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Abstract— Smartphone-based WiFi ranging using fine time
measurement (FTM) is severely impacted by Non-line-of-sight
(NLoS) environments, which causes significant positioning errors.
To address this problem, we propose a novel WiFi FTM position-
ing (WFP) approach based on the geomagnetism and enhanced
genetic algorithm (EGA), which can simultaneously execute WiFi
localization and ranging compensation. Based on the distribution
of the ranging error in NLoS environments, a semiparametric
error model-based ranging compensation method is proposed.
To construct the EGA searching model, geomagnetism-based
positioning is adopted and fed to the EGA together with the
measured WiFi ranging data and the ranging compensation
method. During online localization, the EGA model dynamically
compensates for the erroneous ranging data until it finds the
optimal position. Experimental results show that the ranging and
localization accuracy of this EGA-based WFP are 1.33 m and
1.64 m, being an improvement of 30.7% and 56.5% compared to
the uncompensated ranging data and the trilateration algorithm
using the weighted least square (WLS) method, respectively.

Index Terms— Indoor localization, WiFi FTM, ranging com-
pensation, geomagnetism, NLoS, enhanced genetic algorithm.

I. INTRODUCTION

W exten-IFI FTM-based localization has attracted
sive attention. In Line-of-sight (LoS) environments,

of ranging errors on the localization results. The sensor fusion
method integrates PDR and WFP based on the extended
Kalman filter [6], or unscented Kalman filter [7]. The poor
performance of WFP is improved with the fusion of PDR, but
the WiFi ranging problem itself is not well addressed.

High-accuracy WiFi ranging is the basis of the high-
accuracy WFP, making the construction of an efficient WiFi
ranging model very essential. In [7], a ranging compensation
model considering the clock deviation, NLoS, and multipath
factors is proposed. In [6] and [8], the relationship between
the ranging error and distance is considered as parametric and
fitted by using the least square (LS) and nonlinear least square
(NLS). But these parametric models do not work well in NLoS
conditions. In [5], the RSS-based range and the FTM-based
range are integrated based on the Kalman filter. The reported
ranging accuracy is meter-level in an open outdoor area. In [9],
the “FUSIC” method is proposed to extend the accuracy of
WiFi ranging in LoS conditions to NLoS settings by using
the channel state information, which is not readily available
on smartphones. An efficient smartphone-based WiFi ranging
model for localization in NLoS environments is still lacking.

To address the poor performance of WiFi ranging and posi-
tioning, we study the characteristics of the ranging errors and
construct a semiparametric error model-based ranging com-
pensation method. Based on this, we use an EGA to search for
the optimal position and ranging errors compensation terms.
For the EGA implementation, we take the geomagnetism-
based positioning (GP) to generate the initial population of
EGA for evolution, given the good performance of GP in
NLoS environments [10]. Our contributions are as follows:

1) We analyze the characteristics of WiFi ranging errors in
NLoS environments and build a semiparametric ranging
error model, which describes the ranging error distribu-
tion and improves the ranging accuracy.

2) We propose a novel geomagnetism/EGA-based WFP
approach that can simultaneously search for the optimal
WiFi position and compensate for the ranging data.

3) We conduct extensive experiments to evaluate the pro-
posed methods and confirm that this EGA-based WFP
improves the accuracy of ranging and localization.

II. ALGORITHM ARCHITECTURE

Fig. 1 shows the flow graph of the geomagnetism/
EGA-based WFP approach. Offline, based on the measured
WiFi FTM data, a semiparametric ranging error model and
a WiFi ranging model are built. Online, the WLS method
is used to estimate a coarse-grained WiFi position, which
reduces the searching space of GP. The GP using an enhanced
mind evolutionary algorithm (EMEA) is adopted for magnetic
position estimation. A set of grid points around this magnetic
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smartphone-based WiFi FTM ranging can achieve meter-level 
accuracy [1]. However, more complex indoor environments 
lead to serious ranging errors. To improve precision, differ-
ent methods have been developed, such as using NLoS/LoS 
identification [2], designing an optimization strategy [3], and 
integrating map information [4], WiFi received signal strength 
(RSS) [5], or pedestrian dead reckoning (PDR) with WFP 
[6], [7]. The NLoS/LoS detection in [2] is to clarify the char-
acteristics of the measured WiFi data in LoS/NLoS conditions 
and then eliminate the NLoS data to realize accuracy improve-
ment. Algorithm optimization comprises strategies (e.g. the 
temporal-spatial constraint strategy [3]) to limit the influence
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Fig. 1. Flow graph of the proposed method.

