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Abstract—We propose a multistage approach for enhancing
speech captured by a drone-mounted microphone array. The key
challenge is suppressing the drone ego-noise, which is the major
source of interference in such captures. Since the location of the
target is not known a priori, we first apply a UNet-based deep
convolutional autoencoder (AE) individually to each microphone
signal. The AE generates a time-frequency mask ∈ [0, 1] per
signal, where high values correspond to time-frequency points
with relatively good signal-to-noise ratios (SNRs). The masks are
pooled across all microphones and the aggregated mask is used
to steer an adaptive, frequency domain beamformer, yielding a
signal with an improved SNR. This beamformer output, after
being fed back to the AE, now yields an improved mask – which
is used for re-focussing the beamformer. This combination of AE
and beamformer, which can be applied to the signals in multiple
‘passes’ is termed multistage beamforming. The approach is
developed and evaluated on a self-collected database. For the
AE - when used to steer a beamformer - a training target
that preserves more speech at the cost of less noise suppression
outperforms an aggressive training target that suppresses more
noise at the cost of more speech distortion. This, in combination
with max-pooling of the multi-channel mask – which also lets
through more speech (and noise) compared with median pooling
– performs best. The experiments further demonstrate that the
multistage approach brings extra benefit to the speech quality
and intelligibility when the input SNR is ≥ −10 dB, and yields
comprehensible outputs when the input has a SNR above −5 dB.

Index Terms—Drone, unmanned aerial vehicle (UAV), ego-
noise reduction, beamformer, speech enhancement, UNet, MVDR,
MWF, autoencoders.

I. INTRODUCTION

Unmanned aerial vehicles (drones) are becoming increas-
ingly affordable and accessible. Video capturing is one of
their most natural and prominent applications. Capturing the
audio can also be helpful, e.g., in search and rescue tasks;
however, the strong ego-noise from the drone engines and the
wind disturbance lead to extremely low signal-to-noise ratios
(SNRs) in the captured signals, limiting the usability of such
captures. Drone noise is also highly non-stationary because the
rotation speed of the engines changes frequently during flight
and even during hover. Together, all these factors present a
formidable challenge for drone-based audio scene capturing.

This work is supported by the Research Foundation - Flanders (FWO) under
grant number G081420N.

Due to low prevailing SNRs, multi-microphone methods
[1]–[6] are more common than single channel approaches [7],
[8] in drone ego-noise removal. In fact, auxiliary information
such as propeller rotation speed [8] or drone noise reference
signals [7] is usually required by these single-microphone
methods. Even so, they perform poorly for real recordings
due to the non-stationary noise conditions [7]. In contrast,
multi-microphone approaches can exploit spatial information
in these situations, leading to targeted noise suppression by
beamforming [1], [2], [6] or by blind source separation [5].

For a drone, the predominant source of interference arises
from the spatially-localised ego-noise from the (typically)
nearby rotors. Approaches such as the adaptive MVDR [9]
take the estimated noise spectrum into account when comput-
ing the beamformer weights, which improves cancellation of
ego-noise. [1] uses a minimum variance distortionless response
(MVDR) beamformer steered towards the target location.
The noise covariance matrices were fixed and designed to
cancel signals coming from the rotor directions. Additional
beamformers, steered toward the rotors, were used to estimate
a single channel Wiener postfilter. Multi-channel Wiener filters
(MWF) [10], [11] implicitly combine a postfilter with an
adaptive MVDR beamformer, leading to improved residual-
noise suppression.

Such adaptive beamformers and postfilters are usually im-
plemented in the short-time frequency domain, where they are
formulated in terms of the spatial covariance matrices (SCMs)
of the respective signals [12]. The target-speech SCM and
noise SCM are not known a priori but are estimated from the
noisy input signals. The estimation is done independently at
each frequency, and typically obtained by a weighted recursive
average. The weights (or masks) for each time-frequency (TF)
point are real-valued and ∈ [0, 1]. They indicate how dominant
speech or the noise is at a time-frequency point. For good
spatial filtering, the key lies, thus, in the reliable estimation of
these masks. For example, in [2], the masks are based on the
direction of arrival (DoA) estimates in each TF bin. Using the
recent advances in deep learning, the same authors use a feed
forward neural network to further enhance the DoA masks [6].
Deep neural networks can also be exploited to directly estimate
the masks [6], [13], [14].

