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Currently, the supply temperature of heating networks is
controlled according to a heating curve [1] which defines a

I. INTRODUCTION

Thermal networks are large distribution networks,
connecting multiple end-users to a common production unit.
This facilitates the use of more renewable energy sources
(RES), such as geothermal heat pumps. This paper takes into
consideration a thermal network for space heating connected
to dwellings where the domestic hot water usage is not taken
into account. They are hereinafter referred to as 'heating
networks'.

Abstract-Heating networks are typically controlled by a
heating curve, which depends on the outdoor temperature.
Currently, innovative heating networks connected to low heat
demand dwellings ask for advanced control strategies.
Therefore, the potentials of reinforcement learning are
researched in a heating network connected to a central heat
pump and four dwellings. The comparison between a discrete
and continuous action space is made with respect to the weight
factor of the reward function. The results indicate that in both
cases the reinforcement learning-based controlling of the supply
temperature can generally ensure energy savings while keeping
the occupant's temperature requirements in comparison to the
rule-based controller.

NOMENCLATURE

supply temperature based on the outdoor temperature and the
indoor temperature setpoint A higher supply temperature
corresponds with a lower outdoor temperature because of
increased transmission losses. However, the insulation rate of
dwellings is increasing and the share of space heating is
decreasing in the total energy demand of dwellings [2].
Therefore, the internal heat gains (from electrical appliances
and occupants) and solar heat gains might even be sufficient
to compensate the low heat losses. Moreover, a lower heat
demand facilitates the use of low-temperature emitters, which
means that lower supply temperatures are possible. These
lower distribution temperatures are beneficial for the
efficiency of the central production unit and for decreasing the
distribution losses, which in turn leads to additional energy
savings. It is clear that the current heating curve might be out
of date, as the heat demands in new buildings do not solely
depend on the outdoor temperature anymore.

In this paper, we explore if a model-free deep
reinforcement learning (RL) agent can improve the control of
the supply temperature setpoint of a heating network with a
central geothermal heat pump. Thus the main contribution
here is to provide a heating network with an agent-based
controller, instead of current rule-based controller which
controls according to a heating curve. An improvement is here
defined as a decreased energy usage of the heat pump while
fulfilling the room temperature requirements of the end-users.
RL is a subfield of machine learning (ML) with the objective
of optimizing the behaviour (or policy) of an agent in a
specific environment, based on a reward function. The agent
perceives the state of the environment and every timestep it
can perform one or more possible actions in the environment.
Depending on the result of these actions , the agent receives a
reward which results in a feedback loop that allows the agent
to optimize its behaviour in order to maximize the reward. It
is named as model-free, because the agent does not possess
over a model of the controlled environment. A more detailed
explanation for RL is given in section II.

While many RL-based control methods have been
proposed for HVAC components, only a few studies and
projects are devoted to optimising the control of heating
networks. Reference [3] developed a framework to train deep
RL agents that control an office room connected to a district
heating system . The RL-agents control the setpoint of the
mixing valve before their zone. In this way, the hot water of
the heating network, which is non controllable by the agent,
was mixed by the returning cold water after the radiator The
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RL-agent is implemented in a case study and led to heating
demand savings of 16.7% during the 78 days of testing.

Reference [4] proposed a data-driven deep RL (DRL)
approach to optimally control the supply water temperature of
a district heating. They focused on delivering heat to every
apartment on the feed line and trained a recurrent neural
network (RNN) on the simulated data (generated by Dymola)
to predict indoor temperatures and return temperature. Then,
this model is used to train two DRL agents (one with expert
guidance) to provide optimal control for the supply water
temperature, using a single-objective reward function based
on the target temperature. While this is closely related to the
current work, there exist several differences. Here, we define
a multi-objective reward function and incorporate a state
space with as less variables as possible to reduce the
complexity. Besides, we consider several different setpoint
temperatures for different apartments in different times of the
day. Moreover, as opposed to our approach, the dynamics of
the production units and storage tanks are not taken into
consideration. Thus, if the RL-agents defines a temperature of
e.g, 40 "C, the supply temperature is exactly equal to 40 "C.
This is not realistic, certainly in case of a heat pump, as the
energy usage highly depends on the available temperatures.

Besides previous researches, other projects are determined
to use RL in the energy systems. Firstly, VITO, a research
institute in Belgium, recently developed the STORM
controller to improve the management of heat loads in an
existing district heating. Three optimisation strategies are
implemented in the STORM-controller [5, 6], namely peak
shaving, cell balancing and market interaction. The agents
manipulate the perceived inputs to the current available
proportional-integral-derivative (PID) controllers of the
district heating. This RL-based controller is developed to
control existing heating networks, instead of finding new
control strategies to replace the commonly used PID
controllers. Secondly, the CityLearn framework [7] is an
interesting initiative to develop RL-agents for balancing the
production and demand of the electrical grid, by using RL
agent to control the storage tanks or batteries. However, the
heat demands of the buildings are based on heat loads. As a
result, the effects of temperatures and mass flows are not taken
into account. As this paper focusses on controlling the supply
temperature to the heating networks, the CityLearn framework
is not suitable for our research.