Fig. 2. WiFi FTM producer.

position is selected, and then provided for the population
initialization of EGA. Finally, the ranging error model, WiFi
ranging model, measured ranging data, and the grid point set
are fed to the EGA. After that, EGA starts searching until
meeting the convergence condition. The compensated ranging
data and the searched optimal position are obtained as the final
results.

III. METHODS

A. WiFi FTM Localization and Ranging Error Model

1) WiFi FTM Ranging and Localization: As Fig. 2 shows,
the initial FTM response is completed via the access
point (AP) responds to the FTM request by sending an
acknowledge (ACK) message to the phone. After this, the
FTM and ACK exchanging starts. The time-of-departure (ToD)
t1(1) and the time-of-arrival (ToA) t2(1) of the FTM package
are recorded by the AP and phone. And then, the TOD t3(1)
and TOA t4(1) of the ACK package are captured by phone
and AP, respectively. If n successful exchanges are completed,
the theoretical WiFi ranging model is defined as follows:

d =
C

2n

n�
k=1

([t4(k) − t1(k)] − [t3(k) − t2(k)]) (1)

where d is the theoretical distance, C is the light speed.
If there are n APs and n ≥ 3, the phone’s 2D position can

be estimated using the WLS method as follows:
X = (AT PA)−1AT PL (2)

where X represents the estimated 2D position, P is the
weight matrix and relates to the measured distances, A and
L are defined using the coordinates of APs and the measured
distances, respectively. The detailed calculation methods of A,
P and L can be found in [6].

2) Ranging and Error Model: Hardware, NLoS, multipath
and clock deviation factors lead to errors in WiFi ranging [7].

Fig. 3. Distributions of e at different ground-truth distances in NLoS
environments. (a) 3.6 m, (b) 6 m, (c) 10 m.

Fig. 4. Distributions of e of different APs at different ground-truth distances
in NLoS environments. (a) No.1 AP, (b) No.2 AP, (c) No.3 AP.

Considering these factors, a real-time WiFi ranging compen-
sation model is defined as:

d̂ = d + dh + dc + dnlos + dm + � (3)
where d̂ and d are the measured and theoretical distances,
respectively; � is a random error, dh is the initial deviation
error caused by the hardware and can be calibrated using the
difference between the ground-truth distance (e.g. 1 m) and
the measured distance; dc, dnlos and dm are the errors caused
by random clock deviation, NLoS, and multipath factors,
respectively. These three errors and � reflected in the measured
data can be considered as a sum error e, (3) is written as:

d̂ = d + dh + e (4)

The problem is to find the characteristics of the sum error
e. To make analyses, we measured WiFi ranging data at
different ground-truth points in an NLoS environment (defined
in Section IV.A), where the WiFi ranging is always affected
by concrete and glass walls. The ranging errors distributions
are shown in Fig. 3 and Fig. 4. which reveal that ranging
errors conform to the Gaussian distribution (might be positive
or negative) at a given distance, and have a descending trend
as the distance increases. Moreover, Fig. 4 shows that the red
trendlines are similar and independent of different APs.

