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Abstract

Radio frequency identification (RFID) localization technol-

ogy has attracted great attention in stocktaking in ware-

houses. In this paper, we investigate drone-based RFID

localization for fast and accurate inventory management.

Considering the drone trajectory errors, we propose a robust

RFID lateral localization method based on the unwrapped

phase, in which a temporal convolutional network (TCN)

with non-causal convolutions is designed for the phase un-

wrapping. The tagged assets are localized via the nonlinear

optimization upon the unwrapped phases. The experiment

results in a logistic warehouse show that the proposed algo-

rithm achieves RFID localization with 0.17-meter mean ab-

solute errors and 0.4-meter 90-th percentile errors, respec-

tively.

1 Introduction

Radio frequency identification (RFID) technology has at-

tracted great attention for fast and accurate inventory man-

agement. However, the stocktaking in warehouses remains

labor-intensive and time-consuming. To handle this prob-

lem, automatizing the stocktaking with the help of un-

manned vehicles has been proposed during the last few

years [1, 2]. When considering that most of the pallets

are stored vertically with large altitudes, drone-based plat-

forms are more suitable and flexible than ground vehicles.

As the physical-layer metric (i.e., phase) has been avail-

able for commercial off-the-shelf (COTS) RFID devices

[3,4], the positioning accuracy of RFID has been increased

greatly from meter level to centimeter level. During the

last few years, various RFID localization algorithms have

been developed, mainly including the model-based [5–7]

and pattern-based solutions [2,8,9]. The model-based solu-

tions generally require the accurate positions of the multiple

RFID readers or the trajectory of the moving reader (a.k.a.,

the idea of synthetic aperture radar). Besides the model-

based algorithms, another popular direction for RFID lo-

calization is based on the patterns of the received signal

strength indicator (RSSI) or phase profile. The pattern-

based solutions generally obtain the one-dimensional (1-D)

locations or the relative orders of the RFID tags, e.g., the

order of luggage on a conveyor belt.

Figure 1. Drone-based RFID localization system design

for the inventory management in warehouses.

In this paper, we focus on the drone-based ultra-high fre-

quency (UHF) RFID localization problem for inventory

management in warehouses. As shown in Fig. 1, the RFID-

mounted drones fly between the vertical racks along the

straight aisle to gather the inventory information. The tra-

jectory of the drone is generally predefined and parallel to

the plane of racks. So the drone-based RFID positioning

can be regarded as a two-stage localization, which reports

the location of the pallets or goods with respect to the fly-

ing reader. However, considering the drone may not be fully

controlled along the predefined trajectory, it is required to

track the drone and obtain its instant locations during the

interrogation. Considering the payload and cost, the radio

frequency (RF)-centered sensor fusion framework had been

proposed for the 3-D drone tracking [1, 2], which involves

the COTS ultra-wideband (UWB) modules and other low-

cost sensors, e.g., inertial measurement unit (IMU), magne-

tometer, etc. Although the sensor-fusion-based solution can

achieve quasi-centimeter-level mean accuracy, it is not suf-

ficient for the second-stage RFID localization [2]. Specif-

ically, the phase is sensitive to the distance variation as

one quarter-wavelength (e.g., about 8.2 cm for 917.5 MHz)

changing will cause π-radian phase shifts, which makes the

model-based solutions unreliable [5–7].

In this paper, we propose a deep learning-based RFID po-

sitioning algorithm that is robust to the drone’s (i.e., the

flying RFID reader) tracking errors. Specifically, a tempo-

ral convolutional network (TCN)-based phase unwrapping



method has been proposed for the first time and different in-

put features have been discussed. The experimental results

validate the effectiveness of the proposed method.

2 Preliminaries

The RSSI reflects the signal strength which decays as 1/d4,

where d is the antenna-to-tag distance. Meanwhile, the

phase is monotonic with the distance. Taking advantage

of these characteristics, the pattern-based approaches can

pinpoint the tag’s lateral location from the RSSI or phase

profile. Specifically, the phase has been widely found to

be finer-grained and less affected by the cluttered surround-

ings and can achieve much higher positioning accuracy than

the RSSI-based solutions. In case that the RFID reader is

not accurately tracked as mentioned above (Fig. 1), for-

tunately, the unwrapped phase still indicates the mono-

tonicity with the antenna-to-tag distance in a large spatial

scale [2]. In this way, we can pinpoint the lateral loca-

tion of the RFID tag based on the unwrapped phase pro-

file. But the reported phase by the RFID reader is wrapped

generally, given by, φm = mod (4πd/λ+φ0+ω), where

mod (·) is the modulo-π or -2π operator depending on the

adopted RFID reader [3, 4]. φ0 denotes the phase shift

caused by the hardware. λ is the wavelength and ω is the

measurement noise. So, the RFID localization becomes a

phase unwrapping problem1. The conventional phase un-

wrapping method requires that the distance between two

adjacent sampling points should be less than one quarter

(or one eighth) wavelength for modulo-2π (or modulo-π)

phases. The unwrapped phase ψm can be calculated by,

ψm[1] = φm[1] and for n > 1 ∈ Z,

ψm[n+ 1]=φm[n+ 1]−κπ

⌊

φm[n+ 1]−ψm[n]