Deep convolutional autoencoders (AE) with skip connec-



tions, also known as UNets due to their topology, have recently
established themselves in speech enhancement [15]. Such
networks learn to estimate either the underlying clean signal
spectrogram or the so-called ideal ratio mask (IRM) from the
noisy input spectrogram. UNets can be trained for single- or
multi-microphone recordings.

Here, we propose to enhance the audio captured by a drone-
mounted microphone array by a multistage adaptive beam-
former, which is steered by time-frequency masks obtained
from a single-channel AE. The choice of a single-channel AE
to obtain the time-frequency mask, despite the availability of
multi-channel signals, is a conscious one for the following
two reasons: firstly, training multi-channel UNets requires
implicit or explicit incorporation of spatial information. This
necessitates the generation of a more exhaustive and diverse
training set (either by varying the location of the target source
so the UNet does not overfit to a particular direction, or
by training the array for an a priori fixed direction). Since
the location of the target source is not known a priori, a
large training dataset is necessary, which is difficult to acquire
for UAV-based captures. Secondly, multi-channel UNets, once
trained, are specific to the array configuration. Thus, if the
array configuration changes (e.g., microphones are damaged
or a different array geometry is used), a complete retraining
is required, making these approaches less flexible. In contrast,
applying a single-channel AE to individual microphone signals
is, thus, independent of the array configuration and requires a
smaller training dataset.

The multi-channel TF mask by applying the AE to each
microphone signal is then pooled to aggregate a single-channel
mask to steer the beamformer. The improved signal from the
beamformer is subsequently fed back to the AE, yielding a
further refined mask. We can thus iterate over the combination
of AE and beamformer where, at each stage, the AE produces
a refined mask from the previous beamformer output, and
the subsequent beamformer stage uses this mask to re-focus
and better attenuate the noise and enhance the speech. This
iterative process leads to more weak speech components being
recovered as compared to a single-stage system. Further we
analyse the effect of different training targets in the AE and
show how it influences the processing chain. These results may
also be applicable in the general field of speech enhancement.

The paper is structured as follows: Section II introduces
the signal model and details the proposed method and its
components. The approach is evaluated in Section III, where
we first describe our data-collection and subsequently provide
the evaluation results and discussions. We conclude with some
general remarks on this topic, setting up our future work.

II. PROPOSED METHOD
A. Signal Model

The signal captured by an M -element microphone array is
a mixture of the target speech and interference. Given that
drones mostly operate in the open, we may model the mixture
at any microphone m as:

xm(n) = hm(n) ∗ s(n) + vm(n) , (1)

where s(n) is the speech signal, hm(n) is the impulse response
modeling the propagation delay and attenuation from the
source location to microphone m, ∗ is the convolution operator
and vm(n) is the noise at microphone m. The noise in this
case mainly consists of spatially-localised ego-noise generated
by the rotors. Using the short term Fourier transform (STFT)
representation, we can write (1) as:

Xm(l, k) = Hm(k)S(l, k) + Vm(l, k) , (2)

with l being the frame index and k = {0, 1, . . . ,K} being
the K +1 discrete frequency bin indices from DC to Nyquist
(i.e., positive frequency spectrum). The above model assumes
that the location of the target speech remains fixed (or varies
very slowly) with respect to the array, allowing us to drop the
time-dependency on the spatial transfer function Hm. This is
not a limiting assumption however – but serves to simplify the
exposition. A more compact expression is obtained by stacking
the signals from the different microphones in column vectors:

X(l, k) = H(k)S(l, k) +V(l, k) (3)

Where H(k) = [H1(k), · · · , HM (k)]T is the so-called
steering vector and V(l, k) = [V1(l, k), · · · , VM (l, k)]T is the
vector of interfering sources at the microphones.