We summarize the characteristic of e as having a linear
relationship with the distance between the AP and phone, and
also having a nonlinear random term (Gaussian distribution).
This characteristic can be described using the semi-parametric
model [11]. If there are n APs, the model is defined as:

En×1 = Bn×2x2×1 + Sn×1 + Δ (5)
where E is the matrix of measured errors for the n APs, E =�
e1, e2, . . . , en

�T
, B is the non-singular matrix, which consists

of the measured distances for all APs; x is the parameter
matrix; Bx describes the linear relationship (trendlines in
Fig. 4); S represents the nonlinear random character (Gaussian
distribution), S =

�
s1, s2, . . . , sn

�T
, Δ is the measurement

noise, respectively. The error equation of (5) is defined as:
Vn×1 = Bn×2x̂2×1 + Sn×1 − En×1 (6)

 



Fig. 5. Flowchart of the EMEA-based GP.

where V is the difference of (Bx̂ + S) and E, x̂ is the
matrix that contains the optimal linear parameters, which
are the results of the mathematical operation of B, S, and
E, making V obtain the minimal value. The number of
the uncertain parameters in (5) is (n + 2), while there are
only n measurements. Based on the penalized least squares
estimation [12], to estimate the optimal parameters, (7) should
be met:

min(V TPV + αSTRS) (7)
where P and R are the positive-definite matrices, α is the
scale factor, respectively. To obtain the minimal value of (7),
we can construct a Lagrange function as follows:
Ψ = V TPV + αSTRS − 2KT(Bx̂ + S − E − V ) (8)

then making ∂Ψ
∂V , ∂Ψ

∂S , ∂Ψ
∂x̂ equal to 0, we obtain:

K = PV (9)

K = −αRS (10)

BTK = 0 (11)
combining (6), (9), and (11), we get:

BTPBx̂ + BTPS − BTPE = 0 (12)
making BTPB = N , x̂ is calculated as follows:

x̂ = N−1BTPE − N−1BTPS (13)
combining (6), (9), (10), and (12), S is calculated as:
S = (P + αR − PBN−1BTP )(P − PBN−1BTP )E

(14)
For online usage, the initial ranging error terms are first

estimated based on the linear relationship. Then, the optimal
x̂ and S are calculated by using (13) and (14), respectively.
The final ranging error terms are obtained based on (5).

B. Geomagnetism-Based Positioning Using EMEA

It has been proved that the EMEA-based GP performs well
in NLoS environments [10]. In this letter, we adopted this
EMEA-based GP to initialize the population of EGA. Before
executing GP, a division of the positioning area is first made.
As Fig.5 shows, based on the high sampling rate of the magne-
tometer (e.g. 50 Hz), many temporary magnetic positions are
obtained and used for the EMEA’s evolution process, which
adopts the similartaxis and dissimilation operators to find the
optimal true magnetic position. Then, an area with a radius of
5 m around this position is selected and the grid points within
this area constitute the initial population for EGA searching.

C. Enhanced Genetic Algorithm

1) Selection Strategy: After the population initialization,
every individual is assigned a fitness value and a special

chromosome (will be defined in Section III.D). EGA selects
the best individuals based on their fitness. The larger the fitness
value of an individual, the higher the probability of being
selected, which is defined as follows:

pi =
f(xi)�N

j=1 f(xj)
j = 1, 2, . . . , N (15)

where pi is the probability of being selected, N is the
number of individuals, f(xi) is the individual’s fitness. The
roulette-wheel selection method [13] is used to evaluate
whether to execute selection if (16) is met:

pi > s ∀pi, s ∈ �
0, 1

�
(16)

where s is a random number. During the execution process,
the individual with best fitness is first selected.

2) Adaptive Crossover Strategy: Crossover creates new
offspring by exchanging genes from the selected individuals’
chromosomes. Before performing crossover, two individuals
and the crossover points on the chromosomes are first selected.
Then, given a crossover probability pc and random number r,
the genes at the corresponding positions are exchanged if pc

and r satisfy (17):
pc > r ∀pc, r ∈ �

0, 1
�

(17)
As the evolution progresses, gene exchanging should be

easier within the population because more good individuals are
generated. Adaptive crossover strategy can dynamically assign
the crossover probability and the definition is as follows:

pc = pcmax − n × (pcmax − pcmin) × f̄i − m

m × f̄i
(18)

where pcmax and pcmin are the maximal and minimal
crossover probabilities, which are set as 0.5 and 0.1 in this
work, f̄i is the average fitness value of the i − th generation,
m and n are the maximal and current iteration numbers of the
evolution, respectively.

