the maximum value is taken of all the samples:

– 𝑅𝑎𝑣𝑔 =
∑𝑁

𝑖 𝑟𝑖
𝑁 which gives a vector with 𝑘 elements.

– 𝑅𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑗∈𝑁 (𝑟𝑖𝑗 ) ∀𝑖 ∈ 𝑘 which gives a vector with 𝑘 elements.

ased on the attribution matrix 𝑅𝑎𝑣𝑔 or 𝑅𝑚𝑎𝑥, a pruning mask is generated by selecting the 𝑥%-percent lowest-scoring nodes for
removal from the layer. Here we are removing all input and output connections to a node from the layer.

4.1.2. Convolutional layers
Consider a convolutional layer with:
• Weight matrix 𝑊 (𝐶𝑜𝑢𝑡, 𝐶𝑖𝑛, 𝑘𝑤, 𝑘ℎ) where 𝐶𝑜𝑢𝑡 is the number of output channels, 𝐶𝑖𝑛 is the number of input channels, and 𝑘𝑤, 𝑘ℎ

is the kernel width and height.
• Attribution matrix 𝑅(𝑁,𝐶𝑜𝑢𝑡,𝑊𝑜𝑢𝑡,𝐻𝑜𝑢𝑡) where 𝑁 is the number of samples used in the evaluation dataset (or batchsize),
𝐶𝑜𝑢𝑡 is the number of output channels, 𝑊𝑜𝑢𝑡 and 𝐻𝑜𝑢𝑡 are the width and height of the output tensor of each channel in the
layer. To acquire an attribution score for each filter, the attribution scores 𝑟𝑖𝑗 of all indices of each the channel are summed:
𝑅𝑓𝑖𝑙𝑡𝑒𝑟 =

∑𝑊𝑜𝑢𝑡
𝑗=1

∑𝐻𝑜𝑢𝑡
𝑖=1 𝑟𝑖𝑗

This gives 𝑅𝑓𝑖𝑙𝑡𝑒𝑟 with dimensions (𝑁,𝐶𝑜𝑢𝑡, 1). The next step is the same as for the fully connected layers: averaging or taking the
maximum of all samples 𝑁 , and thus ending up with a matrix with dimensions (𝐶𝑜𝑢𝑡, 1). These scores are used for pruning by ranking
them and selecting the 𝑥%-percent lowest-scoring filters for removal from the layer.

4.1.3. ResNet considerations
In this work, we also perform structured pruning of residual networks (ResNets). These networks feature modular blocks and

skip connections, representing commonly used modern networks. In order to prune these networks, we employ a similar method as
proposed by Crowley et al. [32]. For a standard residual block, they do not change the number of in- and output channels; however,
the intermediate channels are pruned. This enables the removal of filters in the first convolution and decreases the filter channel
size in the second convolution, all the while making sure the dimensions for the skip connection operations remain unchanged.

4.2. Pruning for specialization

In order to determine the parameter importance scores of the network, we employ a three-step method. An overview of our
parameter attribution method is shown in Fig. 1. The first step involves a forward pass of the original network using an evaluation
dataset. The internal activations of the network for this particular dataset are stored, and thus, this dataset determines for which
task the network is optimized. After the processing of the evaluation dataset, an attribution score for each node is calculated during
a backward pass using one of the pruning criteria. We compare a 𝑙1-norm weight magnitude pruning criterion from Li et al. [29], an
activation pruning criterion [30], a LRP based criterion [21], and a random pruning criterion. This process can be done in batches
of the dataset. It is important to note that this method is very efficient and fast as it only requires two passes through the network.
4
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Fig. 1. Schematic overview of the pruning strategy for network specialization. Step 1: Forward pass through the network. Step 2: Use the output of the forward
pass to calculate the attribution scores for the entire network using a backward pass. Step 3: Remove the most irrelevant neurons from the network.

In order to achieve the best results, the samples in the dataset should be evenly distributed over the target task. It is important to
note that the target task can be a subset task, exactly the same task as the original, or a very related task compared to the original
task.

