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Abstract—The service placement problem considers the place-
ment of multiple connected services across a heterogeneous device
network and is one of the core problems of fog computing.
We discuss the complexity of this service placement problem,
and propose a model for solving it using Multi-Objective Re-
inforcement Learning (MORL) methodologies. Using a trained
neural network greatly reduces the resource consumption of the
placement algorithm, making it viable for resource-constrained
scenarios. Starting from state-of-the-art techniques, we develop a
generic max reward formulation model and apply several MORL
methodologies, which solve the placement problem in scenarios
where the preference weights change. We compare the results to
a baseline methodology and showcase the value of MORL on the
placement problem.

I. INTRODUCTION

There will be an estimated 29.3 billion networked devices
by 2023 [1]. Based on current computing standards, most of
the information generated by these devices will be processed
by a remote cloud server. However, cloud computing is not
properly suited to support low-latency applications, as the
distance between cloud and end devices can have a detrimental
impact on the response time. In addition, large numbers of
devices have a sizeable impact on the network as these devices
tend to collectively generate large amounts of data. This
problem is partly covered by the upcoming 5G networks,
which aim to support ultra-reliable, low latency applications
and high throughput Internet of Things (IoT) devices [2].
However, 5G networks only solve a part of the problem,
as applications and changing environments will still incur a
bandwidth and latency impact causing network degradation.
To this end, fog computing is proposed, a paradigm which
encourages using the resources available closer to the end
user [3]. An example of a fog network is showcased in
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Fig. 1. An Example of a Fog Network

Fig. 1. This is similar to edge computing, where additional
compute resources are added at key locations closer to the
end user. Fog computing is designed to support applications
using IoT devices, by offloading services to nearby devices
to support more compute-intensive, latency-aware, and even
energy-aware applications, while suppressing the latency im-
pact caused by cloud communication while not overloading the
network. Providing these services in the fog requires effective
service placement, as placing them far away from related
services can induce latency costs, and placing all the services
on a single device will consume more device resources than
are available, reducing service reliability.
To this service allocation problem, we propose a general Deep
Q-Network (DQN) methodology for service placement, which
considers the placement optimization of multiple intercommu-
nicating services on a network. This placement optimization
considers the improvement of the network performance by
minimizing the total impact on the network, while also improv-
ing energy efficiency. These are generally conflicting objec-
tives, defining the problem as a Multi-Objective Optimization
(MOO) problem. Valid placements should satisfy device con-978-1-6654-0601-7/22/$31.00 © 2022 IEEE
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straints, such as available memory, network constraints, such
as available bandwidth, and application constraints, such as
maximally allowed latency between two services. In this paper,
we applied several State-of-the-Art (SotA) Multi-Objective
Reinforcement Learning (MORL) methods to solve the service
allocation problem, using the strengths of DQNs to effec-
tively place the services across the network. Our proposed
methodologies use scalarization and support dynamic weight
changes throughout the network lifespan, providing support
for a higher-level control mechanism.

II. RELATED WORK

A. Service Allocation Approach

The field of service allocation is already widely researched,
and the research often considers different objectives, con-
straints and requirements. This allows for a large variety of
methodologies, each with their own strengths and weaknesses.
However, many methodologies depend on reductions which
only hold when considering very specific use-cases. Salaht et
al. [4] provide an extensive overview of the Service Allocation
Problem in the context of fog and edge computing. Some in-
teresting findings include that most of the research in this field
only considers a single objective problem, focused on latency
minimization. This single-objective research often contains a
weighted sum of multiple different objectives, but often fails to
mention that this is fundamentally a multi-objective problem
on which reward shaping was applied. The most applied
solving techniques use either a variant of Integer Programming
or Constrained Optimization. The survey showcases that most
researchers focus on a single use-case, shown in the large
variety of validation simulation environments and test-beds.
We derive that this focus on a specific use-case causes that
all these papers use their own specific set of objectives
and constraints, making it exceptionally difficult to compare
results. This is showcased throughout most research papers in
the field, which usually only compare to a baseline approach
and a naive greedy implementation.
Tang et al. propose using a DQN for service placement
and migration in fog networks and reduce the problem to
a bin-packing problem [5]. The goal is to minimize power
consumption, communication delay and migration cost, while
adhering to the resource constraints. They consider full control
of the network, as nodes that do not run any services get shut
down to conserve energy. The constraints mentioned are to
be modeled in the action space of the exploration phase, so
that actions being constrained do not occur and are excluded
from the valid action space, but are further not mentioned.
In addition, an improved action selection policy is proposed,
where services running on overloaded devices are preferred
to be moved to devices with more available resources, while
devices with very few services also move their services to
another device to conserve energy. They compare their adapted
Q-learner to regular Q-learning methodologies and constraint-
conserving heuristics, and showcase that the improvements to
the Q-learning algorithm allow it to outperform the baselines.
Gazori et al. propose a Double Deep Q-Network (DDQN)