3) Adaptive Mutation Strategy: For the mutation execution,
the locations of mutation on the chromosomes are first ran-
domly selected. After that, with a mutation probability pm and
a random number t, the genes at the corresponding positions
are mutated if pm and t satisfy (19):

pm > t ∀pm, t ∈ �
0, 1

�
(19)

Mutation might generate good or bad genes, but bad genes
affect the evolution process, which means that mutation with
a constant probability slows down the convergence speed of
EGA. Therefore, an adaptive mutation strategy is adopted to
dynamically set the mutation probability during the evolution
process, and the definition is as follows:

pm = pmi − n × (pmi − pmmin) × f̄i − m

m × f̄i
(20)

where pmi and pmmin are the initial and minimal mutation
probabilities, which are set as 0.4 and 0.1, f̄i is the aver-
age fitness value of the i − th generation, m and n are
maximal and the current iteration numbers of the evolution,
respectively.

D. Simultaneous WiFi FTM Localization and Ranging
Compensation Based on EGA

To construct the EGA model, the first problem is how
to express an individual’s chromosome. The grid points in
Section B and the ranging errors estimated by the error model

 



Fig. 6. Flowchart of the EGA-based WFP.

in Section A are used to define chromosomes as:
chrom =

�
xi, yi, e1, e2, . . . , en

�
(21)

where xi and yi are coordinate values of the grid points, ei is
the ranging error from the i−th AP, i = 1, 2, . . . , n. After that,
the key problem is to find a good fitness function. In theory,
if there are no ranging errors, the measured distance (MD)
equals the ground-truth plane distance (PD) between the
phone and AP. Considering the error compensation terms, this
relationship can be expressed as:
ζi = d̂i − dhi − ei −

�
(x − xRi)2 + (y − yRi)2 ≈ 0 (22)

where ζi is the difference of MD and PD, (x, y) and (xRi, yRi)
are the true coordinates of the phone and i − th AP, respec-
tively. If there are n APs, (22) is expressed as:⎡
⎢⎢⎣

ζ1

ζ2

. . .
ζn

⎤
⎥⎥⎦=

⎡
⎢⎢⎣
d̂1 − dh1 − e1

d̂2 − dh2 − e2

. . .

d̂n − dhn − en

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

�
(x − xR1)2 + (y − yR1)2�
(x − xR2)2 + (y − yR2)2

. . .�
(x − xRn)2 + (y − yRn)2

⎤
⎥⎥⎦

(23)
The optimal position and error compensation terms make

the left term of (23) get the minimal value. This relationship
is the fitness function:

f =
1�n

i=1 |ζi| (24)

Based on (21) and (24), the individuals’ fitness is obtained.
Then, the measured ranging data, the initialized population,
error model and ranging compensation model are fed to EGA,
and evolution starts. When EGA finishes one-time searching,
the error compensation terms are obtained by decoding the
chromosome of the best individual. Then, based on these
errors, the measured ranging data is adjusted by using (4).
If the number of iterations reaches 50, EGA meets the con-
vergence condition and the best individual of the final iteration
is decoded. The WiFi position and compensated ranging data
are outputted. The detailed process is shown in Fig. 6.

IV. EXPERIMENTS

A. Experimental Setup

All the experiments were conducted in the second floor
of the state key laboratory of satellite navigation system
and equipment technology (Shijiazhuang, China). 8 Compulab
WILD APs are installed outside the second floor. The concrete
and glass walls block the WiFi signal propagation path and
APs cannot be directly observed from the corridors or rooms,
making the NLoS condition. Fig. 7(a) shows that 166 reference
points (RP) with a separation of 1.2 m are selected and interpo-
lated into 1756 points. The magnetic features are collected at
these RPs and linearly interpolated. A Pixel 3 phone (Fig. 7(b))

Fig. 7. Experimental setup. (a) Floor plan, (b) Pixel 3 phone, (c) Access
points and the real scenarios of the second floor.

TABLE I

ABSOLUTE ERRORS AND MET COMPARISON OF DIFFERENT MODELS

with developed software that can simultaneously measure the
magnetic features and WiFi data with the sampling rates
of 50 Hz and 5 Hz, respectively. The testing data are collected
three times at 64 testing points. A laptop with 8 GB RAM and
a 2.6GHz CPU is used for the data analysis.

