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Abstract—Multimodal, alias, guided, image restoration is the
reconstruction of a degraded image from a target modality with
the aid of a high quality image from another modality. A similar
task is image fusion; it refers to merging images from different
modalities into a composite image. Traditional approaches for
multimodal image restoration and fusion include analytical
methods that are computationally expensive at inference time.
Recently developed deep learning methods have shown a great
performance at a reduced computational cost; however, since
these methods do not incorporate prior knowledge about the
problem at hand, they result in a “black box” model, that
is, one can hardly say what the model has learned. In this
paper, we formulate multimodal image restoration and fusion
as a coupled convolutional sparse coding problem, and adopt
the Method of Multipliers (MM) for its solution. Then, we use
the MM-based solution to design a convolutional neural network
(CNN) encoder that follows the principle of deep unfolding. To
address multimodal image restoration and fusion, we design two
multimodal models which employ the proposed encoder followed
by an appropriately designed decoder that maps the learned
representations to the desired output. Unlike most existing deep
learning designs comprising multiple encoding branches followed
by a concatenation or a linear combination fusion block, the
proposed design provides an efficient and structured way to
fuse information at different stages of the network, providing
representations that can lead to accurate image reconstruction.
The proposed models are applied to three image restoration tasks,
as well as two image fusion tasks. Quantitative and qualitative
comparisons against various state-of-the-art analytical and deep
learning methods corroborate the superior performance of the
proposed framework.

Index Terms—Method of multipliers, deep unfolding, multi-
modal image restoration, image fusion, multimodal CNN.

I. INTRODUCTION

IMAGES can be degraded by various reasons such as poor
illumination conditions, noise, blurring and low resolu-

tion. Degraded images seriously affect the subjective visual
effect on human eyes and may limit the performance of
machine vision systems. Multimodal image processing aims
at exploiting the complementary information from different
image modalities to improve the quality of the given degraded
images. Multimodal imaging applications can be roughly
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classified into two main categories, namely, multimodal image
restoration and image fusion. Multimodal image restoration is
concerned with the estimation of uncorrupted images from
low-resolution, noisy or blurred ones with the aid of a high
quality image from another modality [1], [2]. Image fusion
aims at combining multiple images—possibly from different
modalities—into a single one such that the fused image is
more informative than any of the individual input images [3].

A careful modeling of the underlying correlation and the
dependencies between the available image modalities plays
a key role in multimodal signal processing. Among existing
modeling approaches, sparse coding has proven effective to
represent the salient information of an image, and has been
widely applied to various multimodal imaging tasks [3]–
[11]. Joint-sparsity-based methods rely on the assumption
that different image modalities capturing the same scene
may have similarities in the representation domain. Typically,
multimodal sparse coding involves learned dictionaries and
requires the solution of complex optimization problems both
during training and inference.

Over the last decade, deep learning (DL) models have
significantly outperformed analytical image restoration and
fusion methods, since they can provide powerful representa-
tions of complex structures and are computationally efficient
at inference [12]. For example, numerous DL designs have
been proposed for single image super-resolution (SR) such
as convolutional neural networks (CNNs) [13]–[15] residual
architectures [16] or attention-based models [17]. Finding a
mapping from a low-resolution to a high resolution image
is an ill-posed problem. The design of a neural network
solution relies on specific modelling assumptions — often
borrowed from conventional approaches — in order to obtain a
model that can learn a good mapping. For example, the work
in [17] takes into account the different kind of information
in images (low-frequency and high-frequency) and employs
an attention mechanism to capture it. In a similar spirit, the
authors of [13] assert that their CNN for image SR can be
viewed as a sparse-coding based SR method with a different
non-linear mapping. Nevertheless, these kind of explanations
cannot abolish the “black box” nature of deep neural networks
(DNNs). Most DNN models do not allow domain knowledge
about the problem at hand to be incorporated into the network
structure, and their theoretical foundation is underdeveloped.

Deep unfolding [18]–[20] introduced the idea of integrating
domain knowledge in the form of signal priors, e.g., sparsity,
into the neural network architecture. Existing designs consist
of layers performing operations similar to iterative algorithms
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for sparse coding [18], [19]. For example, the Iterative Soft
Thresholding Algorithm (ISTA) was unfolded into a neural
network coined LISTA [18], and the ADMM-Net [19] is a
single-modal deep unfolding design that relies on the Alter-
nating Direction Method of Multipliers (ADMM). Recently,
multimodal deep unfolding for image super-resolution (SR)
has been presented in [21]–[25]. The network proposed in [21]
employs two LISTA branches, each one computing sparse
codes of the input image modalities. The representation layers
of each modality are independent and fusion is performed only
at a final layer by linearly combining the respective sparse
codes. A different modelling approach was adopted in our
previous work [22]–[24], which is based on the assumption
that correlated images can have sparse representations that are
similar by means of the ℓ1-norm (coupled sparse representa-
tions). Following this assumption, the SR models presented
in [22]–[24] rely on LeSITA [20], a deep unfolding design
that computes sparse codes of a target modality given the
sparse codes of a guidance modality. LeSITA integrates the
ℓ1-norm similarity assumption into the network architecture,
performing fusion of information at every neural network
layer.

Similarly to our previous work [22]–[24], in this paper,
we address multimodal image restoration and fusion with
coupled sparse representations, and propose a novel deep
unfolding design that relies on the method of multipliers
(MM). Specifically, we first formulate coupled sparse ap-
proximation as a constrained optimization problem. Then, we
leverage an alternating minimization method to obtain two
sub-problems; each subproblem finds the sparse representation
of one modality given the sparse representation of the other
modality, and vice-versa. Finally, the algorithm is translated
into a multimodal convolutional neural network. Each stage
of the network corresponds to a single iteration of the MM
method, alternating between the computation of the sparse
codes of the target and the guidance image modalities. Dif-
ferent from LeSITA, which was employed in our previous
work [22]–[24], the proposed coupled sparse coding design
performs fusion of information at every stage by computing
a new intermediate representation of each modality, using a
representation of the other modality computed at the same
or at a previous stage. On the contrary, all the intermediate
layers of LeSITA use the same representation of the guidance
modality, which is provided by a separate LISTA branch. In
other words, in [22]–[24], information flows from the guidance
modality to the target modality and the quality of the fused
representation is limited by the output of a separate branch
generating the representation of the guidance modality. This
limitation is addressed in this paper with an architecture that
allows a symmetric bi-directional flow of information between
the involved modalities.

We employ the proposed architecture for image restoration
by deploying two reconstruction strategies, leading to (i) an
image restoration and (ii) an image fusion multimodal CNN
design. Both architectures accept as input two source images of
different modalities, compute coupled sparse representations
of both modalities, and perform reconstruction at a final layer.
The first model for multimodal image restoration is employed

to super-resolve multi-spectral as well as NIR images with the
aid of high resolution RGB images, and denoise non-flash im-
ages with the aid of their flash versions. The second proposed
CNN is deployed to address the tasks of multi-focus image
fusion and multi-exposure image fusion. Experimental results
demonstrate the superior performance of our models compared
to the state of the art, showing that the proposed approach can
better capture the relationship between the involved modalities
by letting both modalities guide each other.

Preliminary results of this work have been presented in [26].
In this paper, we deliver the following contributions: (i) In
addition to the multimodal image restoration CNN presented
in [26], we introduce a second design based on the proposed
coupled sparse coding network for image fusion. (ii) We apply
our models to three restoration and two fusion tasks, while [26]
has only addressed multimodal image SR. (iii) We perform an
ablation study in order to investigate the effectiveness of the
presented model and its elements.

The paper is organized as follows. Section II reviews related
work, Section III presents the background for this work and
Section IV presents the proposed approach. Experimental
results are presented in Section VI, and conclusions are drawn
in Section VII.

A word about notation: throughout the paper, vectors are
denoted by boldface lower case letters and scalars by lower
case letters. We utilize boldface upper case letters to denote
matrices and boldface upper case letters in math calligraphy to
indicate tensors. Moreover, in this paper, the terms upscaling
factor and scale are used interchangeably.

II. RELATED WORK

There is a vast literature of multimodal image restoration
and fusion approaches and a comprehensive review of existing
works is out of the scope of this paper. Next, we present the
main directions and the works that are more related to ours.

A. Multimodal Image Restoration

Image restoration includes tasks such as image super-
resolution (SR) and denoising. Multimodal image SR refers
to the reconstruction of a high-resolution (HR) image from its
low-resolution (LR) version given an HR image from another
guidance modality. The purpose of multimodal denoising is
to reconstruct the original image from its noisy observation
given a noiseless image from another modality. Existing image
restoration approaches can be divided into spatial or joint
filtering methods [1], [2], [27]–[31] and transform domain
methods [4]–[8], [32].