approach for service placement in the fog [6]. They compare
several existing service scheduling approaches and reduce the
problem to a tree graph. The optimization goal is to minimize
the End-to-End (E2E) service delay and computation cost,
under deadline and resource constraints. They show the impact
of the hyperparameters on the agent behaviour, and compare
the DDQN to a first-fit, greedy, random and basic tabular Q-
learner. The proposed scenarios were slightly resource con-
strained, and, due to limited training diversity, the agents were
prone to overfitting. The results show that the DDQN approach
outperforms the other algorithms on all metrics. Mseddi et
al. tackle the user request satisfaction problem within fog
environments, handling it as a more complex version of the
Generalized Assignment Problem (GAP) [7]. This is done by
tackling the user requests individually and using the Reinforce-
ment Learning (RL) agent to schedule the requested service
individually. This approach supports dynamic scenarios but
increases the difficulty of finding a globally optimal goal. The
approach is evaluated against an Integer Linear Programming
(ILP) technique, nearest allocation and random allocation
methodology and shown to outperform these methodologies.

B. Problem Definition

Various research in the SotA defines the placement problem
differently, although they tackle similar problems. We now
showcase how other research defines these placement prob-
lems, and show how our problem statement differs. iFogStor
defines a generic model for application placement using the
GAP problem formulation [8]. GAP represents the problem
where M different items are to be distributed across N
different bins, while ensuring that the size of all items in a
specific bin does not exceed the bin capacity, to maximize the
value f(i, j), i ∈ M, j ∈ N of all items across all bins. This
problem model is useful for optimizing towards device specific
constraints and objectives, such as load balancing and energy
consumption, but does not incorporate any network behavior.
Gu et al. [9] showcase the similarity of the placement problem
with the General Quadratic Assignment Problem (GQAP),
which maps n different equipment across m different loca-
tions, while considering the distance between equipment and
capacity constraints on the locations. This problem definition
enables the modeling of the impact on the network, and will
consequently be used as the basis for the rest of this paper.

III. SERVICE ALLOCATION PROBLEM

A. Problem Setting

The service allocation problem is a generalization on the
previously defined GQAP. The service allocation problem
expands on this by putting constraints on both the devices and
the network, whereas the GQAP does not consider transport
constraints. GQAP has been shown to be solvable for up to 22
devices, showcasing the problem complexity [10]. Additional
complexities arise due to applying it to fog computing: the
available run-time of the placement algorithm is generally very
low, as it has seconds to find a solution, depending on the
context. Similarly, the available resources of fog devices are
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Fig. 2. An example discrete Pareto Front. The square nodes represent
the Pareto-dominant solutions, where the circles represent the dominated
solutions. The diamond shape, C, shows how the Pareto Front would change if
constrained solutions, shown in dark red, are removed from the Pareto Front.

generally limited, requiring algorithms with low computational
complexity. This further bounds the methodologies applicable
to the problem. We additionally extend the GQAP to consider
MOO, as the service allocation problem considers multiple
competing objectives, defined further below.

B. Multi-Objective Optimization

MOO considers the optimization of multiple, possibly con-
flicting, objectives. This is formulated in Equation 1 [11].

min F(x) = [F1(x), F2(x), . . . , Fo(x)]
s.t. x ∈ X

gi(x) ≥ 0, i = 1, 2, . . . , k

hj(x) = 0, j = 1, 2, . . . , l

(1)