This makes this method useful in two pruning use-cases:
1. Pruning normally, preserving the original task. Using original samples from the entire original domain, the network can be

optimized without loss of knowledge of the original task. A retraining step may be needed to ensure the required performance
is preserved.

2. Pruning for specialization, preserving a subset of the original task. Using only samples of the subset domain of the
original task, or a related task to the original, the pruning method will specialize the network to focus only on this subset. This
way, the network can be optimized with a loss of knowledge outside of the target task. This case is useful in a transfer learning
setting where a pre-trained network will be used for a related problem. Furthermore, we expect even smaller footprints for
pruned networks as more parameters of unnecessary concepts can be removed.

After the backpropagation step, we have attribution scores for each neuron/filter in the network. In our implementation, we
propose two methods for combining the attribution scores of multiple samples. The first is by simply averaging the scores. This
method will favor nodes with generally higher attribution scores over all samples, allowing it to better preserve all knowledge
concepts in the network. The second method is taking the maximum attribution score for each node. This method will include all
highest-scoring nodes, which works best for the specialization use-case as it allows for the dominant concepts of the target task to
be better preserved. These scores are then used in the last step in order to remove the least contributing parameters in a structured
manner.

5. Experiments

In order to evaluate which attribution method works best for each use-case, we perform several different experiments. The goal
is to show comparative results of different attribution methods. The ultimate goal is to find the optimal method to minimize the
computational cost of a model (number of parameters and FLOPS) while maximizing its performance on the target task (accuracy).
In each experiment, we compare the two use-cases: maintaining the originally trained task of the model and the task specialization
use-case. We use networks from the VGG and ResNet families, as well as LeNet-5 for demonstration and development purposes.

5.1. Layer-wise sensitivity analysis

In the first experiment, we perform a layer-wise analysis of a network. We check how ‘sensitive’ each layer is to pruning. We
measure the network’s test accuracy after each pruning iteration with an increasing pruning rate. We compare the previously listed
pruning criteria. It is important to note that the LRP-pruning criterion is the only method specifically designed to support specializing
a network for a specific subset. We include the 𝑙1-norm weight magnitude pruning criterion to compare what conventional pruning
methods are capable of when only considering a subset of an original task. The random pruning criterion is included to show that the
other pruning criteria can make intelligent decisions about which parts of the network to keep. This experiment aims to demonstrate
the impact of pruning on a network’s performance. We differentiate between two use-cases: the first is pruning while maintaining
the originally trained task; the second is the specialization use-case.

We demonstrate this using an adapted version VGG-16 [33] network. The network is pre-trained on CIFAR10 [34], containing
ten different classes. We pre-trained the network using Adam [35] for 100 epochs. We used PyTorch [36] for the implementation.
The network is adapted to better fit the CIFAR10 problem.

The results are visualized in the plots shown in Figs. 2 and 3. Here the Test Accuracy (%) of the entire network is shown given
a certain Pruning Rate (%) in a specific layer. In Figs. 2(a) and 3(a) we show the average test accuracy of all layers in the network
combined. Figs. 2(b) and 3(b) show the test accuracy of two selected layers of the network separately.
5
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Fig. 2. Sensitivity analysis for VGG-16. These graphs show the (average) test accuracy of the network when pruning using a certain pruning rate in one layer.
esults for the first use-case where we keep the original trained domain. (a) Average test accuracy of all layers. (b) Test accuracy when pruning one layer.
esults are shown for convolutional layer 5 (Conv2d5) and layer 14 (Conv2d14).

When comparing Figs. 2(a) and 3(a), we can see that pruning for specialization is beneficial for the achieved pruning rate. The
est accuracy remains greater for higher pruning rates. This follows our expectation that specializing the network for a specific
ubtask allows for certain encoded knowledge concepts to be removed from the network without impacting the test accuracy. In
he first use-case, this is not the case, though, as the entire original task should be preserved. It is important to note that the size of
he subset task for specialization does matter. In this experiment, the subtask consists of 3 classes. We chose this subtask as it shows
potentially realistic use-case of creating a specialized animal classifier from a more general model. The animal classes we chose

re bird, cat, and dog. In Section 5.4 we discuss the impact of the target task size. Generally, these figures show that pruning using
he LRP and activation criteria are more capable of specialization as well as maintaining the original task. The 𝑙1-weight pruning

method is not capable of this.
Finally, in Figs. 2(b) and 3(b), we see that layers towards the end of the network (which are larger) are less ‘sensitive’ to pruning.

