
Relationship-Based Threat Modeling

Stef Verreydt
imec-DistriNet, KU Leuven

Heverlee, Belgium

stef.verreydt@kuleuven.be

Laurens Sion
imec-DistriNet, KU Leuven

Heverlee, Belgium

laurens.sion@kuleuven.be

Koen Yskout
imec-DistriNet, KU Leuven

Heverlee, Belgium

koen.yskout@kuleuven.be

Wouter Joosen
imec-DistriNet, KU Leuven

Heverlee, Belgium

wouter.joosen@kuleuven.be

ABSTRACT

Threat modeling is a common technique for the systematic analysis

of system designs to uncover security and privacy threats. Popular

threat modeling techniques, however, currently only consider a

very localized system context, which hinders the discovery of more

complex attack scenarios that involvemultiple interactions through-

out a system. This may lead to the underestimation of threats that

are not harmful by themselves but enable multiple other high-risk

threats. Furthermore, current risk assessment approaches require

stakeholders to take the system as a whole into account when

providing inputs, which is tedious and error-prone.

This paper introduces relationship-based threat modeling (rbtm).

Using explicitly captured threat relationship knowledge, rbtm al-

lows to systematically and automatically generate a threat graph

which is then used as input for traceable risk calculations. This

removes the need to manually take into account threat relation-

ships during risk assessments and allows stakeholders to clearly

identify and communicate the rationale behind the resulting risk

values. The outputs of an rbtm analysis were compared to those of

a manual one performed by experts to evaluate the soundness of

our proposal, which also highlighted the traceability benefits.

CCS CONCEPTS

• Security and privacy → Software security engineering; •

Software and its engineering → Risk management; Model-

driven software engineering; Software design engineering.

KEYWORDS

Threat modeling, risk management, attack trees, attack graphs

ACM Reference Format:

Stef Verreydt, Laurens Sion, Koen Yskout, andWouter Joosen. 2022. Relationship-

Based Threat Modeling. In The 3rd International Workshop on Engineering

and Cybersecurity of Critical Systems (EnCyCriS’22), May 16, 2022, Pitts-

burgh, PA, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/

3524489.3527303

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EnCyCriS’22 , May 16, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9290-7/22/05. . . $15.00
https://doi.org/10.1145/3524489.3527303

1 INTRODUCTION

Threat modeling enables stakeholders to identify and address secu-

rity and privacy threats early in the software development lifecycle,

reducing development time in the long run [4]. The first step of a

threat modeling exercise is to model the system, usually as a Data

Flow Diagram (dfd). Potential security threats can then be revealed

using threat elicitation approaches such as stride-per-element [12],

which iterates over all elements of the dfd.

Elicited threats should be assessed according to their relative im-

portance to avoid wasting resources on irrelevant ones or spending

insufficient resources on critical ones. A number of prioritization

approaches exist to do so, for example Owasp’s risk rating method-

ology [18], the fair risk model [3], or automated prioritization

approaches [14] that rely on tool support [13]. All of these, how-

ever, require stakeholders to provide estimates for the likelihood

and impact of the identified threats, which is a challenging task

for multiple reasons. First, possible relationships between threats

should be accounted for. For example, an attacker successfully im-

personating another user at some web server may lead to tampering

or information disclosure threats on databases deeper within the

system, so the impact and/or likelihood of these threats should be

related. The above-mentioned prioritization approaches provide

no guidance on how to systematically account for such relation-

ships. Second, there is the problem of threat explosion: empirical

evidence [16, 19] shows that adding a single element to a system

model introduces around ten new stride threats. Thus, even for

smaller models, tens or even hundreds of impact and likelihood

estimates are needed to rank all possibly related threats. Third,

changes in the system model require re-evaluating all estimates,

as threats and threat relationships may change. This last point is

especially relevant early on in the development lifecycle, when

models are rapidly changing.

In the context of network security, techniques exist to auto-

matically generate attack1 graphs (e.g., [7, 10]) which can then be

analyzed to (dis)prove security properties or find the probability of

certain states being reached. To the best of our knowledge, these

techniques have never been applied in the context of early-stage

software threat modeling.We believe there are twomain reasons for

this. First, the precise attack definitions required for attack graph

generation are incompatible the high-level threats such as those

elicited with stride. Second, the input model for such techniques is

1We use the term ‘threat’ to refer to high-level, undesirable events (e.g., spoofing),
whereas we use the term ‘attack’ for technology or implementation-specific steps
which could be leveraged to realize a threat (e.g., a buffer overflow in an ssh server) [8].

41

2022 IEEE/ACM 3rd International Workshop on Engineering and Cybersecurity of Critical Systems (EnCyCriS)

EnCyCriS’22 , May 16, 2022, Pittsburgh, PA, USA S. Verreydt et al.

a network description (usually in terms of connected hosts, firewalls

and so on [7]), but threat modeling is not limited to networks.

In this paper, we propose rbtm, a relationship-based threat mod-

eling approach that enables the systematic incorporation of relation-

ships between threats for security analyses at design time. Based

on explicitly captured threat relationship knowledge, rbtm allows

to systematically and automatically generate a threat graph which

is then used as input for traceable risk calculations, thereby guiding

stakeholders towards the most important threats to be mitigated.

Furthermore, taking threat relationships into account explicitly re-

moves the need for stakeholders to consider the system as a whole

when providing the input for a risk calculation exercise.

The remainder of this paper discusses background information

and introduces the running example (Section 2), presents our pro-

posed approach (Section 3), evaluates it based on the running ex-

ample (Section 4), and discusses related work (Section 5), before

concluding in Section 6.