The goal is to traverse the search space x ∈ X to simultane-
ously minimize the cost of the objective function vector F for
o different objectives, while considering k different inequality
constraints, gi, and l different equality constraints, hj .
These objectives conflict, thus there is no single optimal
solution, rather a front of non-dominated solutions. This front
is the Pareto Front (PF), where each solution is at least better
for one objective while being worse for at least one other
objective. This is shown in Fig. 2, where a bi-objective PF
is shown. Solutions A and B are non-dominated solutions,
signifying that they are worse on at least one objective while
being better on at least one other objective. Both solutions
dominate C, which is equal to B concerning objective F2,
but worse for objective F1. However, the search space for the
placement problem is constrained. The solutions which do not
satisfy the constraints are shown on Fig. 2 as dark red nodes.
By removing these from the search space, it becomes clear that
solution C becomes part of the PF, as B becomes infeasible.
However, the entire PF is not necessary for the service
allocation problem, only one solution is required from this

front. The selection of this solution is done by a Decision
Maker (DM), which defines the preferences for the set of
objectives. This definition is often done using scalarization.
By summing the objectives together, the utility of a solution
can be defined as a linear combination of the objectives. This
scalarization is done using a weighted function, where the
weights represent the importance of each objective. Popular
techniques for this approach include the weighted sum ap-
proach, which purely uses the weights defined by the DM,
and the Chebychev scalarization, which also incorporates a
reference vector, giving a search direction to the algorithm
[12]. Scalarization is one of the simplest approaches for
solving MOO problems, but it is often difficult for the DM
to find the optimal set of weights. This has an especially
large impact on Machine Learning (ML) scenarios, where the
training of weights for a neural network can consume a large
amount of time and resources.

IV. REINFORCEMENT LEARNING APPROACH

A. Markov Decision Process

General RL problems are represented as Markov Decision
Processes (MDPs), which ensure convergence towards an
optimal policy. As this research is MOO oriented, we consider
a Multi-Objective Markov Decision Process (MOMDP), an
extension of the existing MDP. A MOMDP can be represented
as a 6-tuple (S,A,P, r, ω, fΩ), with S representing the state
space, A the action space, P (s′|s, a) representing the transition
distribution, r(s, a) is the vector reward function, Ω is the
space of preference, and fΩ is preference function, which takes
preference ω ∈ Ω as inputs and outputs the scalar utility for
each action in a given state, i.e., fω(r(s, a)) = ωr(s, a) [13].
Our goal is to maximize the utility function u(ω), representing
the scalarization of the problem for any preference vector
ω ∈ Ω defined at run-time.

B. Multi-Objective Reward

In this paper, we propose using a centralized, offline,
dynamic RL algorithm to solve the service placement problem.
This centralized approach enables global optimization through
a full view of the network state and reduces the data sharing
complexity. The field of MOO is gaining traction in the RL
community. Rădulescu et al. provide us with an expansive
survey on scalarized multi-objective and multi-agent RL [14].
One core component they showcase is the difference between
Scalarized Expected Returns (SER) and Expected Scalarized
Returns (ESR) in scalarized MORL. They showcase the degree
of freedom in which the utility function can be integrated into
the reward function. In a SER-oriented approach, scalarization
first computes the payoffs of the policy and then applies the
scalarization methodology:

Vπ
u = u

(
E

[ ∞∑
t=0

γtrt|π, µ0

])
(2)

This is the correct approach when the policy is executed
multiple times, and where the average execution over multiple
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policies is important to the agent. In a ESR-oriented approach,
scalarization first applies the scalarization methodology before
computing the payoffs:

Vπ
u = E

[
u

( ∞∑
t=0

γtrt

)
|π, µ0

]
(3)

This methodology is used when the return of the policy
over a single run is important for the agent. The core focus
of the proposed approaches is scalarized MORL. A naive
approach of solving the placement problem is to predefine
a set of weights for which it will be solved, and apply that
solution. During subsequent runs, different weights can be
used to represent changing preferences. This methodology
works well for generic Evolutionary Algorithms (EAs) and
heuristics, but is less applicable to ML methodologies due
to the complexity and long training times. In this regard, the
focus is on leveraging RL methodologies which consider these
dynamic weights.

V. METHODOLOGY

A. Problem Model

We now define the MDP model.
1) Observation Space: The problem has been modeled as

a fully observable MOMDP. The observation space is the
allocation array, which represents the current mapping of the
services to the devices.

2) Action Space: The agent takes appropriate actions by
moving a single service to specific device, manipulating the
allocation array. The agent gets a penalty if it takes an action
which would violate the device constraints, promoting finding
valid placements. Although a dynamic action space through
masking would be useful to prevent taking actions which lead
to a constrained solution, a static approach was selected. This
approach allows our agent to traverse through constrained parts
of the search space, which is especially important in scenarios
with a low degree of unconstrained solutions.