B. Single-channel deep convolutional autoencoder

In single-microphone enhancement, the enhancement func-
tion is obtained as a TF mask M(l, k) ∈ [0, 1], where the
magnitude of M(l, k) is indicative of the degree of speech
presence. If directly applied to the STFT spectrum of the noisy
signal, the mask suppresses the unwanted noise while keeping
the desired speech. The enhanced signal at each channel can
then be written as:

Y (l, k) = Mm(l, k)Xm(l, k) (4)

These masks, obtained individually for each microphone, can
be pooled over microphones to yield a more robust estimate,
i.e., the maximum or the median of all masks at each TF bin
is aggregated for a new mask:

M(l, k) = PoolMm=1

(
Mm(l, k)

)
(5)

The mask is estimated by a deep denoising autoencoder,
implemented as a UNet architecture (Fig. 1). This architecture,
inspired by [15], consists of 11 layers with skip connections.
The input to the AE is the sequence of L consecutive frames
of the log-magnitude STFT spectrum of the signal, where the
last frame in the sequence is the current frame. The training
target is the ideal ratio mask (IRM) [16]:

Mm(l, k) ≜ IRMm(l, k) =

√
|Sm(l, k)|2

|Sm(l, k)|2 + |Vm(l, k)|2 , (6)

where Sm(l, k) = Hm(k)S(l, k) is the target speech at
microphone m. We introduce an extra fully-connected (FC)
layer at the output, which combines the penultimate layer
output to yield the IRM corresponding to the current input
frame.



log(|Xm(l − (L− 1), 0)|) · · · log(|Xm(l − (L− 1),K − 1)|)
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Fig. 1: UNet structure: convolution layers reduce the frequency
dimension, while increasing the feature dimension. Deconvo-
lution layers do the reverse. Skip connections are concatenated
along the feature dimension before deconvolution. The features
are then combined over time via a fully connected (FC) layer.

When SNR is low, IRMs of most time-frequency bins have
a low value. Training in such conditions, the network has
difficulties in learning the target because the dynamic range
of the error is very small. One solution to this numerical issue
is to apply a log compression to the training target as in [17],
allowing the network to better generalise to low-valued IRMs.

Thus, two networks are trained, one having the standard
IRM as training target and the other: the log-compressed
IRM. To obtain the log-IRM training target, the standard IRM
is transformed into dB scale and clipped between −40 dB
and 0 dB to avoid potential numercial issues from extreme
values. The final output layers of the two networks needs
to be modified accordingly as well. For standard IRM target
(termed as linear IRM in the following), the FC layer output
is rectified by the sigmoid function. For log IRM target, the
output of the FC layer is only clipped between −40 and 3 dB.
Other than that, the two networks share the same architecture.
To ensure the convergence of the network training, batch-

normalization is applied to each layer. Since the network is
supposed to predict the IRM of the last frame in the input
sequence, the zero-padding on the encoder side is one-sided
(along the first frames). The transpose deconvolution is chosen
for the decoder. For each frame, we utilise 15 previous frames
to provide the contextual information to the networks, yielding
L = 16 consecutive frames as input. All the parameters of the
autoencoders are listed in Table. I.

TABLE I: Parameters of the autoencoder. Since encoder and
decoder have symmetric structures, only the encoder structure
is enumerated.

Encoder parameters
Channels 32, 64, 128, 128, 128

Kernel size (5,7), (5,7), (5,7), (5,5), (5,5)
Stride (1,2), (1,2), (1,2), (1,2), (2,2)

Default activation functions Leaky ReLU, slope= 0.03
Loss function Mean square error (MSE)

Number of epochs 5

C. Adaptive beamforming

The application of the beamformer, with adaptive weights
W(l, k), can be written as:

Y (l, k) = WH(l, k)X(l, k) , (7)

where Y (l, k) represents the beamformer output.
We consider two beamformers: the adaptive minimum vari-

ance distortionless response (MVDR) beamformer and the
adaptive multi-channel Wiener filter (MWF). Both approaches
make use of spatial covariance matrices (SCM) to compute the
weights. We denote the speech SCM as Φss, the noise SCM
as Φvv and the input signal SCM as Φxx. The beamformer
weights are then defined as [9]–[12]:

WMVDR(l, k) =
Φ−1

vv (l, k)Φss(l, k) eℓ

Tr(Φ−1
vv (l, k)Φss(l, k))

, (8)

WMWF(l, k) = Φ−1
xx (l, k)Φss(l, k) eℓ , (9)

where Tr(.) is the trace operator and eℓ is a column vector
where the ℓ-th element is one and the others are zeros. Setting
ℓ to 1, the above expressions ideally try to reconstruct the
speech component at the first microphone.