This can be explained as these layers encode higher-level concepts that are more specialized and more easily separated. The first
layers of the network are more ‘sensitive’ as they encode much lower-level concepts which the rest of the network relies on. We
can use this finding to guide where to prune to have the least amount of impact on the network’s target task performance. Often it
is more beneficial to prune more in the deeper layers as they tend to be designed much wider.

5.2. Overall compression results with retraining

In this section, we discuss the overall compression results of the layerwise-structured, iterative pruning method from Section 4
using different attribution methods. We compare different network architectures, more specifically, we use LeNet-5 [37], VGG-
16 [33], and ResNet-50 [38]. LeNet-5 and VGG-16 are commonly used networks to demonstrate compression results. We include
ResNet-50 as well to show results on a more modern network architecture. The results can be found in Table 1. In these experiments,
we also differentiate between the two aforementioned use-cases. An important note is that these results were gathered with fine-
tuning of the network after each iteration. This means even the random pruning criterion is able to maintain high accuracy. We
generally see that specializing the network allows for smaller networks while maintaining good performance on the target task.
Generally, all pruning criteria are able to maintain good performance. However, for the network specialization use-case, the LRP
criterion is able to exceed the other criteria consistently in reduced resource cost while maintaining acceptable performance.
6
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Fig. 3. Sensitivity analysis for VGG-16. These graphs show the (average) test accuracy of the network when pruning using a certain pruning rate in one layer.
esults for the second use-case where we specialize the network to focus on a subset of the originally trained task. In this experiment, the subset task consists
f the classes [bird, cat, dog]. These graphs show the higher possible pruning rates compared to the first use-case shown in Fig. 2. (a) Average test accuracy of
ll layers. (b) Test accuracy when pruning one layer. Results are shown for convolutional layer 5 (Conv2d5) and layer 14 (Conv2d14).

Table 1
Overall compression results on different network architectures using different pruning criteria. LeNet-5 is specialized on subset classes [1, 4, 8]. VGG-16 and
ResNet-50 are specialized on subset classes [bird,cat,dog].

Model Method Original task Specialized task

Test Acc. (%) #Params. #FLOPS Test Acc. (%) #Params. #FLOPS

LeNet-5
(MNIST)

– 99.19 44,426 286,632 99.23 44,426 286,632
l-1 weight 95.43 −83.23% −44.90% 97.23 −90.31% −65.23%
Activation 96.17 −69.21% −38.38% 95.78 −95.66% −71.90%
LRP 93.77 −86.57% −58.90% 93.87 −94.79% −72.03%
Random 97.05 −68.50% −23.93% 98.54 −71.66% −49.28%

VGG-16
(CIFAR10)

– 94.35 33,646,666 332,942,336 89.60 33,646,666 332,942,336
l-1 weight 91.58 −91.54% −42.48% 90.40 −93.84% −54.23%
Activation 92.19 −85.16% −38.30% 89.53 −95.91% −53.69%
LRP 92.03 −93.61% −48.84% 88.40 −96.51% −58.81%
Random 92.21 −86.36% −33.34% 82.70 −84.21% −39.13%

ResNet-50
(CIFAR10)

– 93.65 23,520,841 327,624,704 95.90 23,520,841 327,624,704
l-1 weight 89.69 −81.25% −56.88% 95.07 −84.81% −60.99%
Activation 88.84 −82.96% −52.82% 95.63 −86.03% −59.12%
LRP 87.78 −83.53% −55.34% 95.13 −86.45% −62.37%
Random 88.59 −82.96% −56.01% 94.45 −85.42% −58.01%

5.3. Compression results without retraining

In other research [39], it is shown that retraining with a lot of data, for example, using the entire original dataset, decreases the
mpact of the selected pruning criteria on the final performance. Our results from Section 5.2 follow this finding. The final accuracy
f the networks are all quite similar despite the pruning criteria used.
7
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Table 2
Overall compression without retraining (fine-tuning) results on different network architectures using different pruning criteria. The pruning criteria are: ||𝑤||1 = 𝑙1
weight, ACT = Activation, LRP = Layerwise Relevance Propagation, RDM = Random. These are the same criteria as in the experiment from Section 5.2. Results
are shown for different levels of target sparsity (Pruning Rate) in each layer. For the specialization use-case, VGG-16 and ResNet-34 are specialized on subset
classes [bird, cat, dog] to maintain consistency.