3) Reward: The agent is rewarded on both the level of
constraint satisfaction and the value of each objective. To
support constrained environments, the objectives have been
given a penalty based on how many constraints are exceeded,
as defined in Eq. 4.

Cp =

|R|∑
r

(Cr) (4)

The parameter Cr ∈ {0, 1} represents 1 if constraint r is
satisfied, 0 otherwise, and scales the impact of the constraints
in case the objectives are not satisfied. All objectives are
penalized equally. The entire approach to find the reward
vector is defined in Eq. 5.

r(st, at) = [(F1(st)+Cp), (F2(st)+Cp), . . . , (Fn(st)+Cp)]
(5)

The reward vector r is constructed by taking the objective
value Fi(st), i ∈ n for n different objectives. By separating
the constraints, we ensure their impact on the overall learning,

regardless of the current weight. By modeling the constraints
and the objectives directly into the reward, we formulate a
problem where the agent should find an optimal state, as the
value of the state is what matters in this problem, not the
trajectory to getting in a specific state. However, general RL
optimizes the expected cumulative return, which does apply
value to the trajectory. We resolve this issue by formulating
the problem as a max reward problem, where the expected
maximum reward along a trajectory should be optimized. This
approach was proposed by Gottipati et al., who showcased its
behavior and gave proof of convergence [15]. The proposed
Bellman equation is shown below:

Qπ
max (st, at) = (6)

Est+1∼P (·|st,at)
at+1∼π(·|st+1)

[max (r (st, at) , γQ
π
max (st+1, at+1))] (7)

Here, the Q value of the policy π is maximized, by taking
the max value between the current reward and the expected
Q value of the next state. This approach encourages the
model to search for maximized reward values, instead of
the discounted return. Combined with the maximum reward
formulation defined in Eq. 7, this becomes the following:

Qπ
u,max = E

[
u
(
max
t→∞

(rt, γQ
π
max(st+1, at+1))

)
|π, µ0

]
(8)

The utility function u is a weighted sum, shown in Eq. 9.

u(r) =

n∑
i=1

ri ∗ ωi (9)

4) Terminal Condition: The approach proposed for solving
the MOMDP does not allow for any terminal conditions,
since the agent will never be certain to know when it has
reached a sufficient maximum. To this end, we let the agent
traverse through its entire episode and use the maximum
reward formulation, as defined in Eq. 7.

B. Linear Scalarization

Linear scalarization is the baseline approach for solving
generic MOO problems. It uses the strength through simplicity
approach of the weighted sum, where objectives are multiplied
with a predefined weight and summed together, as defined in
Eq. 9. This approach has been applied in the SotA already,
including Tang et al. [5]. While this approach enables tackling
MOO problems with single-objective approaches, it suffers
from the inability to handle a change in the weights of
the objectives. To this end, we propose expanding on the
scalarization approach by intelligently managing the weights
of the objectives, as outlined below.

C. Deep Optimistic Linear Support

One approach proposed by Mossalam et al. is the Deep Op-
timistic Linear Support Learning (Deep-OLS) algorithm [16].
This algorithm supports bi-objective optimization through
scalarization. The approach first trains two Deep Neural Net-
works (DNNs) on the weight extrema, one optimized for
each objective, and then uses the two DNNs to predict the
utility of a solution. This is then used to create a Convex
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Coverage Set (CCS), and applies Optimistic Linear Support
(OLS) to select the weights for which a new policy could
gain the most improvement in finding a new optimal policy.
This results in multiple trained agents, each one optimal for a
range of weights. These agents can then be swapped at run-
time based on the weights required. The approach aims to
minimize the amounts of networks trained to cover the weight
space. This approach has been expanded upon for application
on the placement problem. Due to the current limitations of
the Deep-OLS algorithm, only two objectives are used. To
keep the objectives as conflicting as possible, a focus was put
on both a device and a network optimization objective. The
network objectives were scalarized together and normalized to
the range [0, 1]. This was subsequently also done for the device
objectives. This approach reduces Eq. 5 to two objectives.

D. Conditioned Network

Our final approach uses a Conditioned Network (CN),
removing the need of having multiple pre-trained agents
completely, by introducing the weights into the observation
space of the agent. As proposed by Abels et al. [17], the ap-
proach is based on an Universal Value Function Approximator
(UVFA), where a network learns state and goal embeddings,
using a distance-oriented metric to combine both. These goal
embeddings are represented in MORL problems as the weight
vectors. Training happens end-to-end, with the state and goal
embedding as input and the multi-objective Q-values as output.
In addition, a Diverse Experience Replay (DER) methodology
is applied to the CN, which is a replay buffer which focuses on
diversity. This is especially important, as the network should
memorize the impact of the different weight vectors as well
as the impact of the state-action pairs. Their approach is
shown to have improved results compared to various other
methodologies, including the multi-network approach.