Joint filtering methods aim at transferring the salient struc-
tural information from the guidance to the target modality.
Several joint filtering techniques, known as static guidance
filtering, have been proposed in [1], [29], [30]. In this cat-
egory, the output structure is defined by referring to the
guidance image. Statistical correlations between the target and
the guidance images are not taken into account. Therefore,
these techniques may introduce incorrect content to the target
image when there exists structural inconsistency between the
modalities. On the other hand, dynamically guided methods
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such as [2], [30], [31] are more robust to structural dis-
crepancies between the input and the guidance images. For
instance, the method presented in [2] includes an explicit
mapping that captures the structural dependency between the
input modalities. While these model-based and joint filtering
methods provide strong modeling tools, they are limited in
capturing the complex correlation between image modalities.

Transform domain methods have employed conventional
transforms [32] and joint sparse representations [4]–[8], [33],
[34]. These techniques aim at finding a mapping between the
involved modalities in the representation domain. For example
in [8], the authors proposed a model that considers both
similarities and disparities between different modalities under
the sparse representation invariance assumption. The model
relies on multimodal dictionary learning and was employed
for multimodal image SR [8], [35] as well as multimodal
image denoising [36]. Other sparse-representation-based meth-
ods proposed to learn complex relationships between different
modalities from data include [37], [38]. In [37], the authors
proposed a weighted analysis sparse representation model to
learn the correlation between depth and RGB images. The
study in [38] presents a method for RGB-guided hyperspectral
image upsampling consisting of two stages. First, a spatial
upsampling stage increases the resolution of the hyperspec-
tral image guided by the RGB image. Second, a spectrum
enhancement is performed via dictionary learning resulting in
a refined HR hyperspectral image.

Purely data-driven solutions for multimodal image SR are
provided by multimodal deep learning approaches. Examples
include the CNN based joint image filter presented in [39],
the work of [40], which is a deep learning reformulation of
the widely used guided image filter [29], and a multimodal
dual state recurrent network with convolutional sparse priors
presented in [41].

Deep unfolding networks for multimodal image SR have
been proposed in [21], [25]. Both models follow an encoder-
decoder structure and employ multiple LISTA [18] or convo-
lutional LISTA [42] branches which learn sparse representa-
tions of the input modalities. In [21], a final decoding block
provides the estimation of the target HR image by combin-
ing the learned representations of the source images. The
authors of [25] assume that correlated images have common
and unique sparse coefficients. Three convolutional LISTA
branches are used to encode this information; one for the
common and two for the unique information. The encoding of
the common information is computed after a concatenation of
low-frequency (smooth) inputs. The HR estimation is obtained
by combining the common and unique feature maps at the
decoder.

The deep learning design proposed in this paper adopts
the assumption that the input imaging modalities have rep-
resentations with many common and a few disparate coef-
ficients, that is, they are similar by means of the ℓ1-norm.
A similar approach is followed in [35], where the authors
assume that (i) an image can be split into a low-frequency
and a high-frequency component, and (ii) the low-frequency
components of correlated images can be represented by the
same sparse codes. The same assumptions are adopted in [25].

While in these studies the low-frequency and high-frequency
representations are treated separately, our model finds a single
representation for each modality and imposes coupling of
the multimodal representations under the ℓ1-norm similarity
constraint. Contrary to [21], [25], the proposed coupled sparse
modelling approach results in a neural network model that
applies fusion of information from both modalities at every
encoding stage, besides the final decoding step.

B. Image Fusion

Image fusion refers to the construction of a more compre-
hensive single image containing complementary information
from different input images. The input images are either cap-
tured by different sensors, e.g., thermal, RGB, multispectral,
infrared, or by the same sensor with different parameters, such
as multi-focus and multi-exposure images.

Generally, image fusion methods can be categorized into
spatial and transform domain approaches. Spatial domain
approaches perform image fusion by weighted averaging the
source images [43]–[47]. For example, the authors of [43]
compute the weight map using contrast, color saturation and
well-exposedness. The Gaussian pyramid of this weight map
is multiplied with the Laplacian pyramid of the multi-exposure
images in order to provide the fused image. Best-exposed
blocks featuring high entropy are selected to generate the
fused image in [44]. Other studies [45], [46] consider post-
processing of the initial pixel weights to provide a better spa-
tial consistency among image pixels. Transform domain meth-
ods rely on effective image representations, and have employed
discrete cosine transform [48], wavelet transform [49]–[51]
and sparse representations [9]–[11]. These methods usually
comprise three main steps, namely, decomposition, fusion and
reconstruction. Typically, fusion of information is perfomed
in the representation domain, therefore, the decomposition
method as well as the fusion rules are important issues when
following such an approach [3], [11].

In order to address the limited representation ability of
conventional transforms and the computational complexity
of overcomplete sparse representations, more recent efforts
aim at exploiting the great representation power of DNNs.
Existing works employ autoencoders [52], generative ad-
versarial networks [53], and CNNs [54]–[63]. Similarly to
transform domain methods, most DNN-based methods include
a representation, a fusion and a reconstruction step. Some
of these methods are applied to image patches [52], thus,
they often suffer from boundary artifacts, while others are
applied to whole images [60]. Besides end-to-end designs [60],
which integrate the three aforementioned steps and directly
produce the enhanced image, DNNs have been also used
for feature extraction; the obtained features are employed
in further post-processing steps [54], [58]. For instance, the
network proposed in the multi-focus method presented in [58]
performs focus detection which is used as a decision map;
the fused image is obtained by using the decision map and
the source images. An example of an end-to-end design is the
multi-level convolutional neural network (MLCNN) presented
in [60]. The authors of [60] assume that each image has
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low-frequency and high-frequency components and propose a
hierarchical CNN architecture. The network includes two CNN
branches, one for each input modality, and each CNN layer
corresponds to a different feature level. Similar to our design,
fusion of information is performed at intermediate layers, i.e.,
at each feature level, besides the final reconstruction stage.
Contrast to our model, each level corresponds to different
information content. The exchange of information between
the input modalities is a core idea adopted in [62] as well.
However, in this two-branch design, each branch performs
encoding of the similarities between the input modalities at the
spatial domain, while our approach encodes the similarities in
the representation domain. Nevertheless, the main drawback
of existing DNN models is their “black box” nature.

In this paper, we rely on results from sparse representations
and use deep unfolding to build an interpretable neural net-
work architecture that can jointly learn convolutional sparse
features of the source images. Reconstruction and fusion are
applied in subsequent blocks, resulting in a model that can be
trained end-to-end. To the best of our knowledge, this is the
first deep unfolding design applied to image fusion.

III. BACKGROUND

A. Sparse Coding

The problem of representing a signal y ∈ Rn using only a
few atoms from a dictionary D ∈ Rn×M , n ≤ M , is referred
to as sparse coding (SC) [64]. The sparse code α ∈ RM can
be computed as the solution of the minimization problem

min
α

1

2
∥Dα− y∥22 + κ∥α∥1, (1)

where κ is a regularization parameter, and ∥ · ∥1 denotes the
ℓ1-norm which promotes sparsity. Convolutional sparse coding
(CSC) is introduced as a variant of SC and is proved to be very
effective for two dimensional data, e.g., images [65]. CSC is
formulated as follows:

min
A

1

2
∥Y −

m∑
i=1

Di ∗Ai∥2F + κ

m∑
i=1

∥Ai∥1, (2)

where Y ∈ Rn1×n2 represents the input image, Di ∈ Rp1×p2 ,
i = 1, ...,m, are the atoms of a convolutional dictionary D ∈
Rp1×p2×m, and Ai ∈ Rn1×n2 , i = 1, ...,m, are the sparse
feature maps w.r.t. D; ∥ · ∥F denotes the Frobenius norm. The
ℓ1-norm calculates the sum of absolute values of the elements
in Ai (as if Ai was vectorized).

B. Sparse Coding with Side Information

According to recent studies [66], [67], correlated signals
can have similar sparse representations, that is, representations
with several common and a few disparate coefficients. This
type of similarity in the representation domain can be math-
ematically expressed by the ℓ1-norm. Let us assume that a
signal z ∈ Rn correlated with y is available. Assume that the
so-called side information signal z has a sparse representation
β with respect to a dictionary D̃ ∈ Rn×M , n ≤ M , i.e.,

z = D̃β. Then a sparse representation of y similar to β can
be obtained via the solution of the ℓ1-ℓ1 minimization problem

min
α

1

2
∥Dα− y∥22 + κ1∥α∥1 + κ2∥α− β∥1. (3)

In case of convolutional sparse coding, (3) takes the form

min
A

1

2
∥Y−

m∑
i=1

Di∗Ai∥2F+κ1

m∑
i=1

∥Ai∥1,+κ2

m∑
i=1

∥Ai−Bi∥1.

(4)
Both of the above problems aim to find the representation

of a target signal given the representation of a guidance signal.
The ℓ1-ℓ1 minimization approach was first applied for the
reconstruction of highly correlated signals such as sequential
signals which can have similar sparse representations under the
same dictionary [67]. Finding efficient coupled representations
of correlated signals coming from different modalities involves
a coupled dictionary learning step which is computationally
expensive [8].