Model Pr. Rate (%) Original task test Acc. (%) Specialized task test Acc. (%)

– ||𝑤||1 ACT LRP RDM – ||𝑤||1 ACT LRP RDM

VGG-16
(CIFAR10)

30% 94.35 75.54 73.85 76.10 16.69 89.60 79.25 54.37 87.46 34.29
50% 94.35 26.04 23.42 28.51 10.10 89.60 53.77 33.58 57.91 30.25
70% 94.35 19.22 9.87 10.02 9.81 89.60 34.09 0.00 37.62 0.00

ResNet-34
(CIFAR10)

30% 93.26 90.96 89.91 86.15 76.56 89.54 87.77 78.7 86.30 75.55
50% 93.26 82.20 68.36 76.26 12.81 89.54 84.42 57.30 86.26 40.91
70% 93.26 20.85 9.97 26.42 10.20 89.54 43.92 33.05 44.10 33.45

Therefore, in this experiment, we prune without retraining in order to determine which pruning criteria can best preserve the
ccuracy. In this experiment, we fix the pruning rate and measure the final test accuracy of the network. As previously mentioned,
he first layers of a network encode very low-level concepts which are generic, and most outputs will rely on them. Therefore,
runing without retraining will have a considerable impact on the network, and thus we will not be removing parameters from the
irst four layers of the network.

Finally, we also repeat the same specialization and no specialization use-cases. In this experiment, the VGG-16 and ResNet-34
etwork architectures are used. We run the experiment with a given target sparsity level (pruning rate) in each layer. The results
an be found in Table 2. Furthermore, these results show that pruning for task specialization allows for smaller networks while
aintaining good performance. This follows our hypothesis from earlier that when specializing, certain encoded (learned) concepts

an be safely removed from the network without impacting the target task performance of the network. From these results, we can
lso conclude that the LRP-based criterion is best suited for this task. This follows our result from the previous experiment as well,
here retraining was allowed.

Finally, we can see the activation and random pruning criteria achieve 0.00% on the VGG-16 specialization experiment. This
appened because both these criteria removed critical parts of the network architecture, making it no longer valid.

.4. Target task size

Our previous experiments show the impact of specialization when adapting the network to a subset of size 3. However, the
ize of the subset will impact the compression performance. As the size of the target task gets bigger, the more originally trained
oncepts need to be preserved; hence the compression will be less. In this experiment, we change the subset and evaluate its impact
n the compression performance. The results are shown in Fig. 4. When pruning for a small target task, more concepts (encoded
y certain parameters) can be removed without impacting the performance. For this experiment, we pruned the networks using the
RP-based criterion as we concluded it performs best for network specialization. No fine-tuning was performed for this experiment.

In the graphs in Fig. 4, we show the impact on both LeNet-5 and VGG-16. These graphs show the impact on two different tasks.
he LeNet-5 trained network is trained on MNIST [40]. The VGG-16 network in this experiment was trained on the ILSVRC2012
ataset [41]. This shows the impact of network specialization pruning in large-scale applications such as ILSVRC2012. This dataset
ontains 1000 different classes. All these classes may not always be needed in a user’s application. Therefore, network specialization
an be very beneficial. From both graphs, we can conclude higher pruning rates are possible for smaller target tasks. This follows
rom the fact that fewer concepts have to be preserved. This aligns with our envisioned goal of specializing a network for a small
ubset of the originally trained task.