VI. EVALUATION

For evaluation, a use-case was crafted of 10 devices and
10 tasks, providing 1010 possible different placements. The
networks and additions were built using RLLib [18]. Four
objectives were evaluated: Energy, Worst Case Execution Time
(WCET), Latency and Bandwidth. For the Deep-OLS ap-
proach, Energy and WCET were scalarized as device objective,
and Latency and Bandwidth scalarized as network objective.
Due to instability and slower convergence, the vector Q-values,
proposed by Mossalam et al. were not used [16]. We expanded
on the existing approaches of the Deep-OLS and Conditioned
networks by building them using a Double Dueling DQN,
which improves general stability and convergence. The hy-
perparameters used are found in Table I. The results were
compared with an Non-dominated Sorting Genetic Algorithm
II (NSGA-II) approach, as proposed in previous research [19].
This algorithm was configured with a population size of 100,
running for 1000 iterations. Additionally, a comparison was
made with a standard random search, iterating over 1000
possibilities before finishing.

TABLE I
HYPERPARAMETERS

γ 0.95

lr 0.00001

ϵ 150 000

batch size 32

buffer size 20 000

weight change interval 10 000 steps

VII. RESULTS

All algorithms were generally able to find solutions that
satisfied all constraints. Fig. 3 represents the average time
required to find a single solution. We pooled the MORL
algorithms, as they had similar networks and consequently
similar inference time. The Cloud solution refers to placing
all possible tasks on the cloud, showcasing the traditional
approach. The log scale showcases that the proposed MORL
approaches outperform the traditional NSGA-II algorithm by
a factor 5. Note, however, that both NSGA-II and Random
Search depend on the number of iterations to determine timing,
whereas the proposed MORL algorithms have static timing and
resource usage in nature. More interesting results are found on
Fig. 4, which shows the average reward over 50 runs. The x-
axis shows the weight for the network objective, where a 0 is
the corner weight focusing on device objectives and 1 is the
opposite corner weight focusing on network objectives. Note
that the cloud solution does not satisfy the latency solution
and is invalid, being purely shown as reference.
It is clear that the NSGA-II algorithm finds the optimal
solution. This is at the tradeoff of consuming considerably
more time and resources. The bi-objective Conditioned Net-
work approach comes quite close to the NSGA-II algorithm,
which showcases that a trained network is a valid approach
in resource-constrained service placement. Interestingly, the
neural network generally also finds better solutions in 50
timesteps than the random algorithm does in 1000. This is
partially accredited to a light skew in the normalization, mak-
ing network objectives slightly more valueable. In addition,
if a corner weight of the Deep-OLS fails to converge, the
subsequent search becomes infeasible. We notice that the
conditioned network trained on four objectives succeeds at
finding useful solutions, but is outperformed by nearly all other
approaches. This is likely due to the large jump in complexity
between solving for two and four objectives.

VIII. DISCUSSION

The results showcase the brittleness of applying Deep-OLS
in practical scenarios. The approach depends on finding the
policies for the weight extrema first, but if these values are far
apart, the algorithm stops working as expected. In addition, the
approach suffers from search space complexity differences. In
our scenario, it is considerably easier to optimize for network
objectives, by putting all services on the same device, than
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it is to optimize for device objectives. This mismatch makes
it difficult to build an automated Deep-OLS search method-
ology, as the network objective policy converges considerably
faster. We recommend to instead train individual policies with
individual hyperparameters per weight and apply OLS on top.

IX. FUTURE WORK

Using the MORL techniques described, further objectives,
such as privacy and security, and constraints, such as soft-
ware requirements, can easily be added. The impact of these
added objectives and constraints should be evaluated, and
the scalability of the proposed techniques validated. The
trained models could be further improved to reduce resource
consumption and inference time, using network pruning, as
proposed by Balemans et al. [20] In addition, our proposed
technique can be extended to larger and varying computer
networks or application chains. This can be tackled by using
the strengths of Graph Neural Networks (GNNs), which allow
neural networks to process graphs of any size [21].
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