In the next section, a model-free deep RL technique is
described. Afterwards, the used models in the simulation
environment representing the heating network are shortly
described in the third section. In sections IV and V, the
training methods and results are presented and discussed,
respectively. Finally, this research is concluded in the sixth
section.

II. REINFORCEMENT LEARNING

Reinforcement learning (RL) is a branch of 1,11 which
provides a mathematical framework for solving control
problems sequential decision making using autonomous
agents [8, 9]. This is done through the repeated interaction of
an agent with its surrounding environment. The agent
observes the current state of the environment and takes an
action (i.e. making a control decision), to maximize a reward
[10, 11]. This sequential decision making process could be
formulated as a Markov decision process (MDP). An MDP is
fanned by a tuple (5, A, P, R, y), where:

• 5 is a set of states that can be observed in the environment;
• A is a set of actions;
• P: 5 x A x 5 is the transition probability between states;
• R:5 x A is the reward function which maps the state and

action to the immediate rewards;
• y E [0,1] is the discount factor for determining how much

importance we give to the future rewards.

Any change in the above mentioned elements could
potentially lead to a different RL implementation and thus
different control mechanisms.

A policy tt is the solution of MDP that maps states to
actions. The performance of a policy in a given state, is
represented as the state value function of a state, which is the
expected accumulated reward obtained by the agent. Given
'ifs E 5, the value function is defined as follows:

VH(s) = R(s,1f(s)) +yL p(s'ls,1f(s))VH(s') (1)
s'

The goal of an RL agent is to find the optimal policy,
which provides an optimal action for each state. Two main
approaches ofRL algorithins to achieve this are model-based
and model-free approaches. Model-based RLs are usually
used when the transition probability and reward function of
the environment are known. But, in most real-world problems,
the characteristics of the environment are unknown to the
agent and the optimal policy should be obtained by the agent
through the interaction with the environment and without
knowing the environment's dynamics.

In this study we use Proximal Policy Optimization (PPO)
[12] which is a well-known model-free deep policy gradient
RL algorithm. It tries to find a balance between ease of
implementation, sample complexity, and ease of tuning by
computing an update that minimizes the objective function
while maintaining a relatively small deviation from the
previous policy [13].

PPO performs multiple minibatch gradient updates,
instead of one update per sample. It avoids too large policy
updates by alternating between data sampling from the
environment and optimizing a surrogate objective function
with clipped probability ratios. With e being the policy
parameter, the probability ratio is calculated as the following:

1fe(atlst)
~~)= ~)

1fe"d(atlst)

Then, the clipped surrogate objective function of PPO IS
defined as the following equation:

LeL/P(e) = iEt[min(rt(e)At,clip(rt(e), (3)
1-E,1+E)At ) ]

Where E: is a hyperparameter for determining the range of
clipping (usually 0.1 or 0.2) and At is the estimated
advantage. According to the above equation, the minimum of
nonclipped (rt(e)At) and clipped (clip(rt(e), 1 - E, 1 +
E)At ) objective is the final objective of the PPO.

III. SIMULATION ENVIRONMENT

To train the RL agent, a huge amount of data is required.
This data is provided by a simulation enviromnent (i.e, a
simulator) in MATLAB. A schematic overview of the
associated energy flows as well as the heating curve used in
this research are given in Fig. 1. In this research, the RL-agent
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Fig. 1. On the left: " Overview of energy flows in the considered case study. An apartment building with four dwellings and a central geothermal heat
pump." On the right: "The heating curve which is currently utilized by the rule-based controller. This is used as the baseline for the experiments."

controls the supply temperature of a heating network in an
apartment building with four dwellings, inhabited by different
families. The central heat production unit is a geothermal heat
pump, which is connected to a storage tank. The energy losses
of all components are taken into account and only the central
heat pump uses energy (electricity). The heating network is
assumed to be balanced correctly, so that the pressures and
pressure drops are not taken into account in the simulation
environment. The dwellings extract the needed energy out of
the heating network by a throttle used to control the mass flow.
The following part will shortly introduce the MATLAB
simulation environment. More in-depth information about the
used models can be found in [14-16].

The user behaviour is based on a profile generator [17] of
INSTAL2020. In the latter study, a survey is held on 700
Flemish dwellings in Belgium. Based on the family type, a
stochastic distribution of using different electrical appliances
and the internal heat gains are randomly generated. The
outdoor temperature and solar radiation profiles are extracted
from a TRNSYS weather file for Uccle, Belgium [18].