2 BACKGROUND AND RUNNING EXAMPLE

This section provides some background information on threat mod-

eling and introduces the running example.

2.1 Threat Modeling Background

Our proposal relies on the dfd notation, stride (as discussed by

Shostack [12]), and an extension to the dfd notation which enables

systematically capturing security knowledge.

DFD notation. The first step of a threat modeling exercise is to

model the system being analyzed. Such system model usually takes

the form of a Data Flow Diagram (dfd). The dfd notation comprises

just five elements, namely processes, data stores, external entities,

data flows and trust boundaries.

STRIDE. Stride [12] is an acronym that stands for Spoofing,

Tampering, Repudiation, Information Disclosure, Denial of Service

(DoS) and Elevation of Privilege (EoP). In essence, it is merely a

mnemonic to help stakeholders reason about potential threats ap-

plicable to some system model. Stride-per-element and stride-

per-interaction are variants which elicit potential threats by sys-

tematically iterating over a system model’s elements and inter-

actions respectively. When applying the per-element variant, an

elicited threat denotes the threatened element and the stride threat

type, for example a tampering threat on process X. With the per-

interaction variant, on the other hand, elicited threats also encom-

pass the data flow on which the threat could take place, for example,

a tampering threat on process X via data flow Y. The extra con-

text information gained from applying the per-interaction variant

makes it the preferred elicitation method for our proposal. Numer-

ous tools [11] exist to apply systematic variants of stride.

Security extension. The stride approach to threat modeling, as

discussed above, does not take into account information on ex-

isting security countermeasures by default. This lack of security

information prevents systematically and/or automatically adjusting

the risk of a threat based on whether or not it has been mitigated.

Our approach therefore relies on and extends (Section 3.1.2) the

solution-aware dfd notation proposed by Sion et al. [15], the main

Role

DFD ElementThreat Type

Role Binding

Solution InstanceSecurity Solution

CounterMeasure
protects 1..*

roles 0..*

binds

1
scope 0..*

mitigates
1..*

countermeasures

1..* bindings 1..*

bindsTo 1

pattern

1

Assumption

+ probability

assumptions 0..*
role

1

mitigated1..*

Figure 1: Extended solutions meta-model.

Grey classes and relationships depict the original meta-model by Sion

et al. [15], and the extension (Section 3.1.2) is shown in black.

concepts of which are shown in Fig. 1. Given the notation, a Secu-

rity Solution contains a list of Roles which describe the involved

DFDElements. For example, a solution for credential-based authen-

tication could include roles for (i) the data store containing user

credentials, (ii) the authenticating process, and (iii) the authenti-

cated flow. A Role can be protected by certain CounterMeasure(s),

which determine which specific ThreatType(s) to that element are

mitigated, for example the authenticating process being protected

from spoofing threats. Additionally, a CounterMeasure can specify

a scope to which its protection applies. For example, the spoofing

protection is only valid for the authenticated flow, and entities may

still be spoofed via other flows. Solutions can be instantiated in con-

crete models by assigning RoleBindings describing which elements

act as the required Roles in a concrete model, for example, data store

X contains the user credentials, process Y does the authentication,

and data flow Z is authenticated. Based on this information, tools

can automatically mark threats as mitigated if they are protected

against by a solution.

Data type annotations. Finally, our proposal can leverage data

type information if it is captured explicitly in the dfd model, for

example as discussed by Tuma et al. [17]. This allows threat re-

lationship knowledge such as “disclosing user credentials induces

spoofing threats” to be more easily expressed and applied, as will

be illustrated in Section 4.

2.2 Running Example

As a running example, we use DocProc, a case developed several

years ago in the context of a course on software architecture at our

university. DocProc is a generalization of a real-world business-to-

business software system for document processing, offering ser-

vices to automate document generation and delivery. Customer

organizations provide DocProc with the raw data and templates

required to generate and deliver their documents (e.g., invoices).

DocProc then generates the documents and delivers them to their

intended recipients via one of the supported delivery channels.

DocProc also allows recipients to register themselves to a personal

document store (pds) that contains all documents sent to them.

Modeling the DocProc delivery system at a coarse-grained ab-

straction level results in a dfd with 4 external entities, 3 processes,

3 data stores, and 23 data flows (Fig. 2). We shortly describe each

42

Relationship-Based Threat Modeling EnCyCriS’22 , May 16, 2022, Pittsburgh, PA, USA

E1. print
service

E2. e-
banking

E3. email
provider

E4. PDS user

DOCPROC

DS1. generated
docs archive

DS2. PDS docs
DS3. PDS user data

P2. delivery
manager

P3. PDS

P1. document
scheduler

DF12.
generated

document +
delivery info

DF17.
delivery

status + doc
ID

DF20.
requested
document

DF23. login
credentials

DF18.
URL

DF13. document
+ delivery info

DF15.
doc

DF19.
doc ID

DF22. user ID

DF14. doc ID
+ delivery

status

DF16.
doc +
user ID

DF21. new user info (email,
name, address, password)

DF11.
doc ID

DF1. batch of docs
with delivery info

DF2. batch of docs
with delivery info

DF4. PDF or URL with
delivery info

DF9. requested
document

DF10.
requested

doc

DF11.
doc ID

DF12.
generated

document +
delivery info

DF13. document
+ delivery info

DF14. doc ID
+ delivery

status
DF15.

doc

DF16.
doc +
user ID

DF17.
delivery

status + doc
ID

DF18.
URL

DF19.
doc ID

DF20.
requested
document

DF21. new user info (email,
name, address, password)

DF22. user ID

DF23. login
credentials

DF3. delivery
status + doc ID

DF5. delivery
status + doc ID

DF6. login cred
+ doc ID

DF7.
URL

DF8. new user info (email,
name, address, password)

Figure 2: Dfd of the DocProc document delivery subsystem.