C. Method of Multipliers

The method of multipliers (MM) [68] is an efficient algo-
rithm for the solution of constrained optimization problems of
the form

min
p

f(p) s.t. Ap = c, (5)

with p ∈ Rn the optimization variable, A ∈ Rm×n a
transformation matrix and c ∈ Rm a constrained parameter.
The MM algorithm solves the constrained problem in (5) by
minimizing the augmented Lagrangian function. Let us define
the augmented Lagrangian function as

L(p,ρ) = f(p) + ⟨ρ,Ap− c⟩+ η

2
∥Ap− c∥22, (6)

with ρ the Lagrange multiplier parameter, and ⟨·, ·⟩ denoting
the inner product of two vectors. Each MM iteration involves
the following updates:{

pk+1 = argminp L(p,ρk),

ρk+1 = ρk + η(Apk+1 − c).
(7)

Depending on the problem at hand, various methods can be
used for the solution of the minimization problem in (7). Next,
we discuss proximal methods.

D. Proximal Methods

Proximal methods [69] have been proposed for the solution
of optimization problems of the form

min
p

h(p) + λg(p), (8)

where h(·) is a differentiable convex function and g(·) is
convex, possibly non-smooth. A proximal method iterates over

pt+1 = Proxµ(p
t − 1

L
∇h(pt)), (9)

where L > 0 is an upper bound on the Lipschitz constant
of ∇h, and Proxµ(·) is the proximal operator with parameter
µ = λ

L , defined as

Proxµ(u) = argmin
v

{1
2
∥v − u∥22 + µg(v)}. (10)
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IV. COUPLED CSC VIA THE METHOD OF MULTIPLIERS

In this paper, we employ a joint sparse representation model
to address multimodal image reconstruction tasks. We consider
a scene captured by multiple image modalities, and assume
that the acquired images are correlated. Our goal is to combine
complementary information from different modalities to obtain
high quality images.

Our basic modelling assumption is that correlated images
can have sparse representations that are similar by means of
the ℓ1-norm. This means that the considered images have
many common and a few disparate sparse coefficients. The
assumption has been used in several studies in signal process-
ing including sequential signals [67], [70], signal acquisition
in sensor networks [71], or images captured by multiview
cameras [72]. Specifically, we assume that the images, Y, Z,
are decomposed as Y =

∑m
i=1 D

Y
i ∗Ai, Z =

∑m
i=1 D

Z
i ∗Bi,

with Ai −Bi, i = 1 . . .m, being a sparse signal.
Given the convolutional dictionaries, DY , DZ , finding the

coupled convolutional sparse codes A, B reduces to solving
a constrained optimization problem of the form:

min
A,B

m∑
i=1

∥Ai∥1 +
m∑
i=1

∥Bi∥1 + κ

m∑
i=1

∥Ai −Bi∥1

s.t.

m∑
i=1

DY
i ∗Ai = Y,

m∑
i=1

DZ
i ∗Bi = Z,

(11)

where κ > 0 is a weighting parameter. The first two terms of
the objective in (11) promote sparsity of the representation
coefficients, while the third term expresses the similarity
between images in the representation domain.

Before proceeding to the solution of (11), we would like
to note that sparse reconstruction of correlated signals has
been theoretically studied in [66]. This study considers that
similarity between correlated modalities can be also expressed
by means of the ℓ2-norm. However, the authors have shown
that for correlated signals the ℓ1-ℓ1 minimization problem
leads to higher accuracy than the ℓ1-ℓ2 minimization.

We can solve (11) by taking into account the linear
properties of the convolution. We replace the convolutional
dictionaries with Toeplitz matrices, and the image matrices
Y , Z with vectorized images y, z. Then, (11) takes the form:

min
α,β

∥α∥1 + ∥β∥1 + κ∥α− β∥1

s.t. Φyα = y, Φzβ = z,
(12)

where Φy (Φz) is a concatenation of Toeplitz matrices that
unroll the atoms DY

i (DZ
i ) of the convolutional dictionary

DY (DZ), and α (β) is a vector containing the sparse codes
of y (z).

The objective in (12) is convex w.r.t. one unknown while the
other is kept fixed. Therefore, we can solve (12) by alternating
between the solution of the following two sub-problems:

min
α

∥α∥1 + κ∥α− β∥1 s.t. Φyα = y, (13)

min
β

∥β∥1 + κ∥α− β∥1 s.t. Φzβ = z. (14)

Problems (13), (14) are of the form (5) and can be solved
with the method of multipliers. The augmented Lagrangian
function for (13) is defined as:

L(α,ρ1) = ∥α∥1 + κ∥α− β∥1 + ρ⊤
1 (Φyα− y)

+
η1
2
∥Φyα− y∥22,

(15)

where ρ1 is the Lagrange multiplier and η1 a regularization
parameter. According to (7), an MM iteration includes the
following updates:

αk+1 =argmin
α

{∥α∥1 + κ∥α− βk∥1

+ (ρk
1)

⊤(Φyα− y) +
η1
2
∥Φyα− y∥22},

(16)

ρk+1
1 = ρk

1 + η1(Φyα
k+1 − y). (17)

Similarly, for sub-problem (14), we define:

L(β,ρ2) = ∥β∥1 + κ∥α− β∥1 + ρ⊤
2 (Φzβ − z)

+
η2
2
∥Φzβ − z∥22.

(18)

The updates for β, ρ2 are given by

βk+1 =argmin
β

{∥β∥1 + κ∥αk+1 − β∥1

+ (ρk
2)

⊤(Φzβ − z) +
η2
2
∥Φzβ − z∥22},

(19)

ρk+1
2 = ρk

2 + η2(Φzβ
k+1 − z). (20)

The minimization problems (16), (19) are of the form (8)
and can be solved with proximal methods. For the update of
α, we define the smooth term h(α) = (ρk

1)
⊤(Φyα − y) +

η1

2 ∥Φyα − y∥22, and the non-smooth term g(α) = ∥α∥1 +
κ∥α− βk∥1. Then, the (k + 1)-update of α can be obtained
by a proximal algorithm, computing at the (t+1)-th iteration:

αk+1
t+1 = ξµ1

(
αk+1

t − 1

L
(Φ⊤

y ρ
k
1 + η1Φ

⊤
y Φyα

k+1
t − η1Φ

⊤
y y)

)
.

(21)
where ξµ1

is the proximal operator, which can be obtained as
the solution of (10). Nevertheless, since the proximal operator
depends only on g(α), we can borrow ξµ1 from [20], where
a problem with a similar non-smooth term was addressed;
according to this study, we set µ1 = µ(1 + κ)/2. Note that,
the analysis in [20] shows that the proximal operator expresses
the correlation between the sparse signals α, β.

Repeating the same analysis for (19) results in a proximal
algorithm for the (k+1)-update of β. At the (t+1)-th iteration
the algorithm computes:

βk+1
t+1 = ξµ2

(
βk+1
t − 1

L
(Φ⊤

z ρ
k
2 + η2Φ

⊤
z Φzβ

k+1
t − η2Φ

⊤
z z)

)
,

(22)
with ξµ2 parameterized by µ2 = µ(1 + κ)/2.

The sparse structure of the dictionaries Φy , Φz involved
in equations (17), (21), (20), (22) make the computations
inefficient. We can write these equations in the form of
convolutions by taking into account the Toeplitz structure of
the involved dictionaries. Considering that the transpose of a
Toeplitz matrix is also a Toeplitz matrix, we define D̃Y (D̃Z)
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Algorithm 1 MM-based coupled convolutional sparse coding
Require: Images Y, Z, convolutional dictionaries DY , DZ

Require: # of updates K + 1, # of iterations T + 1
Require: Regularization parameters η1 and η2

1: Initialize ρ0
1, ρ0

2 and B0

2: for k = 0 : K do
3: for t = 0 : T do
4: Given ρk

1 , Bk, DY solve for Ak+1 using (23)
5: end for
6: Given Ak+1, DY update ρk1

1 using (24)
7: for t = 0 : T do
8: Given ρk

2 , Ak+1, DZ solve for Bk+1 using (25)
9: end for

10: Given Bk+1, DZ update ρk1
2 using (26)

11: end for

as the convolutional dictionary corresponding to Φ⊤
y (Φ⊤

z ).
Then, (21), (17) can be written as follows:

Ak+1
t+1 = ξµ1

(
Ak+1

t −D̃Y ∗ρk
1+η1D̃Y ∗DY ∗Ak+1

t −η1D̃Y ∗Y
)
,

(23)
ρk+1
1 = ρk

1 + η1(DY ∗Ak+1
T+1 −Y), (24)

with t = 0, . . . , T , and Ak+1
T+1 the solution obtained after T+1

iterations of (23). Similarly, (22), (20) take the form:

Bk+1
t+1 = ξµ2

(
Bk+1

t −D̃Z∗ρk
2+η2D̃Z∗DZ∗Bk+1

t −η2D̃Z∗Z
)
.

(25)
ρk+1
2 = ρk

2 + η2(DZ ∗Bk+1
T+1 − Z). (26)

Equations (23)–(26) describe the four steps included in a
single update of an MM-based algorithm for the solution of
the coupled CSC problem (11). Algorithm 1 summarizes the
proposed method. Contrary to other coupled sparse coding
approaches, the proposed algorithm does not rely on the sparse
representation of one modality to find the sparse represen-
tation of the other modality, but alternates between the two
modalities, trying to transfer similar information from one
representation to the other.