B. WiFi Ranging Compensation Analysis

We denote the proposed ranging method as “Semi with
EGA” and compare it to the RSS-FTM fusion [5], LS [6],
NLS [8]. The method only using the semiparametric model
without EGA is denoted as “Semi Only”. All the ranging
models are built based on the same ranging errors datasets.
They are calculated by using the measured ranging data on
188 modeling points and the ground-truth distances between
modeling points and access points.

Tab. I shows the mean absolute ranging error and mean
execution time (MET) of different methods. The mean absolute
ranging error of the uncompensated data is about 1.93 m,
which can be improved by adopting the LS, NLS, and
RSS-FTM methods, albeit with an improvement within 0.2 m
(10.4%). LS and NLS models obtain very similar results.
The mean ranging accuracy of only using the semi-parametric
model is 1.62 m, which is further improved to 1.33 m after
applying the EGA, with an accuracy improvement percent-
age (ACP) of about 30.7%. Using the semiparametric model
with EGA has the best ACP. The same conclusion can be
drawn when comparing the root-mean-square errors (RMSE)
of these models. Fig. 8 reveals the cumulative distribution
functions of ranging errors and clearly shows that our method
has the best performance. For the MET comparison, our
method consumes more time to complete ranging compensa-
tion. However, it can still deliver results within 0.3 s. This
means that our method will allow for real-time processing
when deploying on smartphones.

C. WiFi Positioning Methods Comparison

We denote the proposed localization method as
“EGA-WFPG”, and compare it to the approaches of WLS [6],

 



Fig. 8. CDFs comparison of ranging errors of different methods.

TABLE II

ERRORS COMPARISON OF WIFI POSITIONING ALGORITHMS

Fig. 9. CDFs comparison of positioning errors of different methods.

RSS-FTM [5], EMEA-WLS [10]. To make a better
comparison, we implement the WFP using the WiFi
positions for the population generation of the EGA and
denote it as “EGA-WFPW”. Tab. II shows that the mean
accuracy and RMSE of EGA-WFPG are 1.64 m and 1.89 m,
which are improved by 56.5% and 56.8 % compared with
the WLS, and are better than those of the EMEA-WLS,
RSS-FTM, and EGA-WFPW. These results show that the
proposed EGA-WFPG has high accuracy and better stability.
For a confidence level of 75%, EGA-WFPG obtains the best
accuracy of 2.14 m. Based on this experimental analysis,
we conclude that this EGA-WFPG method can perform well
in NLoS environments.

D. Positioning Methods Discussion

Compared to the state-of-the-art approaches of
RSS-FTM [5], WLS [6], and EMEA-WLS [10], the

proposed EGA-WFPG obtains the best localization accuracy,
RMSE, and ACP. Fig. 9 reveals that the EGA-WFPG obtains
a localization accuracy of 2.85 m in 90% of the cases, which
is better than that of the other four methods. Fig. 9 also
reveals the better performance of EGA-WFPG under different
confidence levels compared to others methods. Although
using NLoS/LoS identification can also improve accuracy
in [2], the reported ACP is only 36.4%, while the ACP of
EGA-WFPG is 56.5%. Different from previous works [5],
[6], and [8], which only calibrate the ranging data once
before executing the localization algorithm, our method can
dynamically adjust the measured ranging data using the
EGA based on the semiparametric error model and ranging
model. The estimated WiFi position and compensated ranging
data are simultaneously obtained after EGA searching.
All the experimental results demonstrate that the proposed
EGA-WFPG method is an efficient approach for limiting the
NLOS influence on localization accuracy.

V. CONCLUSION
In this letter, we propose a novel WiFi FTM positioning

approach for NLoS scenarios localization based on geomag-
netism and EGA. Experiments reveal that the mean ranging
compensation and positioning accuracy of the proposed WFP
are 1.33 m and 1.64 m, which are improved by about 30.7%
and 56.5%, respectively, compared to the classic WLS. In the
future, we will study the fusion positioning with the integration
of smartphone built-in sensors to improve precision.
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