Circles, closed rectangles, and open rectangles represent processes,

external entities and data stores respectively. Arrows denote data

flows, and the dashed line denotes a trust boundary.

component’s responsibilities in what follows. Generated documents

and delivery status information is stored in DS1. P1 is responsible

for scheduling the generated documents for delivery. P2 handles

the actual delivery and tracks the delivery status for the delivery

services which support them. The supported delivery methods are

print and postal (E1), e-banking (E2) and email (E3). pds users (E4)

have their documents stored in DS2. P3 is responsible for handling

incoming pds requests, including authorization and authentication.

Details and credentials of pds users are stored in DS3.

3 RELATIONSHIP-BASED THREAT
MODELING

A high-level overview of the Relationship-Based Threat Modeling

(rbtm) approach is provided in Fig. 3. The approach of Sion et

al. [13] is leveraged to elicit threats and calculate their likelihood.

RBTM then generates a threat graph by applying threat relationship

knowledge to the list of elicited threats, thereby also considering

the system model and any security solutions. Finally, the threat

graph and impact estimates are used as inputs for a risk calcula-

tion algorithm, resulting in traceable risk values. This section first

provides an overview of the additional inputs required to apply

rbtm compared to the base approach, before discussing both the

threat graph generation and risk calculation. Finally, we shortly

summarize the capabilities required to apply rbtm.

Base approach (Sion et al.)

RBTM extension

DFD

Model

Security

Solutions

Threat

Elicitation

Attacker

Model

Threats and

Likelihood

Graph

Generation

Threat Relationship

Knowledge

Threat

Graph

Risk

Calculation

Traceable

Risk Values

Impact
Estimates

Strength

Figure 3: High-level overview of rbtm.

Required inputs are highlighted in color.

3.1 RBTM Inputs

Besides the inputs needed to apply the base approach, rbtm also

requires threat relationship knowledge and knowledge on how

solutions can be broken or circumvented.

3.1.1 Threat Relationship Knowledge. We define a threat relation-

ship using the following properties: (i) the cause threat, (ii) the

effect threat, (iii) the propagation condition, and (iv) the propa-

gation probability. For example, a tampering threat on a process

(cause) induces a DoS threat on a data flow (effect), if that data flow

starts from or ends at the threatened process (propagation condition)

with a probability of 100% (propagation probability). In what follows,

each of these properties are described in more detail.

Cause and effect threats. In the example above, cause and effect

are expressed generically (a tampering threat on a process), without

specifying concrete dfd elements. In contrast, eliciting threats for

a specific system model results in concrete context-specific threats

(for example, for Fig. 2, tampering with process P2). We make

this distinction explicit by referring to these types of threats as,

respectively, abstract threats and concrete threats. Analogously, we

refer to generic threat relationships such as the given example as

abstract threat relationships. Concrete threat relationships are then,

as the name suggests, relationships between concrete threats. For

example, applying the aforementioned abstract threat relationship

to the DocProc dfd results in several concrete threat relationships,

including that tampering threats on P1 induce DoS threats on DF11,

DF12, and DF13. The meta-model in Fig. 4 visualizes these concepts.

43

EnCyCriS’22 , May 16, 2022, Pittsburgh, PA, USA S. Verreydt et al.

Abstract Threat Relationship

+ Propagation Condition
+ Propagation Probability

Abstract Threat Concrete Threat

cause 1 effect 1

instanceOf instances
0..*0..*

cause 1 effect 1

instanceOf instances
0..*0..*

Concrete Threat Relationship

+ Propagation Probability

Figure 4: Rbtm threats and relationships meta-model.

Propagation condition. There are some restrictions on how threats

can induce one another. For example, tampering with a process

induces DoS threats on data flows, but only on those starting from

or ending at the affected process. It is therefore necessary to cap-

ture how the cause threat and the effect threat of an abstract threat

relationship are related. Examples of other threat relationships re-

quiring propagation conditions are that tampering with a process

via some data flow induces DoS threats on that same process via

the same data flow, and that the sender of a data flow being spoofed

may induce EoP threats on the recipient of that data flow.

Propagation probability. A script kiddie could accidentally tam-

per with a web application, but it requires a skilled adversary to

specifically tamper with a process to obtain elevated privileges.

Turning a spoofing threat into an EoP threat, on the other hand,

requires no effort at all: an attacker successfully identifying as

another user automatically grants them their privileges. A threat

relationship is therefore enriched with a propagation probability,

which denotes the probability that a successful realization of the

cause threat will lead to a successful realization of the effect threat.

3.1.2 Solution assumptions. Introducing new security countermea-

sures may also introduce new threat relationships. For example,

disclosing user credentials may invalidate an authentication so-

lution, and spoofing threats may thus occur even though there

is a defense in place. The solution-aware dfd notation discussed

in Section 2.1 does not, however, allow capturing how solutions

can be broken or circumvented. We therefore extended it with as-

sumptions on which security solutions rely, including a probability

with which invalidating the assumption would break the solution.

For example, we could add an assumption to the credentials-based

authentication solution (Section 2.1) stating that information dis-

closure and tampering threats on the credentials database break

the solution with a probability of 100%. This, in turn, enables sys-

tematically finding threat relationships from threats invalidating a

solution’s assumption to threats mitigated by that solution, as will

be illustrated in Section 3.2.

3.1.3 Reusable knowledge. Generally applicable abstract threat

relationships, such as spoofing threats inducing EoP threats, can be

captured in catalogs to enable reuse across multiple system models.