We would like to note that our analysis assumes that the
dictionaries DY , DZ deployed in the sparse representation of
the given image modalities are predefined or known. In most
joint sparse representation models, the involved dictionaries
are learned from data. Therefore, an effective implementation
of the proposed approach should include a dictionary learning
step. Nevertheless, our goal is to employ the presented algo-
rithm for the design of a neural network. In this case, DY ,
DZ are network parameters that are learned during training.

V. MULTIMODAL CNN DESIGN

In Section IV, we presented an iterative algorithm for the
computation of coupled convolutional sparse codes. Next,
we propose a multimodal CNN obtained by unfolding the
iterative method. We use the proposed design to obtain two
multimodal neural network models tailored to specific image
reconstruction tasks.

A. Unfolding MM-based Coupled CSC

In order to unfold (23) into a neural network form, we
consider a single iteration (T = 0) of the proximal algorithm
in each update of A, and set Ak+1 := Ak+1

1 . We also set
η1 = 1. Then, we rewrite (23) as follows:

Ak+1 = ξµ1

(
Ak −Q1 ∗ ρk

1 + S1 ∗Ak −R1 ∗Y
)
, (27)

with Q1 := D̃Y , S1 := D̃Y ∗ DY , R1 := D̃Y . The
convolutional terms Q1 ∗ ρk

1 , S1 ∗ Ak and R1 ∗ Y can be
implemented as convolutional neural network layers with no
activation function and a stride size of 1 at each direction.
Although it is possible to design convolutional filters with
other stride sizes, in what follows we only consider the stride
size of 1 for simplicity. Zero padding is performed at each
layer in order to preserve the spatial resolution throughout
the network. The three convolutional layers are followed by
an activation function implementing the proximal operator
ξµ1

(·) [20]. For the update of ρ1, (26) can be written as
follows:

ρk+1
1 = ρk

1 + T 1 ∗Ak+1 −Y, (28)

with T 1 := DY . Equation (28) can be also unrolled into a
neural network form. Figure 1 depicts the updates of A and
ρ1 implemented by a CNN block.

Concerning the updates of B and ρ2, we rewrite (25), (26)
as follows:

Bk+1 = ξµ2

(
Bk −Q2 ∗ ρk

2 + S2 ∗Bk −R2 ∗ Z
)
, (29)

ρk+1
2 = ρk

2 + T 2 ∗Bk+1 − Z. (30)

Unrolling these equations into a neural network form results
in a structure similar to the one presented in Fig. 1 (we replace
Y with Z, and A, ρ1 with B, ρ2, respectively).

In what follows, a neural network block computing a single
update of the coupled convolutional sparse codes A, B is
referred to as a coupled CSC (C-CSC) stage. A C-CSC stage is
parameterized by Qi, Ri, Si, T i, i = 1, 2; the parameters can
be learned from data. Repeating several C-CSC stages yields a
multimodal deep neural network performing a fixed number of
iterations of the MM-based coupled-CSC algorithm. Learning
the network parameters can result in accurate estimation of
the sparse codes with only a few C-CSC stages.

We would like to note that the proposed design performs
coupling of the involved coefficients by (i) alternating between
the updates of A, B, and (ii) by using an activation function
that implements the proximal operators ξµ1

, ξµ2
, which also

express the similarity between A, B. Therefore, the proposed
architecture can effectively capture the correlation between the
input images.

The alternating update of the sparse codes of both modalities
implemented by each C-CSC stage is a key feature of our
design. Even in case the guidance modality Z is of high
quality, the bidirectional flow of information between the two
modalities is necessary for successful coupling. Images Y and
Z can have different sparse representations under different
convolutional dictionaries. Similar to multimodal dictionary
learning, finding a representation with several common co-
efficients requires to alternate between modalities to achieve
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both efficient coupling and approximation accuracy. To put it
differently, suppose we find a representation of Z and force
Y to follow this representation. Then, the results might not
be as good as possible either in terms of ℓ1-norm similarity
or in terms of approximation accuracy. In Section VI-D, we
compare the proposed bidirectional architecture with a similar
single-directional design and show the effectiveness of our
approach.

The bidirectional flow of information adopted in the pro-
posed design is a key difference with the designs presented in
our previous work [22]–[24]. These models employ a separate
(LISTA or convolutional LISTA) neural network branch to
generate the encoding of the guidance modality and force the
target modality to follow this encoding. The main advantage
of the architecture proposed in this paper compared to our
previous work is that both modalities are treated in the same
manner. This is achieved by the mathematical formulation
introduced by (11). While our previous work relies on the solu-
tion of an ℓ1-ℓ1 minimization problem of the form (3) (in [22])
or (4) (in [23], [24]), which find a representation of the target
modality given the representation of the guidance modality,
the algorithm proposed in this paper solves (11) where both
representations are considered unknown. Furthermore, the
algorithms unrolled in our previous work [22]–[24] are based
on the proximal method, whereas the network architecture in
this work is based on the method of multipliers [68], thereby
resulting in a different form of layers. Even though, both
approaches employ the same mechanism (activation function)
to force one encoding follow the other, the alternating steps
implemented by the proposed architecture together with the
different form of layers offer more flexibility and result in
more efficient coupling. This is corroborated by experimental
results presented in Section VI.

B. Training the proposed CNN

The proposed design can learn to predict coupled sparse
codes of the input imaging modalities. Let us denote as
C = f(Θ,Y ,Z) the proposed multimodal encoder, where
C = [A B], and Θ is the set of all trainable parameters
of the proposed architecture. Then, training with gradient-
based learning methods is feasible if f is continuous and
almost-everywhere differentiable with respect to Θ. f includes
the non-linear activations ξµ1

, ξµ2
which are piecewise linear

functions [20]. Although ξµ1
, ξµ2

are not differentiable at
some points, at these points the subderivatives can be easily
computed; therefore, the multimodal encoder can be trained
with gradient-based methods.

We obtain a training dataset by executing several iterations
of Algorithm 1 on J pairs of correlated images {Yj ,Zj}Jj=1.
Let {A∗

j ,B
∗
j}Jj=1 denote the set of the corresponding sparse

codes. Then, training can be performed by minimizing the
squared error between the available and the predicted sparse
codes, that is,

Lsparse(Θ,Yj ,Zj) =
1

2
∥A∗

j − Âj∥22 +
1

2
∥B∗

j − B̂j∥22, (31)

Fig. 1. A CNN block for the computation of the convolutional sparse codes
Ak+1 of an input image Y, given the convolutional sparse codes Bk of a
correlated image Z; ρk

1 is a parameter.

where [Âj B̂j ] = f(Θ,Yj ,Zj). The mean squared error
(MSE) is computed over the whole training set. By employing
stochastic gradient descent we obtain the t-th updating step:

Θt+1 = Θt − η
∂Lsparse(Θ,Yt,Zt)

∂Θ
, (32)

where η is the learning rate.
Next, we apply the proposed CNN design to address guided

image restoration and image fusion.

C. Multimodal Image Restoration

In multimodal or guided image restoration, we aim at
reconstructing a high quality image X, given a distorted (noisy
and/or low-resolution) image Y from the target modality and
a clean and high quality image Z from a second modality;
the second image modality is used to guide the restoration
process. We address this problem by making the following
modelling assumptions: (i) The input image Y and the output
image X share the same sparse feature maps w.r.t. different
convolutional dictionaries, that is, X =

∑m
i=1 D

X
i ∗ Ai,

Y =
∑m

i=1 D
Y
i ∗ Ai. Therefore, the recontruction of X

reduces to finding the sparse feature maps of Y, assuming that
the dictionaries are given. (ii) Images from different modalities
capturing the same scene have similar sparse representations.
Specifically, we assume that the input image Y decomposed as
Y =

∑m
i=1 D

Y
i ∗Ai, and the guidance image Z, decomposed

as Z =
∑m

i=1 D
Z
i ∗ Bi, have sparse feature maps that are

similar by means of the ℓ1-norm. Therefore, image restoration
can be formulated as a problem of the form (11).

We propose a multimodal CNN for guided image restoration
comprising several C-CSC stages that estimate the sparse
codes of the input Y guided by the sparse codes of Z. In
the last layer, we deploy a convolutional dictionary in order
to reconstruct the desired image X. Figure 2 illustrates the
proposed multimodal CNN design with three C-CSC stages.
We train the network end-to-end by minimizing the MSE loss
function

L =
1

J

J∑
j=1

∥Xj − X̂j∥22, (33)

where Xj , X̂j , j = 1, . . . , J , are the ground-truth and
estimated images, respectively, and J is the number of the
available training samples.