The true speech and noise spatial covariance matrices are
not straight forward to obtain. Estimates are acquired with the
help of masks generated by the AE, which act as proxies for
the speech presence probability. Thus M(l, k) indicates the
weights given to time-frequency bins when estimating Φss,
and the inverted mask (Mv(l, k) = 1 − M(l, k)) is used to
estimate Φvv . This leads to the following weighted recursive
averaging [14] on X(l, k) for estimating the SCMs:

Φ̂ss(l) = αΦ̂ss(l − 1) + (1− α)M(l)X(l)XH(l) (10)

Φ̂vv(l) = αΦ̂vv(l − 1) + (1− α)Mv(l)X(l)XH(l) (11)

Φ̂xx(l) = αΦ̂ss(l − 1) + (1− α)X(l)XH(l) , (12)



X(l, k)

autoencoderautoencoderautoencoder

Mm(l, k)

Max pool

M(l, k)

channel 1

AE1(l, k)

beamformer

BMF1(l, k)

autoencoder

IRM

AE2(l, k)

beamformer

BMF2(l, k)

autoencoder

IRM

AE3(l, k)

M

M

Stage 1 Stage 2

Fig. 2: Schematic of the proposed multistage beamformer. Thick lines indicate multi-microphone inputs and thin lines indicate
the processing is single-channel. The same autoencoder and beamforming logic is used in all stages.

where α is the fixed averaging factor of the recursive method.
Note: the averaging is performed independently at each fre-
quency k, hence we omit frequency index for conciseness in
the above. In practice, the beamformers are then implemented
in a similar manner to eqs. (8) and (9), but with the estimated
SCMs taking the place of the real SCMs.

D. Multistage Beamformer

A good estimate of the beamformer coefficients is depedent
on obtaining correct statistics for the SCMs, which in turn
requires a good mask estimate from the AE. The initial mask
estimate, from the noisy microphone inputs, is somewhat poor
due to the adverse input SNRs. In order to have a better
mask estimation, the AE can be applied to the beamformed
signal, which should have higher SNR than all the individual
microphone signals. This improved mask can then be used to
re-estimate beamformer coefficients, leading to an improved
beamformer output, and this iterative process can be repeated
multiple times. We term this multistage beamforming. This is
an extra step compared to the current state of the art in drone
noise suppression. We note that a similar approach has previ-
ously been reported to work well in speech recognition [18].
E. Summary of method

A schematic for the whole multistage beamformer process is
shown in Fig. 2. The first stage consists of applying the AE to
all M channels separately. The masks are then pooled in order
to have a more reliable estimate. The pooled mask can either
be applied directly to one of the channels of the microphone
array, or be used in one of the beamformer algorithms to
estimate the needed SCMs. The output of a direct application
of the pooled mask to the reference microphone is denoted
as AE1. The output from the first round of mask-steered
beamforming will be denoted as BMF1.

To further suppress residual noise, a postfilter can be applied
to the output of the MVDR beamformer. The postfilter is
obtained by passing the beamformed output through the same
AE. Applying this mask to the beamformed signal, the output
is denoted AE2.

Since this mask should have a better estimate of where
the speech and noise are situated, this can be used to re-

estimate improved SCMs. Using these for the MVDR and
MWF beamformers forms the second stage. The output is then
denoted as BMF2. Similarly, a postfilter obtained by passing
BMF2 through the AE can be applied to the signal, leading
to the output signal AE3.

III. EVALUATIONS

The proposed method is now evaluated. The baseline is
the multi-channel Wiener beamformer (MWF), which includes
both beamforming and post-processing. The intermediate re-
sults of the multistage beamformer are also investigated for
the ablation analysis.

Three widely-used instrumental metrics are applied for the
evaluation: the wide-band Perceptual Evaluation of Speech
Quality - mean opinion score, listening quality objective
(PESQ-mos-lqo, shorthand PESQ) [19], short-term objective
intelligibility (STOI) [20] and the segmental signal-to-noise
Ratio (segSNR). Since beamforming tries to reconstruct the
speech component at the first microphone, the oracle speech
component s1(n) of the first microphone is chosen as the ref-
erence signal for the intrusive metrics. Denoting the processed
signal by y(n), segSNR is defined as [2]:

segSNR = 10 log10

∑
l F (l)

Es1
(l)

Ee(l)∑
l F (l)

 , F (l) ∈ {0, 1}

(13)
where the error signal ek(n) is given by e(n) = y(n)− s1(n)
and Es1(l) and Ee(l) represent the energies of the respective
signals s1(n) and e(n) in frame l, and F (l) is a binary flag
indicating speech presence/absence in the frame - which is
obtained by an energy-based, oracle voice activity detector on
the clean speech component.