The same goes for knowledge on security solutions and attacker

models. Having access to reusable catalogs reduces the amount of

effort required to provide all inputs for an rbtm analysis, as well as

lowering the required security expertise. Developing such reusable

catalogs is, however, left for future work.

3.2 Graph Generation

A threat graph generated by rbtm is one where the nodes are con-

crete threats and edges are concrete threat relationships weighted

with propagation probabilities. The concrete threats are found

through threat elicitation (top of Fig. 3). Rbtm identifies the concrete

threat relationships in two ways: (1) by applying abstract threat

relationships, and (2) by applying solution assumption knowledge.

The pseudo-code2 for applying an abstract threat relationship is

shown in Algorithm 1. For example, applying the abstract threat

Algorithm 1: Apply an abstract threat relationship.

input :AbstractThreatRelationship atr;

DFDModel dfd;

output :Set<ConcreteThreatRelationship> result;

cCauses← atr.cause.instances;

cEffects← atr.effect.instances;

for (cCause← cCauses)

for (cEffect← cEffects)

checkPropagationConditions(cCause, cEffect, dfd);

if (propagation conditions met)
result.add(new

ConcreteThreatRelationship(cCause, cEffect,

atr.probability));

relationship “a tampering threat on a process (cause) induces a DoS

threat on a data flow (effect), if that data flow starts from or ends at

the threatened process (propagation condition) with a probability of

100% (propagation probability)” to the DocProc case goes as follows.

First, concrete instances of the abstract cause threat are identified

in the set of elicited threats, for example tampering threats on P2

via DF3 and DF6. Similarly, DoS threats on DF1 through DF23 are

all concrete instances of the abstract effect threat. A concrete threat

relationship is then created for each combination of concrete cause

and effect which meets the propagation condition. For example, a

tampering threat on P2 via DF3 and a DoS threat on DF3 fit the

propagation condition, so rbtm creates a relationship between the

former and the latter. A tampering threat on P2 via DF3 and a DoS

threat on DF11, on the other hand, do not fit the propagation con-

dition, so no relationship will be instantiated for this combination.

The pseudo-code for applying solution assumption knowledge

is shown in Algorithm 2. In short, each threat which breaks an

assumption for a certain solution may allow circumventing that

solution and therefore, in turn, induce the threats against which

the solution protects. For example, for DocProc, instantiating the

credentials-based authentication solution discussed earlier (where

DS3 contains user credentials, P2 authenticates requests, andDF6 is

the authenticated flow) allows rbtm to identify concrete threat rela-

tionships as follows. The solution mitigates the spoofing of external

entity E4 on DF6. If the user credentials in DS3 are disclosed via

DF23, this breaks one of the authentication solution’s assumptions.

Therefore, rbtm creates a concrete threat relationship from the

information disclosure threat to the mitigated spoofing threat.

2The pseudo-code only depicts the main idea. The developed prototype (Section 4) uses
a combination of pattern matching and custom code to identify threat relationships.

44

Relationship-Based Threat Modeling EnCyCriS’22 , May 16, 2022, Pittsburgh, PA, USA

Algorithm 2: Apply solution assumption knowledge.

input :Set<ConcreteThreat> allThreats;

SolutionInstance s;

output :Set<ConcreteThreatRelationship> result;

cEffects← { t ∈ allThreats | s.mitigates(t) };

for (Assumption a← s.assumptions)

cCauses← { t ∈ allThreats | t.invalidates(a) };

for (cCause← cCauses)

for (cEffect← cEffects)
result.add(new

ConcreteThreatRelationship(cCause, cEffect,

a.probability));

3.3 Risk Estimation

The risk 𝑅𝑡 of a threat 𝑡 is generally defined as a combination of
its likelihood 𝐿𝑡 and impact 𝐼𝑡 , i.e., 𝑅𝑡 = 𝐿𝑡 × 𝐼𝑡 . Traditionally, the
likelihood of a threat takes into account all possibilities for an at-

tacker to realize it, and the impact considers all potential negative

effects, both direct and indirect. For example, assume that a cer-

tain spoofing threat has been mitigated by the credentials-based

authentication solution described earlier, but that there is an unmit-

igated information disclosure threat on the data store containing

the credentials. If this spoofing threat is impactful, then traditional

risk calculation approaches would assign it a high risk value, as the

authentication solution that mitigates the threat could be circum-

vented by leaking user credentials. This may, however, give the false

impression that another solution is needed for the spoofing threat,

even though it is the information disclosure threat which should be

addressed. In other words, the traditional interpretation of risk does

not help stakeholders in deciding which threats to mitigate first.

Furthermore, providing likelihood and impact estimates requires

taking into account the system as a whole, which is challenging for

multiple reasons, as discussed earlier. To tackle these issues, rbtm

redefines the likelihood and impact in a relationship-based context.

3.3.1 Likelihood. As described in the previous paragraph, a threat

receiving a high risk value from rbtm should indicate that a mitiga-

tion for that threat should be introduced. With rbtm, the likelihood

of a threat therefore only concerns an attacker’s potential to realize

it as an initial entry point for an attack, disregarding any potential

threat relationships. Thus, a threat having a likelihood of zero in

rbtm does not mean that attackers can never realize the threat, only

that they cannot realize it as an initial entry point. For example, a

mitigated spoofing threat will receive a low likelihood value from

rbtm, meaning that attackers will most likely not be able to use it

as an initial entry point. Attackers could still, however, realize that

spoofing threat by first realizing unmitigated information disclo-

sure threats on the data store containing credentials, the likelihood

of which would be high due to the lack of mitigations. Assigning a

likelihood in rbtm is thus greatly simplified, as only the probability

of immediately realizing that particular threat, without realizing

other threats first, must be taken into account. Threat relationships

are accounted for as part of the impact, as will be described next.