In Section VI, we deploy the proposed CNN for guided
image super-resolution and guided image denoising. For the
first task, we assume that a low-resolution (LR) image Y
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Fig. 2. The proposed multimodal MM-based CNN using three stages and one reconstruction layer. The black solid lines in the last layer illustrate the output
of the restoration CNN while the dashed lines represent the fusion network. The “plus” sign in the fusion layer represents a linear combination of the features.

from a target modality, and a high-resolution (HR) image Z
from a guidance modality have similar sparse representations
by means of ℓ1-norm; the LR image Y and the unknown
HR image X of the target modality share the same sparse
representation. For image denoising, we assume that the noisy
and denoised images of the target modality share the same
sparse feature maps.

D. Image Fusion

In image fusion, we aim at reconstructing a high quality
image X, given two degraded images Y, Z, possibly from
different modalities. We address this problem in a similar way
to guided image restoration. We adopt a joint sparse repre-
sentation model and assume that two complementary source
images, when represented w.r.t. appropriate dictionaries, can
have similar sparse representations by means of the ℓ1-norm.
We obtain the coupled convolutional sparse codes, A, B, of
the two given images Y, Z as the solution of (11). Having
computed A, B, the fused image can be obtained by averaging
the reconstructed images from the two modalities, that is,
X = λ1

∑m
i=1 D

Y
i ∗Ai+λ2

∑m
i=1 D

Z
i ∗Bi, with λ1+λ2 = 1.

Since both input modalities are degraded, averaging allows
the model to exploit the high-frequency information (details)
carried by each modality.

We use this modelling assumption to design a multimodal
CNN as follows. We build a network comprising several
C-CSC stages followed by a reconstruction step for each
modality. Then, the fused image is obtained as a sum of the
reconstructed images of both modalities (we assume that the
averaging weights λ1, λ2 are absorbed by the reconstruction
dictionaries). Figure 2 illustrates the proposed architecture
with three C-CSC stages. Similar to our previous design,
the fusion network is trained end-to-end using the MSE loss
function (33). In Section VI, we evaluate the proposed network
on two fusion tasks, namely, multi-focus image fusion and
multi-exposure image fusion.

VI. EXPERIMENTS

This section presents the implementation details for the
proposed model and its performance evaluation. First, the
model is employed for image restoration, namely, the super-
resolution of multi-spectral and NIR data with the aid of HR

RGB images, and denoising of flash/non-flash images. Second,
we apply the proposed model for multi-focus and multi-
exposure image fusion. The experiments include comparison
with state-of-the-art methods. The superior performance of our
approach is demonstrated both by numerical and visual results.

A. Experimental Setting

We realize a model with three C-CSC stages similar to the
one depicted in Fig. 2. We initialize the representation A of the
target modality and the Lagrange parameters ρ1, ρ2 with zero.
The convolutional layers contain 16 7× 7 kernels. Moreover,
zero padding is applied to the input of each convolutional layer
to preserve the same spatial size throughout the model. Initial
values of the convolutional kernels are randomly drawn from
a Gaussian distribution with a standard deviation 0.01. The
parameters µ1, µ2 of the proximal operators are initialized
to 0.2. We train the network using the Adam optimizer with
learning rate 0.0001 and mini-batch size 32.

B. Multimodal Image Restoration

1) Multimodal image super-resolution: In multimodal im-
age SR, the inputs to the network are the LR image Y from
the target modality and an HR image Z from the guidance
modality. The network provides the reconstructed HR target
image with the aid of the HR guidance image. The LR
images are obtained by performing blurring and downscaling
operations on the ground truth images. The guidance modal-
ity in our network only includes the luminance channel of
the corresponding RGB image. We utilize two multimodal
datasets, namely, the Columbia multi-spectral database1 and
the EPFL RGB-NIR dataset2. We reserve seven pairs from
the multispectral dataset and eight pairs form the NIR dataset
for testing. We apply SR at scales of ×4 and ×8 for the
multispectral data while choosing scales of ×2 and ×4 for the
NIR data in order to provide a wider diversity of the results.
We train the network separately for every scale and dataset.

For the experiments with multispectral data, we create a
training set consisting of 64×64 image patches and apply data
augmentation with rotation obtaining a dataset of size 40, 000.

1http://www.cs.columbia.edu/CAVE/databases/multispectral
2https://ivrl.epfl.ch/supplementary material/cvpr11/
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TABLE I
SUPER-RESOLUTION OF MULTI-SPECTRAL IMAGES WITH THE AID OF RGB IMAGES. PERFORMANCE COMPARISON [IN TERMS OF PSNR (DB) AND

SSIM] OVER SELECTED MULTI-SPECTRAL TEST IMAGES (FROM DIFFERENT BANDS) FOR ×4 AND ×8 UPSCALING FACTORS.

MS/RGB Chart toy Egyptian Feathers Glass tiles Jelly beans Oil Paintings Paints Average
×4 PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 28.94 0.9424 36.57 0.9786 30.80 0.9562 26.65 0.9242 27.81 0.9302 31.67 0.8943 29.29 0.9493 30.25 0.9393
SDF [30] 31.87 0.9694 39.43 0.9795 33.45 0.9650 28.22 0.9374 30.32 0.9433 32.86 0.9126 31.96 0.9655 32.59 0.9532
JBF [1] 32.56 0.9653 38.73 0.9735 33.60 0.9637 27.52 0.9341 30.29 0.9498 32.77 0.8962 31.94 0.9699 32.49 0.9504

JFSM [2] 32.98 0.9295 40.39 0.9705 33.89 0.9425 28.98 0.9397 31.18 0.9451 35.91 0.9560 32.76 0.9430 33.73 0.9466
GF [29] 34.09 0.9788 40.24 0.9796 33.60 0.9748 29.46 0.9593 30.90 0.9658 35.03 0.9441 31.73 0.9702 33.58 0.9675

SRCNN [13] 31.29 0.9796 38.04 0.9803 33.43 0.9848 27.85 0.9689 30.78 0.9771 30.50 0.9153 34.64 0.9878 32.36 0.9705
FSRCNN [14] 30.43 0.9770 38.29 0.9862 32.72 0.98418 28.15 0.9690 29.74 0.9781 32.27 0.9606 32.28 0.9844 31.98 0.9771

EDSR [16] 33.45 0.9836 40.03 0.9829 35.55 0.9875 29.75 0.9736 32.81 0.9838 32.69 0.9178 37.28 0.9914 34.51 0.9739
SRFBN [73] 33.43 0.9838 40.04 0.9822 35.53 0.9873 29.53 0.9676 32.97 0.9845 32.68 0.9182 36.06 0.9907 34.32 0.9735

DRN [74] 33.62 0.9844 41.01 0.9868 35.75 0.9893 29.57 0.9678 33.03 0.9856 32.93 0.9187 37.24 0.9914 34.73 0.9748
DGF [40] 34.19 0.9559 37.81 0.9620 31.22 0.9336 29.93 0.9339 28.94 0.9459 36.10 0.9649 31.72 0.9680 32.84 0.9520
DJF [39] 37.86 0.9935 45.69 0.9922 40.13 0.9939 34.97 0.9915 39.16 0.9885 37.76 0.9805 39.36 0.9944 39.28 0.9906

CoISTA [21] 36.58 0.9914 45.91 0.9961 39.62 0.9937 33.99 0.9907 38.92 0.9956 37.26 0.9690 38.40 0.9949 38.67 0.9902
LMCSC [24] 40.31 0.9965 48.79 0.9981 41.48 0.9962 34.65 0.9939 39.75 0.9966 39.14 0.9910 38.98 0.9966 40.44 0.9955
CU-Net [25] 39.47 0.9960 46.48 0.9926 42.43 0.9964 36.03 0.9944 40.64 0.9972 38.90 0.9840 40.90 0.9971 40.69 0.9940

proposed 41.13 0.9977 49.92 0.9991 42.27 0.9974 34.84 0.9948 40.75 0.9980 39.84 0.9926 39.69 0.9978 41.20 0.9968
×8 PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 25.00 0.8048 33.12 0.9316 25.59 0.8067 22.56 0.7308 23.04 0.7388 30.56 0.8234 26.40 0.8465 26.61 0.8118
SDF [30] 27.89 0.8933 34.22 0.9366 28.25 0.8967 24.66 0.8253 24.88 0.8527 31.61 0.8587 28.54 0.9246 28.58 0.8840
JBF [1] 28.00 0.9092 35.92 0.9578 26.48 0.8492 23.06 0.7706 24.74 0.8532 31.90 0.8531 28.21 0.9135 28.33 0.8723

JFSM [2] 30.28 0.8897 38.31 0.9451 28.24 0.9043 25.31 0.8851 26.59 0.9083 32.55 0.9199 29.97 0.9339 30.18 0.9123
GF [29] 29.77 0.9446 36.52 0.9627 27.85 0.9183 25.24 0.8641 25.05 0.8813 33.82 0.9383 29.25 0.9451 29.64 0.9221

SRCNN [13] 25.89 0.8768 34.26 0.9487 27.12 0.9008 22.67 0.8291 23.66 0.8214 31.06 0.8588 29.47 0.9354 27.73 0.8815
FSRCNN [14] 25.61 0.8804 33.03 0.9532 26.81 0.9147 23.88 0.8531 23.89 0.8732 29.67 0.8943 25.73 0.9186 26.95 0.8982