.5. Impact on resources

Finally, we discuss our network specialization’s impact on resource consumption. In order to verify the actual performance gain
f the compressed networks, we performed experiments on two different embedded platforms. The first platform is the Nvidia Jetson
X2 [42]. This platform has an ARM processor in combination with a dedicated Nvidia GPU. The second platform is a Raspberry
i Model 4B [43]. In the experiment, we compare the uncompressed VGG-16 and ResNet-50 networks with their LRP unspecialized
nd specialized compressed networks. We use LRP as we concluded this to be the most optimal attribution metric for network
pecialization in our previous experiments in Sections 5.1 and 5.2. The results are shown in Table 3. We show the run-time memory
n megabytes (MB), the latency in milliseconds (ms), the number of parameters of the network, and the number of FLOPs of the
etwork. From this table, we can conclude the improvements are substantial. The latency and run-time memory for both platforms
re dramatically decreased. This shows the benefit of compressing neural networks for inference, especially for the specialization
se-case where the total resource consumption is even lower. For VGG-16, the compressed specialized version is twice as fast on
he GPU (Jetson) and almost 10 times faster on the CPU (Raspberry Pi). For ResNet-50, we see a speedup of 1.15 on the GPU and
8
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Internet of Things 20 (2022) 100599D. Balemans et al.

a
u
n
l

a
b
f
c

Fig. 4. Total network test accuracy as a function of the pruning rate when comparing different target task sizes for a LeNet-5 and VGG-16 network. The target
tasks consist of randomly selected classes. The tasks are subsets of (a) MNIST [40] and (b) ILSVRC2012 [41]. The graphs show the mean test accuracy (line)
and standard deviation (area) of 10 runs.

Table 3
Resource consumption measurements on Nvidia Jetson TX2 and Raspberry Pi 4 Model B.
Model Uncompressed Compressed original task Compressed subtask

VGG-16 ResNet-50 VGG-16 ResNet-50 VGG-16 ResNet-50

#MParams 33.64 21.28 2.15 4.63 1.17 3.20
#MFLOPs 332.94 327.62 170.32 151.1 137.15 123.29

Nvidia Jetson TX2

GPU Memory (MB) 513.21 89.97 18.28 17.92 14.75 12.41
Latency (ms) 26.30 52.77 13.12 46.75 11.76 45.29

Raspberry Pi 4 Model B

CPU Memory (MB) 658.89 243.29 159.91 167.68 152.92 158.25
Latency (ms) 480.77 228.83 60.42 112.36 49.33 99.80

6. Conclusion and future work

This work evaluates the feasibility of neural network specialization using neural network compression. The overall goal is to
chieve as small as possible network while maintaining high accuracy for a target task. We concentrate on a transfer learning
se-case where we specialize a pre-trained neural network to focus only on a subtask of its originally trained task. This allows the
etwork to only preserve the needed knowledge concepts of the originally trained task for the specialization task. This results in a
ess computationally demanding network compared to traditional pruning, where the original task is preserved.

We compare and demonstrate the capabilities of different pruning criteria using an iterative, layerwise-structured pruning
lgorithm. More specifically, we compare an XAI-inspired pruning criterion (LRP-based) to more traditional pruning criteria (weight-
ased, activation-based, and random). From our results, we can conclude that pruning for the specialization use-case is beneficial
or the final computational cost of a network. The final computational cost across networks, when pruned for specialization, is also
onsistently lower. We showed this both with and without fine-tuning after pruning. Combining these results leads us to conclude
9
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that the LRP-based pruning criterion is best-suited for this specialization used case. It can achieve smaller networks with fewer FLOPs
while maintaining acceptable performance on the target task. The last experiment shows the impact of specialization pruning when
executing the optimized models on embedded platforms. We showed that the optimized models use substantially fewer resources,
allowing them to be more feasibly used for edge computing.

In future work, we want to extend the compression even further. In literature, the combination of neural network pruning and
uantization is very common. For this reason, we would like to explore this for the network specialization use-cases as well to even
urther compress and accelerate the networks. Additionally, we will explore different methods of knowledge localization. Currently,
sing LRP, we localize knowledge concepts at a high level (outputs). We would like to extend this to lower-level semantic concepts
o allow for even more flexibility in specializing the networks. Finally, we would like to explore more network architectures. In this
ork, we focused on networks trained for object classification. We would want to explore other tasks like detection, segmentation,
tc.
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