3.3.2 Impact. Rbtm defines the impact of a threat as a combination

of its direct and indirect impacts 𝐼𝑑𝑡 and 𝐼𝑖𝑡 , i.e., 𝐼𝑡 = 𝐼𝑑𝑡 + 𝐼𝑖𝑡 . The

direct impact of a threat denotes the extent in which it directly

counteracts business goals or missions, disregarding the system as

a whole or potential threat relationships. The indirect impact of a

threat then accounts for its relationship to other threats which coun-

teract business goals. Whereas the direct impact must be estimated

by stakeholders, the indirect impact can be derived systematically

by leveraging the generated threat graph. We shortly discuss each

of these components in what follows.

Direct impact. In the case of DocProc, retaining customer trust

and avoiding fines could be considered core business goals. As in-

formation disclosure threats on the data store that contains user

documents (DS2 in Fig. 2) directly counteract these business goals,

they should be assigned a high direct impact estimate. On the

other hand, an EoP threat on P2may induce threats that counteract

business goals (e.g., disclosing user documents), but there are no

damages linked directly to an attacker gaining elevated privileges.

The same reasoning can be applied for most spoofing or elevation

of privilege threats, and for tampering threats on processes. The

number of threats with a significant direct impact is therefore most

likely small in comparison to the total number of threats. Further-

more, providing direct impact estimates requires minimal effort, as

threats are examined in isolation of the system, and relationships

to other threats do not need to be accounted for.

Indirect impact. If a threat 𝑡 induces another threat 𝑡 ′, then the
indirect impact of 𝑡 should include the direct impact of 𝑡 ′. The prob-
ability of 𝑡 inducing 𝑡 ′ must, however, also be taken into account,
which is why the threat propagation probability is captured. We

define the most reliable path (mrp) from 𝑡 to 𝑡 ′ as to the chain of
threat relationships which an attacker could exploit to turn threat

𝑡 into threat 𝑡 ′ with the least possible resistance. Similarly to the
algorithm used by Sarraute et al. [9], rbtm calculates the mrp by

using a modified shortest path algorithm. In summary, we define

the indirect impact of a threat 𝑡 (𝐼𝑖𝑡) as follows:

𝐼𝑖𝑡 =
∑

𝑡 ′
𝐼𝑑𝑡 ′ × 𝑃𝑀𝑅𝑃𝑡→𝑡 ′

. (1)

Here, 𝐼𝑑𝑡 ′ is the direct impact of another threat 𝑡
′ and 𝑃𝑀𝑅𝑃𝑡→𝑡 ′

is

the probability of the (mrp) from 𝑡 to 𝑡 ′. Note that in a worst-case
analysis, 𝑃𝑀𝑅𝑃𝑡→𝑡 ′

is always equal to 1 whenever 𝑡 may lead to 𝑡 ′.

3.4 Required Capabilities

Being able to systematically apply solution and threat relationship

knowledge, which can be obtained from reusable catalogs, and only

having to provide direct impact estimates, significantly reduces

the required effort and (security) knowledge for a risk estimation

exercise. In short, applying rbtm requires the capabilities to (i) con-

struct a dfd for the analyzed system, including the applied security

solutions; (ii) determine the threats with a direct (business) impact

and estimate their impact; (iii) identify threat relationships specific

to the analyzed system; and (iv) comprehend the output of rbtm.

Here, only the last two require security knowledge, which is a clear

improvement over having to manually take solution knowledge

and potential threat relationships into account when estimating

the relevance of a threat.

45

EnCyCriS’22 , May 16, 2022, Pittsburgh, PA, USA S. Verreydt et al.

4 SOUNDNESS EVALUATION

To evaluate rbtm, we have implemented it as an extension of a

previously developed tool, sparta [13], which automates the base

approach shown in Fig. 3. We define the soundness of rbtm as

its ability to prioritize threats that are also found and deemed im-

portant by a panel of security experts. The soundness evaluation

therefore depends on a baseline, namely an independent threat anal-

ysis of DocProc by an expert panel. In what follows, we provide an

overview of the baseline, rbtm inputs, and results. The complete

analysis data can be found online [1].

4.1 Baseline

The baseline used for this evaluation consists of a list of 35 threats

for DocProc. This list was created independently by a panel of six

experts, as part of another research project prior to this work.3

All experts were researchers familiar with security and software

design. Each expert independently analyzed the dfd of DocProc

(Fig. 2) using stride and noted down the threats that they deemed

important and their rationale. The used baseline is the union of

these threats, i.e., all threats found by at least one of the experts.4

The experts also gave a priority to the threats (high, medium, or

low), although they rarely agreed (Fleiss’ 𝜅 = 0.12, indicating slight
agreement). This highlights the need for a systematic relevance

assessment approach. When experts disagreed on the priority for a

threat, we use the most frequently given one.

4.2 RBTM Inputs

The experts were only given the dfd shown in Fig. 2 and a general

case description. To stay as close as possible to the expert analysis,

the case-specific inputs used for the rbtm evaluation only include

information that was available in either of these sources. This in-

formation was complemented with commonly available security

knowledge (which experts may have applied implicitly). We shortly

discuss the rationale behind the inputs and describe some examples.

4.2.1 Data types. The dfd provided to the experts is annotated

with textual data type information. For our evaluation, we added

this information to the dfd model using structured annotations.