A. Database

For training and validating our system we require multi-
microphone databases of drone captures and there are a few
available, e.g. the AIRA-UAS [21] dataset, the DREGON [22]
dataset and the AVQ [4] dataset. However, AIRA-UAS and
AVQ were recorded in outdoor situations. Thus, background
noise is present in the clean speech references. Noise in the



reference recordings would degrade the evaluation metrics and
impede a proper analysis.

The DREGON dataset is recorded in two rooms with low
reverberation times. However, here the speech is narrowband.
Since we wanted to train our network on wideband speech
samples, evaluation on DREGON would have a big mismatch
with the training data. For these reasons we recorded our own
multi-channel drone dataset, described in Section III-B.

For the training of single-channel AE, TIMIT [23] training
set and part of our drone noise recordings are mixed at SNRs
from −20 dB to 0 dB with step 5 dB. This yields in 18.9 h
of training data in total. For the evaluation, drone recordings
not seen during training are added to the speech recordings at
SNRs in the same range.

B. Recording setup

The dataset of multichannel drone noise and clean speech
signals was recorded in an semi-anechoic chamber. The semi-
anechoic environment models typical drone situations well
in the sense that during open-air use of drones, the only
reflections are from the ground. In this setting, clean reference
is easily available for the evaluation.

The microphone array used was a 7-channel xCore circular
array (Fig. 3a), fixed by a 3D-printed fixture (Fig. 3b) directly
to the bottom of the drone (3DR Solo quadcopter). Other
datasets were recorded either with the arrays further below
or above the drone with additional mechanical structures. In
contrast, our setup makes it possible for a more compact drone.

(a) xCore microphone array (b) Printed base

Fig. 3: The microphone array and its fixture

The recording setup is shown in Fig 4. The vertical distance
h between the speaker and the array was fixed to 1.16m for
all the recordings. During the measurements, the drone was
anchored in place as shown, allowing us to simulate various
flying modes - which makes for a controllable scenario.

The details of the recording are shown in Table. II. Two
scenarios were simulated: drone noise only (R), where the
drone flew either in a stable mode or in a dynamic way, and
speaker only (S). Two locations were considered during the
measurement for the speaker, namely, directly under the drone
(d = 0m), or in front of the drone (d = 2m). In each position,
100 clean utterances from TIMIT were played back by the
loudspeaker and recorded by the array.

Fig. 4: Recording setup in the semi-anechoic chamber. The
drone was fixed on the ground by four tripods, and clean
utterances were played by the speaker. h = 1.16m, d = 2.0m

TABLE II: Drone noise dataset: specifications

d (m) Drone Duration (sec)
R1 - stable 648
R2 - dynamic 294
S1 0 - 309
S2 2 - 300

C. Methods

All the signals are downsampled to 16 kHz before further
processing. Signals are segmented into frames of N(= 2K) =
512 samples with 50% overlap, and windowed by a square-
root von Hann window before transforming into the frequency
domain. The (log-)amplitude spectrum of the positive frequen-
cies is then input to the AE. To maintain the stride along
the frequency, the highest frequency in the signal spectrum
is trimmed as input. As a result, the IRM for the highest
frequency bin is set to 0. This is not a problem since this
bin corresponds to the Nyquist frequency.

The multi-channel Wiener filter is taken as a baseline for
the proposed system. Apart from evaluating the final output of
the multistage approach, all the underlined intermediate results
in Fig. 2 are also investigated for an ablation analysis.