κπ
+

1

2

⌋

, (1)

where κ = {1,2} for modulo-π and modulo-2π phase, re-

spectively. Due to the spatial sampling constraint of the

conventional phase unwrapping method, a high RFID read-

ing rate is needed to unwrap the phase. But in practice (e.g.,

drone-based RFID system), the spatial sampling constraint

is not easy to be satisfied. For (1), we can learn that phase

unwrapping is related to the phase difference and the cor-

responding distance of two adjacent sampling positions. In

this paper, we propose to model the phase unwrapping as

a sequence-to-sequence (Seq2Seq) classification problem

and solve it via a deep neural network, i.e., temporal con-

volutional network (TCN).

1Note that in this paper we only consider the lateral positions of the

tagged assets. Because of the limited size and carrying capacity of the

drone, it is difficult to deploy multiple antennas vertically with a large

aperture. Furthermore, inventory management in warehouses generally

does not require fine-grained vertical accuracy but a layer-level granularity.

In our previous works [2,7], we adopted two tilted horizontal antennas [7]

and a beam-steering patch antenna [2] to distinguish the layer of the tagged

asset and achieved a satisfying level-identification accuracy. We refer to

[2, 7] for the interested readers.

Figure 2. TCN architecture for phase unwrapping: dilated

non-causal convolution with dilation factors D = {1,2,4}
and the filter size k = 3. Residual connection with 1× 1

convolution will be applied in case that the number of chan-

nels between the input and output do not match.

3 Algorithm Design

Although Seq2Seq problems are generally solved with re-

current neural network (RNN) architectures, [10] show

that convolutional neural networks can operate on variable-

length input sequences and outperform the recurrent net-

works. Compared with RNN and the iterative random forest

classifier in [2] for phase unwrapping, the benefits of using

TCN are better parallelism, better control over the receptive

field size, and no tedious iterations. However, instead of

using causal 1-D convolutions [10], we have adopted non-

causal convolutions because the sampled phase is closely

related to adjacent samples within a local neighborhood.

The proposed non-causal TCN architecture for phase un-

wrapping is shown in Fig. 2. Besides phase difference and

spatial distance of two adjacent samples, we also have con-

sidered the inevitable fluctuations of the drone’s trajectory

along the 3-D coordinates for TCN training. Moreover, the

RSSI profile may be informative for phase unwrapping be-

cause it also identifies the inflection point of the unwrapped

phase roughly. The output label is how many times of π
used for phase unwrapping between two adjacent samples2,

namely χ = {0,±1,±2, · · ·}. After obtaining χ for the

whole phase sequence, we can unwrap the measured phase

via,

ψm[n+ 1]= φm[n+ 1]+π
n

∑
i=1

χ(i). (2)

Before inputting the features into TCN, preprocessing or

normalization is required. The phase differences and the

adjacent distances are divided by π and λ/8, labeled as

∆ϕ and ∆d, respectively. The trajectory fluctuation is de-

fined by the adjacent coordinates offsets, given by ∆x, ∆y,

and ∆z. The RSSI profiles are normalized between zero

and one, labeled as S̄. So the candidate feature sets can be

expressed as F(1) = {∆ϕ ,∆d}, F(2) = {∆ϕ ,∆d,∆x,∆y,∆z},

F
(3) = {∆ϕ ,∆d, S̄}, and F

(4) = {∆ϕ ,∆d,∆x,∆y,∆z, S̄}. In-

2In this paper, we adopted ThingMagic M6E-Micro RFID reader [4]

that reports the wrapped phase between zero and π radian. The maximal

absolute times of phase calibration is four according to our experimental

observation, i.e., χ = {0,±1,±2,±3,±4}.



Figure 3. Phase unwrapping: (a) Prediction accuracy of

TCN based on different feature sets {F(1),F(2),F(3),F(4)}.

(b) An example of phase unwrapping results.

stead of conducting extensive experiments to collect the

dataset, we train the neural networks based on a synthetic

dataset. The trained model can be adapted to the targeted

scenario via transfer learning using a tiny part of experi-

mental data, which relieves the data-collection cost and be-

comes easier to generalize for the scene variation. We refer

to [11] for the RSSI and phase datasets generation consid-

ering the multipath effect and antenna patterns. Moreover,

in practice, the sampling number of RSSI/phase is gener-

ally different from each measurement. The profiles’ delay

intervals are varied resulting from the uneven sampling. To

this end, the varied number of samples, uneven sampling

interval, and antenna tracking errors also should be con-

sidered to generate a synthetic dataset. Fig. 3(a) presents

the prediction accuracy for phase unwrapping based on the

four feature set candidates. The feature set F(4) achieves the

highest accuracy whereas F(3) is slightly worse, which in-

dicates the RSSI profile can assist to unwrap the measured

phases. Fig. 3(b) shows an example of comparing TCN-

based unwrapping results using F
(4) and the conventional

method in (1). We can observe that the proposed TCN-

based method can predict the unwrapped phase with accu-

rate tendency and inflection point in spite of limited mis-

predictions.