4.2.2 Security solutions. While no solutions are captured explicitly

in Fig. 2, a few can be derived from just the dfd. For example, using

the extended solution notation (Fig. 1), we explicitly captured that

P3 authenticates users at DF6 through user credentials, but only

if the user credentials are not leaked or tampered with, and if P3

itself is not tampered with. Here, the data type annotations allow

to more easily capture the assumption that user credentials should

not be leaked or tampered with, as tool support can then automati-

cally identify which dfd elements deal with user credentials. The

case description provided to the experts also described several as-

sumptions. These include, for example, that “we do not consider any

threats that originate from within the trust boundary”, and that data

flows 1 through 10 (DF1–DF10) are “encrypted and thus considered to

have channel confidentiality and integrity”. These were translated to

3Since we do not rely on specific attack or vulnerability knowledge, the gap in knowl-
edge between our study and the expert analysis is limited.
4The threats in the expert baseline included a mixture of 28 per-element and per-
interaction threats. To allow for comparison with rbtm threats, we homogenized them
into 35 per-interaction threats.

solutions so that the relevant threats would be marked as mitigated.

We assumed that security solutions fully mitigate the threats they

protect against, so we assigned these threats a likelihood of zero

(of being used as entry point, cfr. Section 3.3.1).

4.2.3 Threat relationships. Potential threat relationships were not

explicitly provided to the experts, although they may have relied on

their experience to reason about them (which they did, as evidenced

by their rationale, in which they mention possible causes and effects

of threats).With rbtm, these relationships can be included explicitly

and obtained from reusable catalogs.

Sixteen generally applicable threat relationships were obtained

from the threat tree patterns proposed by Howard and Lipner [4].

For example, in the threat tree pattern for ‘Tampering with a pro-

cess’, ‘Provide fake credentials’ is listed as a possible cause. This

was translated to an abstract threat relationship from a spoofing

threat on some process to a tampering threat on that same process.

Furthermore, five case-specific threat relationships were added,

namely that tampering with delivery information induces infor-

mation disclosure threats on P2 via DF1, DF2 and DF3, and on P3

via DF9 and DF10, as documents are sent to the wrong recipient.

The structured data type annotations again allow tool support to

automatically identify tampering threats on delivery information.

For the evaluation, we assume a worst-case scenario where all

propagation probabilities are 100%. This assumption may not hold

in practice. Similarly, while the collection of threat relationships

described by Howard and Lipner [4] is not necessarily complete,

it serves as an adequate starting point for systematic threat graph

generation. Formulating a more complete set of threat relationships

and propagation probabilities is left for future work.

4.2.4 Direct impact estimates. As mentioned in Section 3.3, rbtm

only requires direct impact estimates for threats with immediate

business value. The main rationale applied for the direct impact

assignments is as follows. Threats against the integrity and con-

fidentiality of the generated documents, as well as availability of

delivery and pds components, were assigned high direct impact

estimates, as they directly counteract the main goals of DocProc.

Furthermore, several repudiation threats should be mitigated to en-

sure accountability, and are thus assigned a medium direct impact

estimate Finally, threats which increase the operational costs, such

as attackers sending documents to the delivery services in the name

of DocProc, are also assigned a medium direct impact estimate.

By leveraging the developed tool, this rationale can be applied

automatically using seven relatively simple rules such as “Add 2 to

the direct impact of information disclosure and tampering threats

on elements dealing with generated documents”. The full list of

rules can be found online [1].

4.3 Results

Applying rbtm to the DocProc example with the inputs from above

resulted in 191 threats, the majority of which (154) were assigned

a risk value of zero by rbtm because of a solution or assumption,

or not having a (direct or indirect) impact. Three threats identified

by the experts were not elicited by rbtm. The reason for this is

that the used threat elicitation engine was based on the threat

elicitation tables from Shostack [12], which do not identify them as

46

Relationship-Based Threat Modeling EnCyCriS’22 , May 16, 2022, Pittsburgh, PA, USA

Rbtm assessment

H M L 0 NA Total

E
x
p
er
t H 6 – – 9 – 15

M 3 0 3 – – 6

L 5 – 3 3 3 14

Not mentioned 16 – 1 142 – 159

Total 30 0 7 154 3 194

Table 1: Comparison of risk assigned by experts and rbtm.

relevant. There are only four non-zero possible risk values, mainly

due to the discretization of the inputs (e.g., assuming that solutions

fully mitigate threats and a propagation probability of 100%). Seven

threats received a low risk value (2.25 or 4.5). Such threats have
a direct impact but do not induce other impactful threats. Thirty

threats were assigned a high risk value (166.5 or 162). These induce
other impactful threats, and potentially have some direct impact

themselves. Since the difference between low and high risk values

is clear, we labeled threats as such to allow easy comparison to the

expert analysis (Table 1).

Compared to the expert analysis baseline, rbtm yields a different

risk estimate for 40 of the 191 elicited threats. Using Cohen’s 𝜅 , the
inter-rater agreement between rbtm and expert prioritization is

measured to be 0.335, indicating fair agreement. If we had not taken
into account threat relationships and applied just the base approach

(top part of Fig. 3) to the described inputs, the resulting inter-rater

agreement would be 0.192, which indicates slight agreement.
These results show that, with respect to the expert baseline, rbtm

results in improved risk estimates when compared to a traditional

risk estimation method [13] that does not take threat relationships

into account, if only direct impact estimates are provided. Only hav-

ing to estimate the direct impact significantly reduces the amount

of effort needed, as potential threat relationships do not need to

be accounted for. Furthermore, the prioritization of rbtm shows

fair agreement with the judgment of experts (whose reasoning is

primarily driven by tacit, informal knowledge). In what follows,

we describe cases where the rbtm and expert ratings diverge and

elucidate on possible reasons for the discrepancy.