EDSR [16] 27.04 0.8802 35.62 0.9511 28.38 0.9040 23.53 0.8339 24.73 0.8259 31.95 0.8632 30.33 0.9425 28.78 0.8858
SRFBN [73] 27.90 0.8736 35.50 0.9755 30.14 0.9718 23.72 0.9002 25.80 0.9243 31.07 0.9258 28.03 0.9653 28.88 0.9338

DRN [74] 28.16 0.8748 35.72 0.9771 30.48 0.9732 24.02 0.9036 25.96 0.9262 31.33 0.9273 28.51 0.9669 29.16 0.9355
DGF [40] 28.39 0.8901 34.98 0.9444 26.83 0.8353 25.46 0.8987 25.97 0.8852 33.25 0.9351 27.89 0.9128 28.97 0.9002
DJF [39] 32.89 0.9733 41.58 0.9850 31.50 0.9396 29.53 0.9685 30.14 0.9503 35.12 0.9492 31.86 0.9553 33.23 0.9602

CoISTA [21] 33.18 0.9768 43.46 0.9906 32.04 0.9493 27.96 0.9390 30.69 0.9585 35.99 0.9482 33.05 0.9679 33.77 0.9615
LMCSC [24] 34.35 0.9805 43.90 0.9966 36.81 0.9875 30.20 0.9724 34.70 0.9888 36.27 0.9759 35.06 0.9910 35.90 0.9847
CU-Net [25] 34.21 0.9760 42.91 0.9952 36.27 0.9851 30.51 0.9697 33.94 0.9858 36.59 0.9749 34.75 0.9894 35.58 0.9823

proposed 35.47 0.9837 44.40 0.9969 37.83 0.9901 30.89 0.9797 34.79 0.9890 36.98 0.9793 34.96 0.9927 36.47 0.9873

We compare the multispectral image SR results against single-
modal deep learning methods such as SRCNN [13], FSR-
CNN [14], EDSR [16], SRFBN [73], DRN [74], and sev-
eral multimodal image SR techniques including optimiza-
tion based approaches, e.g., SDF [30], JBF [1], JFSM [2],
GF [29], learning based models, e.g., DGF [40], DJF [39],
CoISTA [21], CU-Net [25] and our previous work LMCSC-
Net [24]3. Table I presents numerical results in terms of Peak-
Signal-to-Noise-Ratio (PSNR) and structural similarity index
(SSIM). Recall that the PSNR between the ground truth
image X (8 bits) and the reconstructed image X̂ is given by
PSNR(X, X̂) = 20 log10

(
255/RMSE), where RMSE is the

root mean squared error of X , X̂ . SSIM is defined as

SSIM(X, X̂) =
(2µXµX̂ + c1)(2σXX̂ + c2)

(µ2
X + µ2

X̂
+ c1)(σ2

X + σ2
X̂
+ c2)

,

where µX (µX̂ ) and σX (σX̂ ) are the mean and the variance of
image X (X̂), respectively, and σXX̂ is the covariance of X

and X̂; c1 and c2 are constants. As can be seen in Table I, the
proposed network outperforms the abovementioned methods

3In [24], we have presented several architectures based on LMCSC-Net.
For a fair comparison, here, we present results of the baseline model. Since the
experiments include the same datasets, the interested reader can refer to [24]
for further comparisons.

with a PSNR gain up to 0.57 dB compared to the second
best methods, i.e., CU-Net [25] for scale ×4, and LMCSC-
Net [24] for scale ×8. Figure 3 provides a visual comparison
between the proposed and the baseline methods. Besides the
reconstructed images, the figure depicts the corresponding
error maps which clearly show the superior performance of
the proposed approach.

For the experiments with NIR data, we use a training
set containing 28, 000 pairs of image patches. We com-
pare our results against several single-modal methods, e.g.,
SRCNN [13], FSRCNN [14], CSCN [75], ACSC [42],
EDSR [16], SRFBN [73], DRN [74], and various multimodal
models including SDF [30], DJF [39], DMSC [22], LMCSC-
Net [24] and CU-Net [25]. As can be seen in Table II, the
PSNR gain against the second best method, that is, CU-
Net [25] is up to 0.87 dB. The superior performance of
the proposed model relies not only on learning an efficient
coupled representation of the modalities, but on the effective
fusion of the representations through the bidirectional flow of
information between the two modalities as well. In LMCSC-
Net [24], a limitation that affects the performance is that
the guidance representation, which is obtained using a side
information branch, is kept fixed during the computation of
the target modality features. Figure 4 depicts a reconstruction
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TABLE II
SUPER-RESOLUTION OF NIR IMAGES WITH THE AID OF RGB IMAGES. PERFORMANCE COMPARISON [IN TERMS OF PSNR (DB) AND SSIM] FOR

SELECTED TEST IMAGES FOR ×2 AND ×4 UPSCALING FACTORS.

NIR/RGB u-0004 u-0006 u-0017 o-0018 u-0020 u-0026 o-0030 u-0050 Average
×2 PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 30.55 0.9290 36.89 0.9462 34.83 0.9183 30.50 0.9116 32.68 0.9324 30.51 0.9142 30.90 0.8876 30.68 0.9229 32.19 0.9202
SDF [30] 30.72 0.9290 36.71 0.9364 34.89 0.9139 30.74 0.9128 32.89 0.9317 30.58 0.9110 31.02 0.8816 30.61 0.9125 32.28 0.9161

CSCN [75] 32.77 0.9715 39.47 0.9715 36.76 0.9574 33.98 0.9659 35.54 0.9658 32.94 0.9339 33.34 0.9465 33.31 0.9693 34.76 0.9602
ACSC [42] 33.24 0.9723 39.78 0.9718 36.64 0.9579 34.26 0.9670 35.65 0.9660 33.11 0.9416 33.32 0.9465 33.39 0.9696 34.93 0.9608

SRCNN [13] 33.41 0.9729 39.86 0.9724 36.82 0.9590 34.43 0.9676 35.77 0.9668 33.32 0.9425 33.46 0.9473 33.54 0.9704 35.07 0.9623
FSRCNN [14] 32.72 0.9949 39.05 0.9961 36.28 0.9923 33.84 0.9950 35.47 0.9953 32.91 0.9941 33.19 0.9910 33.34 0.9939 34.60 0.9941

EDSR [16] 35.10 0.9971 40.66 0.9958 37.57 0.9942 35.97 0.9961 37.11 0.9968 34.21 0.9941 34.82 0.9939 36.55 0.9956 36.49 0.9954
SRFBN [73] 35.36 0.9974 41.08 0.9970 38.19 0.9950 36.47 0.9971 37.50 0.9969 31.00 0.9782 35.57 0.9944 37.06 0.9966 36.53 0.9941

DRN [74] 35.54 0.9983 41.15 0.9970 38.12 0.9947 36.67 0.9968 37.42 0.9968 34.36 0.9949 35.34 0.9942 36.81 0.9960 36.92 0.9960
DJF [39] 34.50 0.9964 41.52 0.9975 38.65 0.9961 34.78 0.9960 37.35 0.9973 33.15 0.9939 35.67 0.9944 32.60 0.9928 36.03 0.9955

DMSC [22] 36.97 0.9976 43.22 0.9977 40.41 0.9970 37.90 0.9964 40.07 0.9975 34.96 0.9948 37.74 0.9953 33.78 0.9934 38.13 0.9962
LMCSC [24] 37.26 0.9977 43.60 0.9982 40.87 0.9967 39.21 0.9982 40.98 0.9980 35.60 0.9963 38.29 0.9961 34.11 0.9948 38.74 0.9970
CU-Net [25] 37.91 0.9971 43.51 0.9975 41.15 0.9956 38.56 0.9972 40.87 0.9973 35.94 0.9949 38.67 0.9950 34.51 0.9941 38.90 0.9961

proposed 38.09 0.9982 43.91 0.9985 41.52 0.9977 41.76 0.9986 42.17 0.9987 36.75 0.9969 39.23 0.9970 34.74 0.9959 39.77 0.9976
×4 PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 25.93 0.9029 30.89 0.9458 30.45 0.9527 25.19 0.9298 28.03 0.9577 26.27 0.8704 26.54 0.8401 26.65 0.9434 27.49 0.9179
SDF [30] 26.82 0.9066 30.60 0.8918 30.72 0.9281 26.09 0.9169 29.09 0.9505 26.61 0.8558 27.21 0.8415 27.07 0.9207 28.03 0.9018

CSCN [75] 27.64 0.9378 32.60 0.9361 32.60 0.9361 27.28 0.9250 30.04 0.9487 27.91 0.8724 27.72 0.8378 28.20 0.9101 29.14 0.9111
ACSC [42] 27.28 0.9371 32.61 0.9360 31.66 0.9208 27.42 0.9252 29.87 0.9483 27.92 0.8722 27.66 0.8381 27.80 0.9086 29.03 0.9107