The four dwellings of the apartment building are similar,
but with different window orientations, and are modelled as a
3R2C-model. This model takes into account the ventilation
losses (leakage and hygienic ventilation by a C-system),
transmission losses (the dwellings' average U-value is 0.5
W/m2K), solar gains, internal heat gains and a capacity for the
indoor air and the walls. The design heat loss of a single
dwelling is 3.4 kW.

All apartments are equipped with hydronic radiators and
thermostatic radiator valve (TRV) [19] where the supply
temperature is equal to the distribution temperature of the
heating network (controlled by the RL-agent). The
temperature profile inside the hydronic radiator is modelled
with three nodes as in previous research [14].

The central geothermal heat pump is sized to cover the
total design heat load. The heat pump is a grey-box model of
[14], based on the performance map of geothermal heat pumps
of Viesmann for different source and sink temperatures.
Equation (4) represents the dynamic behaviour of the heat
pump at time t, based on Fig 2.

dTg:;t\ .
CH P~ = Qeva;t + Qelec;t

- UAcon(Tg:;t~t - Tzone;t) (4)

+ . (T Sn k T snk)cp mSnk;t in;t - out;t

Where CH P (J/K) is the thermal capacity of the heat pump,
Ti~~: and Tg:;t~t (ac) are respectively the ingoing and
outgoing temperature at the condenser of the heat pump,
Tzone;t (ac) is the ambient temperature of the heat pump,
which is fixed at 20aC, because it is placed in a central boiler
room. Qeva;t (W) is the extracted heat of the evaporator and
Qelec;t (W) is the used electricity, determined by the
performance map based on the temperatures at both
condenser and evaporator side. UA con (W/K) determines the

1 1 d " · (T Sn k T Snk)" t thenve ope osses an cpmsnk;t in;t - out;t represen s e
heat transferred to the mass flow through the heat pump,
where cp is 4187 (J/kgK) and msnk;t is the mass flow (kg/s).

The supply and return pipe are modelled according to the
plug flow model [14], to simulate the time delay in the pipes
as well as the heat losses.

IV. EXPERIMENTS

To apply the RL based control strategy in this application
domain, we used RLlib [20] which is an open-source library.
As RLlib works with OpenAI Gym, we created an OpenAI
Gym custom environment and integrated it with the heating
network simulation environment such that the agent can take
control of the supply temperature. An overview of the RL
based heating network simulation environment is depicted in
Fig. 3.

The goal of the RL agent is to control the supply
temperature while minimizing the energy usage of the heat
pump and keeping the indoor temperature requirements for
occupants. Therefore, a multi-objective reward function is
defined as a weighted sum of these two criteria. The indoor
temperature setpoints are assumed to be set by the end user,

Fig. 2. Energy balance in the geothermal heat pump.
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Fig. 3. Heating network simulation linked to RL-based control.

hence, the experiments contain different target temperatures
for different dwellings at different times which makes the
experiments closer to the real-world scenarios. The
temperature deviation is considered as the Euclidean distance
between the indoor temperature and the indoor temperature
setpoint. The reward is calculated using the following
equation:

reward, = ((1 - a) . 1/Qelec;t) + (a . 1/I1Tt) (5)

Where Qelec;t is the heat pump's electric power usage and I1Tt
is the temperature deviation at time t. The weight parameter
is a with a range ]0, 1[. With a = 0 or a = 1, the reward
function turns into a single objective function, thus they will
not be considered in this research. Both Qelec·t and I1Tt are
normalized to the range [0, 1]. Considering the reward
function, the state space variables are chosen in a way that
reflect this behaviour in the observation space of the agent,
thus we used only the most representative set of variables for
state space which also helps in decreasing the computational
complexity. Therefore, the outdoor temperature, indoor
temperature of all dwellings, indoor temperature setpoint of
all dwellings, and the supply temperature to the heating
network which also effects the energy usage ofthe heat pump,
are used as the set of state space variables.

The experiments were performed in the simulation
environment for the winter season. The training ofthe agent is
performed using 70 days of data simulation, and its
performance is tested on the remaining 20 days of the season.

During the test phase, the agent uses the knowledge obtained
during the training and performs actions in the environment
based on the learned policy. To investigate the effect of
discrete and continuous action spaces on the learning
procedure, two set of experiments were done based on them.
In each set of experiment, different weights for the reward
function are investigated to find a trade-off between energy
usage of the heat pump and temperature deviation from the
desired indoor temperature. The acceptable range for the
temperature deviation is ± 0.5°C and the agent's reward is
decreases outside this range.

In the discrete action space case, the supply temperature is
controlled by three actions, including increasing/decreasing
temperature by 0.5°C or keeping it unchanged, while
continuous action space involves increasing/decreasing
temperature within the range of [-0.5,+0.5]OC.