4.4 Discrepancies

We only discuss the most important discrepancies (high vs. low, 0,

or not mentioned), as the difference between the other categories

is more subtle and open to interpretation.

Nine threats were marked as highly relevant by experts but re-

ceived a risk value of zero from rbtm. One of these, namely spoofing

E4 via DF6, was marked as important by the experts even though

a solution for that threat was explicitly mentioned in the dfd and

case description. The experts’ rationale (“Possible through weak

credential storage at client side”) reveals that they implicitly reason

about what threats could invalidate the solution. As discussed in

Section 3.3, rbtm would not want to assign high risk values to

such threats, as this might give the impression that additional mit-

igations are needed for the spoofing threats, while in fact it is an

information disclosure threat which should be addressed. The eight

other threats which were deemed highly relevant by experts, but

assigned a zero risk value by rbtm, were all covered by assumptions.

Similarly, the expert rationale describes how assumptions may be

broken by implicitly reasoning about threat relationships, whereas

rbtm does so explicitly by leveraging the threat graph. For all nine

threats in this category, the discrepancy thus stems from rbtm’s

interpretation of risk, where high risk threats are the ones to be

mitigated, not the ones due to other (unmitigated) threats.

Sixteen threats were not identified by experts but got assigned

a high risk value by rbtm. Nine of them concern leaking user cre-

dentials or document url’s, which invalidates the authentication

solution. Some of these threats were mentioned by the experts

in the rationale for other threats, which seems contradictory. For

example, as described earlier, the experts found spoofing threats

on E4 via DF6 highly relevant despite their being an authentica-

tion solution, because they are “Possible through weak credential

storage at client side”. Even though information disclosure threats

on E4 cover “weak credential storage at client side”, they were not

identified as relevant by the experts. The eight other threats in this

category were spoofing and EoP threats which induced informa-

tion disclosure threats of credentials, therefore also allowing to

circumvent the authentication solution. The output produced by

the experts did not allow us to trace why these 16 threats were not

mentioned. From the above example, we can only assume that the

experts simply forgot to consider them explicitly.

Finally, in five cases, rbtm assigned a high risk value whereas

the experts assigned a low one. Rbtmmay have overestimated these

threats due to imperfect threat relationship input or the worst-case

assumption. However, inspecting the threat graphs did not reveal

any unreasonable threat relationships or scenarios, so experts may

also have underestimated such threats. Either way, the advantage

of rbtm is that it allows to clearly trace why a threat is assigned a

certain estimate by analyzing the threat relationships, which is not

possible given the output produced manually by the experts.

4.5 Threats to validity and future work

The main threat to validity of our experiment is that it is based

only on the DocProc system. Investigating additional cases is nec-

essary to generalize these findings and gain deeper insights into

the reasons behind any deviations. A major obstacle for perform-

ing additional studies, however, is the lack of (publicly) available,

independently performed, and well-documented threat analysis

outcomes. Furthermore, we assumed a worst-case scenario which

may not hold in practice, and the used catalog of general threat re-

lationships may be incomplete. In future work, we therefore aim to

capture a more complete set of generally applicable threat relation-

ships, including propagation probabilities. Last, context-specific

threat relationships are now added to the system model as seem-

ingly isolated threat relationships. For example, the DocProc model

captures that tampering with delivery information induces infor-

mation disclosures, but it does not explicitly capture why this is the

case. Adding such information directly to a system model would

further increase the traceability of an rbtm analysis.

47

EnCyCriS’22 , May 16, 2022, Pittsburgh, PA, USA S. Verreydt et al.

5 RELATEDWORK

A recent study [11] compared the most popular threat modeling

tools based on several criteria, one of them being the quantification

of risk. Except for Threagile [2], all analyzed tools did so based on

either predefined values, such as cvss scores, or required a manual

analysis by end-users. Threagile also allows calculation-based ones,

but these still require end-users to manually enter impact estimates

for each asset, which requires considering the system as a whole.

With rbtm, only the direct impact needs to be provided manually,

which does not require taking into account the context.

Kaynar [5] provides an overview of attack graph generation and

analysis techniques used in the context of network security. While

none of these techniques are directly applicable during early-phase

threat modeling, rbtm uses similar algorithms. The graph genera-

tion algorithm used by rbtm is similar to the one proposed by Ou et

al. [7], as the nodes in their graphs are single vulnerabilities rather

than system states. The main differences are that attack graphs,

in their proposal, have a single attacker goal as a root, whereas

rbtm considers all business goals, and that relationships are strict

prerequisites (i.e., to reach some node, all children must be reached),

which is not the case with rbtm. Furthermore, to the best of our

knowledge, none of the existing attack graph generation proposals

consider how mitigations to some vulnerabilities could be circum-

vented: a vulnerability is either mitigated, or it is not. This also

leads to one of the main differences between rbtm and existing at-

tack graph analysis techniques. As described by Kaynar [5], several

proposals aimed at network hardening aim to calculate the minimal

set of vulnerabilities to be mitigated to secure the whole network,

but these do not consider model changes introduced by security

solutions or any assumptions on which they rely. Finally, rbtm

uses a modified shortest path algorithm to calculate the risk values,

similar to the proposal of Sarraute et al. [9]. While such algorithms

automatically deal with loops in the graph, they may suffer from

scalability issues, which is why recent work in the context of net-

work security usually prefers dag-based formalisms like Bayesian

networks [6]. Scalability is less of an issue for rbtm, as nodes in

the graph are threats rather than system states, and thus much less

prone to combinatorial explosion.