After obtaining the unwrapped phase, we can simply pin-

point the lateral position (y-coordinate) based on the mini-

mum of the unwrapped phase, as shown in Fig. 3. But this

method does not consider the possible trajectory fluctua-

tions along the x- and z-scale. To handle this, we estimate

the lateral position ytag via the following maximum likeli-

hood estimation (xtag is set as zero for simplicity),

argmin
{ytag,ztag,ϕ ′

0}

N

∑
n=1

[

ψm[n]−

(

4π

λ
‖P

(n)
ant −Ptag‖+ϕ ′

0

)]2

, (3)

where Pant and Ptag are the positions of the RFID antenna

and tag, respectively. ϕ ′
0 denotes the constant offset be-

tween the unwrapped phase and real phase. To estimate

ytag, the Levenberg-Marquardt (L-M) algorithm is adopted.

Even though the optimization problem in (3) is non-convex,

it presents locally strong convexity at an optimal solution.

So the performance of the L-M algorithm depends on the

initialization naturally. In this paper, we initialize ytag using

Figure 4. Experimental validation of the drone-based RFID

system in a warehouse of the logistics company.

Table 1. Comparison of the statistical positioning errors of

different algorithms in meter

Methods SARFID L-M OTrack RF-scanner Proposed

MAEs 0.36 0.44 0.25 0.45 0.17

90-th 0.89 0.87 0.52 0.94 0.40

the estimated result via identifying the minimal of the un-

wrapped phase. Ztag is initialized by the mean Z-coordinate

of the drone during interrogation. ϕ ′
0 is initialized by zero.

4 Experimental Evaluation

To evaluate the positioning performance of the proposed

method, we have conducted a drone-based RFID localiza-

tion in a warehouse of a logistics company [2], as shown

in Fig. 4(a). The drone with the mounted RFID reader

and antennas flies along the planned trajectory, i.e., along

Y-axis in Fig. 1, to gather inventory information. The

drone (i.e., the flying RFID reader) is tracked by a sensor

fusion-based scheme that has fused the results from De-

cawave UWB and other low-cost directional sensors (IMU,

magnetometer, etc.) based on an extended Kalman filter

(EKF) [12, 13]. For the RFID interrogation, a lightweight

reader ThingMagic M6E-Micro [4]) is utilized. The RFID

tags (Avery Dennison AD661-R6P) are attached to the as-

sets. The frequency of the RFID reader is 917.5 MHz. As

mentioned, the TCN-based phase unwrapping model has

been first trained on the mimicked dataset. Then transfer

learning has been implemented to retrain the TCN model

(by replacing the final fully connected layer and the classi-

fication layer) using part of measurement data (about 20%).

In this section, we compare the positioning results of the

proposed method with different state-of-the-art (SOTA)

methods. Fig. 4(b) shows the cumulative distribution func-

tion (CDF) of the absolute lateral positioning errors. Ta-

ble 1 summarizes the mean absolute errors (MAEs) and 90-

th percentile errors. We observe that the proposed method

has achieved the best positioning accuracy (with 0.17-meter

MAEs) compared with the other methods. Specifically,

SARFID [5] performs poorly because it utilizes the mea-

sured phases directly which highly depends on the accurate

antenna’s locations. RF-scanner [9] and L-M [6] also have

unsatisfying accuracy because they both have adopted the



conventional phase unwrapping method, which is not suit-

able in our case (low sampling rate). Among the existing

methods mentioned above, OTrack [8] is the only method

that is based on RSSI profile and the reading rate. OTrack

has achieved a promising accuracy with 0.27-meter MAEs,

which outperforms the other phase-based SOTA solutions.

We think it is because the RSSI is much less sensitive to

the drone’s tracking errors and sufficient for decimeter-

level positioning for the short-distance scenarios, such as

the stocktaking in warehouses.

5 Conclusion

In this paper, we have investigated robust RFID positioning

for drone-based asset management in warehouses. A TCN-

based phase unwrapping algorithm has been proposed for

the first time. And the L-M algorithm has been introduced

for the RFID lateral positioning, which is little affected by

the drone tracking errors. The model is trained based on

a synthetic dataset and generalized to real-world measure-

ment data via transfer learning with little effort. Accord-

ing to experimental validation, the proposed method has

achieved 0.17-meter MAEs and 0.4-meter 90-th percentile

errors, which is promising for practical stocktaking in ware-

houses.
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