SRCNN [13] 27.42 0.9736 32.57 0.9661 31.29 0.9674 27.64 0.9702 29.90 0.9765 27.76 0.9671 28.31 0.9513 28.57 0.9724 29.18 0.9680
FSRCNN [14] 27.34 0.9636 32.19 0.9596 31.46 0.9585 26.98 0.95362 29.57 0.9692 27.56 0.9524 27.53 0.9346 28.04 0.9579 28.84 0.9562

EDSR [16] 28.59 0.9759 33.42 0.9684 32.50 0.9693 28.54 0.9717 31.09 0.9789 28.74 0.9678 28.81 0.9528 29.58 0.9742 30.15 0.9699
SRFBN [73] 29.01 0.9787 33.73 0.9702 32.91 0.9725 28.88 0.9740 31.44 0.9807 29.10 0.9702 29.45 0.9583 29.89 0.9762 30.55 0.9726

DRN [74] 29.12 0.9793 33.78 0.9709 33.17 0.9732 29.04 0.9753 31.51 0.9815 29.23 0.9716 29.66 0.9587 30.29 0.9776 30.72 0.9735
DJF [39] 31.02 0.9784 36.04 0.9894 34.18 0.9815 30.72 0.9888 33.60 0.9915 29.21 0.9397 31.27 0.9345 28.58 0.9616 31.83 0.9707

DMSC [22] 33.19 0.9846 37.69 0.9892 36.00 0.9812 33.84 0.9888 36.33 0.9893 30.65 0.9725 33.19 0.9727 29.85 0.9716 33.84 0.9812
LMCSC [24] 33.75 0.9869 38.74 0.9912 36.16 0.9828 34.17 0.9902 36.95 0.9900 31.03 0.9784 33.56 0.9780 30.04 0.9772 34.28 0.9843
CU-Net [25] 34.08 0.9919 38.74 0.9928 36.18 0.9858 34.96 0.9935 37.39 0.9938 31.10 0.9815 33.59 0.9816 29.82 0.9773 34.49 0.9873

proposed 34.21 0.9923 39.77 0.9938 36.84 0.9873 36.51 0.9942 37.58 0.9941 31.76 0.9837 33.89 0.9822 30.41 0.9793 35.12 0.9883

example with the corresponding error maps, providing a visual
comparison between the proposed and the baseline methods.

2) Multimodal image denoising: We also apply the pro-
posed network to the denoising of non-flash images guided
by their flash counterparts. To this end, we employ the
flash/non-flash dataset presented in [76]. We reserve 12 image
pairs from the dataset for testing and extract patches of size
64× 64 from 200 image pairs, obtaining a training set of size
50, 000. We add Gaussian noise with three different levels of
σ = 25, 50 and 75 to the non-flash images. We evaluate the
performance of the proposed network by comparing against
two single-modal image denoising methods, i.e., CBM3D [77],
DnCNN [78], and three multimodal methods, i.e., DJF [39],
MuGIF [31] and CU-Net [25]. The proposed fusion strategy
provides an enhanced performance as can be seen from the
numerical results presented in Table III.

C. Image Fusion

1) Multi-focus image fusion: In multi-focus image fusion,
we aim at producing an all-in-focus image from several
images with different depth of focus. As there is no dataset
consisting of near-, far- and all-in-focus images with a proper
size, we synthesize a training dataset. For this purpose, we
utilize the images from the General-100 dataset and generate
two types of a focused image by randomly selecting the
foreground/background area and blurring one of them for each
image. The number of training data is 30, 000. For testing,

we use the multi-focus image from the Lytro dataset [79].
Our model is compared with the DCT-Corr [48], which is
a transform-domain method, and the deep learning designs
presented in [58] and [63].

We present visual results of this fusion task in Fig. 7. Unlike
DCT-Corr [48] [Fig. 7(b)], our fused image [Fig. 7(e)] contains
no visible artifacts around the edges where the focus transition
happens and presents a more natural output. Compared to the
reference CNN-based methods [58] and [63], the proposed
model generates a sharper all-in-focus image. As can be seen,
the numbers on the shirts of players 9 and 23 (standing close
to the net) look sharper in Fig. 7(e) than in Fig. 7(c) and
Fig. 7(d) (best viewed on the digital version).

2) Multi-exposure image fusion: In multi-exposure image
fusion, we aim at reconstructing a photo-realistic image by
fusing under-exposed and over-exposed images. We utilize
the proposed CNN with a recently published multi-exposure
dataset [80] which contains seven exposure levels for each
scene. We obtain a training dataset with 30, 000 pairs of image
patches, including the first level as the under-exposed image
and the sixth level as the over-exposed image. Since the first
level corresponds to a very dark image and the sixth level
to a very bright image, providing the desired photo-realistic
image is a challenging task. As a reference method we use
CU-Net [25].

Figures 5 and 6 present visual results for two example
images, namely, “tree” and “church”. For the “tree” image,



11

TABLE III
MULTIMODAL DENOISING OF FLASH/NON-FLASH IMAGES. PERFORMANCE COMPARISON [IN TERMS OF PSNR (DB)] FOR SELECTED TEST IMAGES AT

THREE DIFFERENT NOISE LEVELS.

Flash/non-flash Minion Towel Elmo Pendant Book Tampax Typewriter Pot Plant Flower Aloe Cactus Average

σ = 25

CBM3D [77] 33.63 37.25 36.03 39.39 36.17 35.94 34.37 33.91 33.82 35.62 31.86 31.38 34.95
DnCNN [78] 34.13 37.58 36.65 39.78 35.61 36.55 34.87 34.35 34.42 36.26 32.70 31.62 35.38

DJF [39] 31.59 36.86 34.69 36.83 34.16 34.45 32.81 33.26 31.90 34.69 30.78 31.13 33.76
MuGIF [31] 30.49 35.42 33.75 35.78 32.62 33.46 31.51 31.82 30.95 33.24 29.49 30.88 32.45
CU-Net [25] 34.24 37.99 36.82 39.95 36.86 36.97 35.07 35.52 34.42 36.40 32.83 33.26 35.86

proposed 34.52 38.43 37.05 40.26 37.10 37.22 35.54 35.95 34.74 36.91 33.07 33.62 36.21

σ = 50

CBM3D [77] 29.94 34.36 32.50 36.40 33.15 32.37 31.30 30.57 30.17 32.33 27.98 27.83 31.58
DnCNN [78] 30.32 34.65 33.24 36.58 32.37 32.95 31.87 30.87 30.83 33.04 28.49 28.04 31.94

DJF [39] 28.55 33.27 31.79 34.65 31.74 31.58 29.90 30.02 28.84 31.30 28.05 27.66 30.61
MuGIF [31] 26.93 32.02 30.94 31.78 29.72 30.54 28.57 28.97 27.45 29.93 28.97 27.81 29.22
CU-Net [25] 31.08 35.91 34.20 37.23 34.11 34.22 32.40 32.88 31.16 33.60 29.17 30.69 33.05

proposed 31.32 36.07 34.36 37.42 34.41 34.41 32.70 33.06 31.48 33.81 29.34 30.88 33.28

σ = 75

CBM3D [77] 27.85 32.34 30.75 34.41 31.40 30.31 29.56 28.79 28.20 30.40 25.83 26.10 29.66
DnCNN [78] 28.33 32.75 31.16 34.82 31.83 30.74 29.97 29.21 28.46 30.83 26.25 26.55 30.08

DJF [39] 26.65 31.77 30.63 32.78 29.54 29.86 28.85 28.33 27.54 29.25 25.56 26.26 28.92
MuGIF [31] 24.89 30.30 29.82 29.70 28.40 28.54 26.46 27.44 25.82 27.84 24.49 26.27 27.50
CU-Net [25] 29.12 34.25 32.55 35.12 32.93 32.19 30.55 31.66 29.17 31.73 27.03 29.30 31.30

proposed 29.39 34.48 32.75 35.44 33.19 32.44 30.89 31.85 29.47 32.03 27.24 29.56 31.56

(a) SRFBN [73] (b) DJF [39] (c) CoISTA [21] (d) LMCSC [24] (e) CU-Net [25] (f) proposed

Fig. 3. ×4 super-resolution of the multi-spectral image “chart toy” and the corresponding error maps. The proposed model is compared against a single-
modal (a) and four multimodal SR methods (b)-(e). The high quality reconstruction achieved by the proposed model in (f) results in a PSNR equal to 41.13.
The PSNR values for the second (d) and the third (e) best methods are 40.31 and 39.47, respectively. The superior performance of the proposed method is
more clear in the upper part of the image which contains structural details like numbers and shapes, implying a more efficient use of the side information.
All the multimodal methods (b)-(f) outperform the single-modal technique (a).