D. Results and discussions

1) Comparison of pooling schemes: First we will discuss
our findings on different mask pooling options. Generally,
average or median pooling is taken as the default pooling
layer. In [18], median pooling was reported to work best for
multi-microphone speech enhancement in conjunction with
automatic speech recognition (ASR). But the conditions are
vastly different to the case of drone recordings - the SNR
in [18] is much higher (on average) and the interference
is more sparse (temporally and spectrally). In table III, the
difference between median and max pooling after first stage



beamforming (BMF1) and after postfiltering the first stage
beamformed output (AE2) is shown. The metrics indicate the
improvement relative to the noisy input, averaged over different
SNRs. These output stages are chosen since they are central
for multistage beamforming and analysing the performance
differences here would help understand the effect for the
succeeding stages.

TABLE III: Comparison of the improvement from the noisy
input by max-pooling and median-pooling for the first stage
(AE trained on linear IRM target).

method max pooling median pool
BMF1 AE2 BMF1 AE2

∆PESQ 0.089 0.135 0.061 0.086
∆STOI 0.052 0.032 0.037 0.008

∆segSNR [dB] 8.03 8.70 8.16 8.70

(a) median pooling (b) max pooling

Fig. 5: Comparison between median and max pooling after
first stage MVDR beamforming and AE postfiltering (AE2)

Firstly, it is clear that max-pooling would, in comparison to
other methods, mask fewer time-frequency points. Thus when
applied directly, it would result in more speech, but also more
noise in the output. These masks are, however, used to steer
the adaptive beamformer. From table III we see that when
using max-pooled masks for beamformer steering, the PESQ
and STOI metrics are higher than when using median-pooled
masks. This indicates that the resultant beamformer and AE
postfilter preserve more speech. The trade-off is lower noise
suppression (lower ∆segSNR). However, when listening to
audio examples, the speech is clearer with max pooling –
thus supporting the perceptual and intelligibility metrics. This
can also be appreciated in Fig. 5, where the better speech
preservation is clearly visible (a section is highlighted for
convenience). The trend is consistent on all test files.

Thus we conclude that a mask which lets through more
speech at the cost of less noise suppression is more effective
in steering the beamformer than a more aggressive mask.

2) Training target comparison: The effect of the training
target on the autoencoder is shown in Table IV, where we
break down the output of the first autoencoder, ‘AE1’, by
input SNRs. From STOI, we see that the denoised signals
have acceptable speech intelligibility (STOI > 0.6) when the
input SNR is ≥ −5dB for both AEs, which is already quite
ideal in the application of drone noise recording. ∆segSNR
indicates that log-compressed IRM provides a better noise
suppression than standard IRM in all conditions, which also
brings a benefit in speech quality measured by PESQ. The
cost of this stronger suppression is slightly more distortion in
speech, which is reflected by a lower STOI.

TABLE IV: Comparison of IRM and log-IRM as the training
targets for the AE. Evaluation is performed on the direct
output of AE. Training on log-IRM suppresses more noise,
but introduces more speech distortion.

Input SNR −20dB −15dB −10dB −5dB 0dB
AE trained on linear IRM target

PESQ 1.080 1.047 1.062 1.122 1.253
STOI 0.355 0.436 0.535 0.628 0.721

∆segSNR [dB] 8.56 7.45 6.55 5.41 4.45
AE trained on log-IRM target

PESQ 1.081 1.054 1.072 1.135 1.253
STOI 0.341 0.420 0.522 0.620 0.713

∆segSNR [dB] 11.14 9.80 7.85 5.87 3.55

To select the best network to predict the mask for the
beamformer, we compared the performance of the second and
the third autoencoder output (‘AE2’ and ‘AE3’) in table V.
Interestingly, the AE trained on the linear IRM improves the
cascaded system performance as expected but the AE trained
on a log-IRM target degrades the output speech when it is
applied in cascade.

TABLE V: Comparison of training targets when used in
combination with multistage beamforming.

method linear IRM logarithmic IRM
AE2 AE3 AE2 AE3

∆PESQ 0.14 0.13 0.09 0.07
∆STOI 0.03 0.02 -0.01 -0.03

∆segSNR [dB] 8.67 8.75 8.20 7.87

3) Benefit of multistage processing: The results of the
previous sections indicate that max-pooling of the masks
and using an AE trained on the linear IRM target are best
at predicting the masks for the subsequent beamformer. In
Fig. 6, we evaluate the benefit of the multistage combination.
Since this constitutes the final system, we present the results
more elaborately by grouping along the input SNRs. As may
be seen, for extremely adverse conditions, although segSNR
improves a lot, there is no gain in terms of speech quality
or speech intelligibility. The proposed system starts yielding a
consistent and reasonable improvement in terms of intelligibil-
ity and quality from −10 dB onwards. However, the multistage
combination only starts to become beneficial when the input
SNR is high enough (SNR≥ −5 dB).