6 CONCLUSION

This paper described rbtm: a systematic approach to incorpo-

rate threat relationships into risk-driven threat prioritization. By

combining traditional dfd-based threat modeling approaches with

threat relationships, rbtm enables systematic and automatic threat

graph generation and traceable risk calculation. This, in turn, re-

moves the need to consider the system as a whole when specifying

likelihood and impact estimates, as the indirect impact of a threat

can be automatically derived from the threat graph. Furthermore,

inspecting the generated threat graph allows stakeholders to clearly

identify and communicate the reason for a certain risk value.

Rbtm was implemented as an Eclipse plugin and compared to an

independent expert threat assessment for a specific case. Our analy-

sis shows that rbtm is able to produce a threat ranking which fairly

agrees with the expert assessment. In cases where rbtm disagrees

with an expert’s risk estimate, we were able to clearly identify the

reason for the discrepancy by analyzing the generated threat graph.

On top of that, this analysis exposed one of the main disadvantages

of manual risk estimations, namely that we cannot systematically

deduce why experts assigned a certain priority to a certain threat,

or why certain threats were not considered at all. Finally, since most

solution information and generally applicable threat relationships

can be obtained from reusable knowledge, applying rbtm requires

minimal security knowledge. Only having to provide direct impact

estimates further reduces the effort needed to provide inputs for

a risk calculation exercise. Rbtm is thus a promising technique to

reduce the reliance of threat assessments on security experts, by

capturing and automatically applying (part of) their knowledge.

ACKNOWLEDGMENTS

This research is partially funded by the Flemish Research Pro-

gramme Cybersecurity and the KU Leuven C2-ePIC project.

REFERENCES
[1] 2022. RBTM analysis data. https://doi.org/10.5281/zenodo.6365047.
[2] Christian Schneider. 2021. Threagile. https://threagile.io/.
[3] Jack Freund and Jack Jones. 2014. Measuring and Managing Information Risk: A

FAIR Approach. Butterworth-Heinemann.
[4] Michael Howard and Steve Lipner. 2006. The Security Development Lifecycle.
[5] Kerem Kaynar. 2016. A taxonomy for attack graph generation and usage in

network security. Journal of Information Security and Applications 29 (Aug. 2016),
27–56. https://doi.org/10.1016/j.jisa.2016.02.001

[6] Barbara Kordy, Ludovic Piètre-Cambacédès, and Patrick Schweitzer. 2014. DAG-
based attack and defense modeling: Don’t miss the forest for the attack trees.
Computer Science Review 13-14 (2014), 1–38. https://doi.org/10.1016/j.cosrev.
2014.07.001

[7] Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. 2006. A Scalable Ap-
proach to Attack Graph Generation. In Proceedings of the 13th ACM Confer-
ence on Computer and Communications Security (CCS ’06). 336–345. https:
//doi.org/10.1145/1180405.1180446

[8] Paul Saitta, Brenda Larcom, and Michael Eddington. 2005. Trike v.1 Methodology
Document [Draft]. (2005), 17.

[9] Carlos Sarraute, Gerardo Richarte, and Jorge Lucángeli Obes. 2011. An algorithm
to find optimal attack paths in nondeterministic scenarios. In Proceedings of the
4th ACM workshop on Security and artificial intelligence - AISec ’11. 71. https:
//doi.org/10.1145/2046684.2046695

[10] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette M.
Wing. 2002. Automated generation and analysis of attack graphs. In Proceedings
2002 IEEE Symposium on Security and Privacy. 273–284. https://doi.org/10.1109/
SECPRI.2002.1004377

[11] Zhenpeng Shi, Kalman Graffi, David Starobinski, and Nikolay Matyunin. 2021.
Threat Modeling Tools: A Taxonomy. IEEE Security Privacy (2021), 2–13. https:
//doi.org/10.1109/MSEC.2021.3125229

[12] Adam Shostack. 2014. Threat Modeling: Designing for Security (1st ed.).
[13] Laurens Sion, Dimitri Van Landuyt, Koen Yskout, and Wouter Joosen. 2018.

SPARTA: Security & Privacy Architecture Through Risk-Driven Threat As-
sessment. In International Conference on Software Architecture. IEEE, 89–92.
https://doi.org/10.1109/ICSA-C.2018.00032

[14] Laurens Sion, Koen Yskout, Dimitri Van Landuyt, and Wouter Joosen. 2018.
Risk-based Design Security Analysis. In 1st IEEE/ACM International Workshop
on Security Awareness from Design to Deployment (SEAD), Vol. 1. 1–8. https:
//doi.org/10.1145/3194707.3194710

[15] Laurens Sion, Koen Yskout, Dimitri Van Landuyt, and Wouter Joosen. 2018.
Solution-Aware Data Flow Diagrams for Security Threat Modeling. In Proceedings
of the 33rd Annual ACM Symposium on Applied Computing (Pau, France) (SAC
’18). 1425–1432. https://doi.org/10.1145/3167132.3167285

[16] Katja Tuma, Riccardo Scandariato, Mathias Widman, and Christian Sandberg.
2018. Towards Security Threats that Matter. In Computer Security. 47–62.

[17] Katja Tuma, Laurens Sion, Riccardo Scandariato, and Koen Yskout. 2020. Au-
tomating the early detection of security design flaws. In Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems. 332–342.

[18] Jeff Williams. 2020. OWASP Risk Rating Methodology. https://owasp.org/www-
community/OWASP_Risk_Rating_Methodology

[19] Kim Wuyts, Dimitri Van Landuyt, Aram Hovsepyan, and Wouter Joosen. 2018.
Effective and efficient privacy threat modeling through domain refinements.
1175–1178. https://doi.org/10.1145/3167132.3167414

48