TABLE IV
DIFFERENT REALIZATIONS OF THE PROPOSED CNN WITH VARYING
FILTER SIZES OF THE CONVOLUTIONAL DICTIONARY. RESULTS ARE

PRESENTED IN TERMS OF AVERAGE PSNR FOR THE SUPER-RESOLUTION
OF MULTISPECTRAL IMAGES AT SCALE 8.

filter size 3×3 5×5 7×7 9×9
PSNR 36.07 36.23 36.47 36.38

TABLE V
COMPARISON OF THE INFERENCE TIME (SEC) OF THE PROPOSED MODEL

AGAINST SEVERAL REFERENCE METHODS W.R.T. TWO DIFFERENT INPUTS.

input size SDF [30] DGF [40] LMCSC [24] CU-Net [25] proposed
256×256 3.12 1.78 1.09 0.96 1.38
512×512 3.63 2.07 1.29 1.14 1.61

the proposed fusion model [Fig. 5(e)] results in a more natural
output with less halo-like artifacts around the tree compared
to CU-Net [25] [Fig. 5(d)]. For the “church” image, we
can see that the result of CU-Net [Fig. 6(d)] contains some
shadow-like artifacts around the window, and the art designs
on the window glasses are blurry, while the proposed model
[Fig. 6(e)] results in a sharper and more natural image.

D. Ablation study

In this section, we study the effect of different network
parameters—including the number of C-CSC stages, the num-
ber of iterations implemented at each C-CSC stage and the fil-
ter size of the convolutional dictionary—on the performance of
the proposed network. The comparison is performed using the
Columbia multi-spectral database4 for the task of multimodal

4http://www.cs.columbia.edu/CAVE/databases/multispectral
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TABLE VI
DIFFERENT REALIZATIONS OF THE PROPOSED CNN WITH A VARYING NUMBER OF C-CSC STAGES AND IMPLEMENTED ITERATIONS AT EACH STAGE.
RESULTS ARE PRESENTED IN TERMS OF AVERAGE PSNR FOR THE SUPER-RESOLUTION OF MULTISPECTRAL IMAGES AT SCALE 8. THE TABLE ALSO

INCLUDES THE CORRESPONDING NETWORK COMPLEXITY [IN TERMS OF NUMBER OF FLOPS (×1011)] FOR EACH CONFIGURATION.

MS/RGB ×8 SR #stages = 1 #stages = 2 #stages = 3 #stages = 4
PSNR (dB) FLOPs (×1011) PSNR (dB) FLOPs (×1011) PSNR (dB) FLOPs (×1011) PSNR (dB) FLOPs (×1011)

#iterations = 1 35.73 0.2164 36.14 0.4287 36.47 0.6411 36.51 0.8534
#iterations = 2 35.84 0.3488 36.19 0.6935 36.49 1.0382 36.55 1.3829
#iterations = 3 35.89 0.4812 36.20 0.9582 36.52 1.4353 36.59 1.9124

TABLE VII
PERFORMANCE COMPARISON BETWEEN THE PROPOSED BIDIRECTIONAL AND A SIMILAR SINGLE-DIRECTIONAL NETWORK ARCHITECTURE. RESULTS

ARE PRESENTED IN TERMS OF AVERAGE PSNR AND SSIM FOR THE SUPER-RESOLUTION OF MULTISPECTRAL IMAGES AT SCALES 4 AND 8.

MS/RGB Chart toy Egyptian Feathers Glass tiles Jelly beans Oil Paintings Paints Average
×4 PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

modified 40.28 0.9968 49.02 0.9985 41.53 0.9961 34.57 0.9941 39.87 0.9969 39.19 0.9917 39.11 0.9967 40.51 0.9958
proposed 41.13 0.9977 49.92 0.9991 42.27 0.9974 34.84 0.9948 40.75 0.9980 39.84 0.9926 39.69 0.9978 41.20 0.9968

×8 PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
modified 34.52 0.9812 43.88 0.9962 36.94 0.9882 30.13 0.9734 34.65 0.9887 36.31 0.9763 34.76 0.9910 35.88 0.9851
proposed 35.47 0.9837 44.40 0.9969 37.83 0.9901 30.89 0.9797 34.79 0.9890 36.98 0.9793 34.96 0.9927 36.47 0.9873

image SR by a factor of 8. The experiments are performed on
the same multispectral test set employed in Section VI-B and
results are presented in terms of average PSNR.

First, we evaluate the proposed multimodal restoration
network with three C-CSC stages each implementing one
iteration, and four different filter sizes, i.e., 3×3, 5×5, 7×7
and 9×9. The results depicted in Table IV suggest an increase
in performance for the size of 7×7. We fix the size of
the dictionary filters to 7×7 and provide the results on the
same task using a network with different number of stages
(1, 2, 3, 4) and different number of iterations (1, 2, 3). We
summarize the results of this ablation study in Table VI.
Table VI also includes results for the complexity of the
corresponding network expressed in terms of floating point
operations (FLOPs); the number of FLOPs is computed for
a forward pass of the trained network for input images of
size 512 × 512. The bold numbers in the table correspond
to the network design used for the experiments presented in
Section VI-B. We observe that increasing both the number
of C-CSC stages and the number of implemented iterations
at each stage improves the performance; however, the PSNR
gain from adding C-CSC stages is more significant. By taking
into account both the performance gain and the complexity,
an interesting observation is that a higher complexity does not
always lead to a better performance. For instance, a design
with three C-CSC stages and a single sparse coding iteration
outperforms a network design with two stages and two or three
iterations while having a lower complexity. If we use only one
stage with three sparse coding iterations, the design is similar
to our previous LMCSC-Net presented in [24].

Concerning the complexity of the proposed multimodal
CNN compared to other multimodal deep learning designs, we
report the following: The proposed CNN configuration used
in the experiments presented in Sections VI-B, VI-C contains
112K learnable parameters, a number similar to or lower
than the number of parameters in alternative best competing

methods, i.e., LMCSC-Net [24] with 98K parameters, CU-
Net [25] with 151K parameters, and CoISTA [21] with 818K
parameters. A comparison with respect to the inference time is
presented in Table V. All models are tested on a machine with
an NVIDIA GeForce GTX 1070 GPU. Note that our design
outperforms these models on different tasks.

Finally, the last set of experiments includes a comparison
of the proposed bidirectional network design, which alternates
the guidance role of the input modalities, with a similar single-
directional network that keeps the guidance representation
fixed and only updates the representations of the target modal-
ity (similar to LMCSC-Net in [24]). We build such a network
by replacing the LeSITA operator ξµ2 used in the beta updating
blocks (see (29)) with the simple soft thresholding operator
ϕγ(u) = sign(u)max(0, |u| − γ). The hyper-parameters of
both networks are the same. Table VII presents the results of
these two networks for multispectral image SR upscaling ×4,
×8. The results clearly show the superior performance of the
proposed design, indicating the significant role of the LeSITA
operator in the fusion process.

VII. CONCLUSION

In this paper, we presented a deep unfolding CNN design for
coupled convolutional sparse coding that relies on the method
of multipliers. The proposed CNN unfolds several stages of
the numerical algorithm performing coupled encoding of the
multimodal input data. For image reconstruction tasks, a final
reconstruction/fusion layer is added to generate the output
image. We have built two multimodal models tailored to mul-
timodal image restoration and image fusion. We have provided
an ablation study where the parameterization of the network
is investigated experimentally. The superior performance of
the proposed design against existing single-modal and multi-
modal designs was demonstrated by experimental results on
several multimodal datasets employed for multimodal image
restoration and image fusion. The provided numerical and
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(a) FSRCNN [14] (b) CoISTA [21] (c) LMCSC [24] (d) proposed

Fig. 4. ×2 super-resolution of the NIR image “o-0018” and the corresponding error maps. The proposed model is compared against a single modal SR
method in (a) and two multimodal deep unfolding designs in (b), (c), using RGB images as side information. Specifically, the results in (c) are obtained by
our previous work [24]. The error maps highlight an improved reconstruction of the structural details by the proposed model and show the ability of the
proposed architecture to integrate useful structural information from the RGB modality.

(a) under exposed (b) over exposed (c) ground truth (d) CU-Net [25] (e) proposed

Fig. 5. A multi-exposure image fusion example for image “tree”. Reconstruction with the proposed fusion model in (e) is compared against the multimodal
CU-Net [25] in (d). Both images are of high quality, however, the proposed design achieves a more natural output with less halo-like artifacts around the tree.

(a) under exposed (b) over exposed (c) ground truth (d) CU-Net [25] (e) proposed

Fig. 6. A multi-exposure image fusion example for image “church”. Reconstruction with the proposed fusion model in (e) is compared against the multimodal
CU-Net [25] in (d). The image obtained with CU-Net contains shadow-like artifacts around the window and blurriness in the art designs on the window
glasses, whereas the proposed model computes a sharper and more natural image.

(a) Source A, B (b) DCT-Corr [48] (c) [58] (d) [63] (e) proposed

Fig. 7. A multi-focus image fusion example. The proposed model in (e) is compared against a transform-domain method in (b), and two CNN designs in
(c), (d). The proposed design generates a sharper all-in-focus image with no visible artifacts around edges, resulting in a more natural output.

visual results corroborate that the proposed network structure
incorporates domain knowledge from sparse representations
efficiently, allowing fusion both at the encoding and decoding
steps, and the trained models offer accurate and fast inference.

Our model can be employed in other multimodal restoration
tasks that can be formulated as a linear inverse problem such
as compressive image reconstruction or image inpainting. We
will address these applications in our future work.
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