In contrast, the multistage beamformer using an AE trained
on the log-IRM target demonstrates a different tendency along
the processing chain (Fig. 7). Here, successive stages actually
degrade the output signal in all three metrics. To get an
intuition behind this behaviour, we plotted the evolution of the
spectrogram of a −10 dB sample in Fig. 8. It can be observed
from this set of samples that the weak speech harmonics
gradually lose its shape along the processing while more noise
is suppressed. This observation explains the degradation of the
multistage beamformer when using log-IRM autoencoder.

4) AE as a postfilter: We now compare the benefit of using
AE to predict the mask as a postfilter against the baseline mul-
tichannel Wiener filter approach (which implicitly combines



(a) PESQ

(b) STOI

(c) ∆segSNR

Fig. 6: Evaluation of the system based on an AE trained on
a linear-IRM target. Results are grouped by input SNR. The
basic systems (BMF1, AE2) yield a reasonable output when
SNR≥ −10dB. The multistage processing starts providing
additional benefit when SNR≥ −5dB

beamforming and postfiltering). The AE mask is computed on,
and applied to the beamformer output BMF1 (yielding, thus,
the output AE2 in our schematic). The linear-IRM-trained AE
system was used. The comparison is presented in Tab. VI.
These results show that using the AE to estimate a postfilter
mask on the beamformed output is a viable technique and
surpasses the classical Wiener filter as the post processing
method.

TABLE VI: Benefit of an AE-estimated postfilter compared to
the classical MWF. Metrics are averaged on the whole testset.

method BMF1 AE2 MWF
∆PESQ 0.09 0.14 0.08
∆STOI 0.05 0.03 0.00

∆segSNR [dB] 8.03 8.70 6.56

IV. CONCLUSIONS

We proposed a multistage beamformer scheme to enhance
audio captured by a drone-mounted microphone array. A

(a) PESQ

(b) STOI

(c) ∆segSNR

Fig. 7: Evaluation of the system using AE trained on a log-
IRM target. In contrast to Fig. 6, no clear improvement ten-
dency can be observed. Additional stages successively degrade
the output. The overall results, even for the earlier stages, are
worse compared to Fig. 6.

single-channel autoencoder (AE) plays a key role in the sys-
tem. The AE predicts an ideal ratio mask (IRM) which is used
to steer the beamformer. In successive stages, the beamformer
output is fed into the same AE to obtain improved masks,
which are then iteratively used to re-focus the beamformer.
The results show that speech quality and intelligibility can
be improved by this multistage system when SNR≥ −5 dB.
As training target of the AE, we compare the IRM and
log-compressed IRM. Although log-IRM demonstrates better
performance in the first stage (AE-estimated mask applied to
the microphone signal), it is too aggressive to be a preferable
choice for the multistage system. The strong noise suppression
diminishes the weak speech components as well, which cannot
be recuperated in successive stages. We also verified that
median pool, as the most common pooling method to generate
a pooled mask from a multi-channel signal, is not the best
choice for our system. Max-pooling, which preserves more
speech components at the cost of decreased noise suppression,
helps in a more effective steering of the beamformer. We note
that while we addressed several interesting issues, there is
still a mismatch between real recordings and the synthetic



(a) Clean reference (b) Input signal (c) AE1 (d) AE2 (e) AE3

(f) AE1 (g) BMF1 (h) AE2 (i) BMF2 (j) AE3

Fig. 8: Evolution of spectrogram in the multistage beamformer based on different AEs, using the same input at SNR= −5 dB.
Upper panel: references and stage outputs of log-IRM-trained AE; lower panel: stage outputs of linear-IRM-trained AE.

data which mix pure drone noise and clean speech. In real
recordings the rotor-generated turbulence will interfere with
the sound wave – which cannot be simulated from the current
database. In order to train systems for such cases, we need
a well-labeled database with such realistic recordings. In
parallel, we shall explore if we can mitigate the influence of
this turbulence by e.g., a mechanical shield around the array.
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