V. RESULTS AND DISCUSSION

To find a trade-off between the energy usage of the heat
pump and temperature deviation in the dwellings, six
experiments are done using three different weight parameters
(a E {0.3, 0.5, D.?}) for the reward function. As can be seen
in (5), a larger a gives the priority to meeting the indoor
temperature requirements ofthe occupants, and with a smaller
a the priority is given to decreasing the energy usage of the
central heat pump. The results are compared against a rule
based controller (RBC), which uses a heating curve to set the
supply temperature (see Fig. 1 for the used heating curve).

In Fig. 4 the total energy usage ofthe heat pump is plotted
against the average temperature deviation from the setpoints,
in the test phase. The energy usage at time t is equal to the
power usage multiplied by the timestep and converted to
kWh. The average temperature deviation is the absolute mean
temperature difference between the indoor temperature
setpoint and the "measured" indoor temperature. As
mentioned before, a temperature difference of 0.5°C is
considered as acceptable. As expected, increasing the a,
generally provides a smaller deviation from the occupant's
temperature requirements while it causes an increase in the
energy usage of the heat pump. As Fig. 4 shows, in all cases
of agent-based RL control, the heat pump used less energy in

•
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Fig. 4. Comparative plot between the research controllers, based on total energy usage and average temperature deviation. 'DA' and ' CA' represents the
RL-agents with a discrete action space and a continuous action space, respectively. 'RB C' is the heating curve-based control.
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comparison to the RBC. Besides, in 4 out of 6 experiments the
RL-based controller performed better than RBC in terms of
average temperature deviation from the indoor temperature
requirements of the occupants . In all cases of continuous
action space, the RL-based controller outperformed the RBC.

Table 1 compares the relative ratios of both average
temperature deviations and energy usages of the heat pumps
of the RL-agents to the RBC to assess their performances.
When the RL-agent is trained with a continuous action space,
the temperature deviations improves up to 9.78% as the
weight for the reward function increases, compared to the
RBC. The discrete action RL-agent outperforms the RBC only
when the weight factor is 0.7 by 2%. Besides, the RL-based
controls save 5.29% to 16.03% energy compared to the RBC.

The indoor temperature of a dwelling during the 20 days
of testing is shown in Fig. 5 for the RL-based controls with
continuous action spaces and the RBC. According to Fig. 4
and Fig. 5, RL-based control provides almost the same indoor
temperature as the RBC, while the heat pump uses less energy.

Fig. 6 illustrates the supply temperature setpoint by the
heating curve, discrete action agent and continuous action
agent with both 0.7 as the weight a. It can be seen that the
supply temperature is most of the time underneath the supply
temperature of the heating curve. Sometimes, the supply
temperature of the continuous RL-agent is higher than the
heating curve's setpoint. The agent takes into account the
indoor temperatures in addition to the outdoor temperature. A
higher supply temperature setpoint by the agent compared to
the heating curve, implies the effect of a low indoor
temperature on the agent's decision. This is not taken into
account in case of using a heating curve. By increasing
the supply temperature, the agent minimizes the temperature
deviation, to receive a higher reward. The RL-agent's supply
temperature is fluctuating more throughout the day, which
indicates that it is not solely based on the outdoor temperature
(as it is the case with the heating curve), but it also takes into
account other factors, such as indoor temperature, to control
the supply temperature.
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TABLE 1: RELATIVE TEMPERATURE DEVIATION AND RELATIVE
ENERGY USAGE COMPARED TO THE HEATING CURVE (RBC) .

Action
,"Veight factor of reward

function
space 0.3 0.5 0.7

Relative temperature deviation (%)

Discrete +4.23 +5.78 -2

Continuous -0.44 -5.1 -9.78

Relative energy usage (%)

Discrete -15.88 -16.03 -13 .01

Continuous -13.66 -10.29 -5.29

The current study is based on a simplified version of a
heating network. In order to make the simulation environment
more representative of a real heating network, more dwellings
should be considered. Besides the number of dwellings, also
the domestic hot water demand should be taken into account.
To minimize the gap between the simulation environment and
a real-world case, and to have an RL-controller that could be
applied to a real heating network, also the hydraulic behavior
(i.e. the pressure drops, balancing valves, etc.) of a heating
network should be taken into consideration. This in tum
requires a more sophisticated state space and control space for
the RL approach to provide optimal control decisions. Despite
the fact that the proposed RL-based control approach achieves
indoor temperatures close to the heating curve, but with less
energy usage, an improved efficiency in this regard with
providing more sophisticated control is anticipated. Above all,
as the reward function has a considerable impact on RL agent
control decisions, a reward function needs to be designed
which is potentially able to derive the optimal policy for this
complex decision making problem.

--End-u ser setpoint temperature
--R ule-based controller
--RL -based controller, a = 0 .3
--R L-based controller, a = 0 .5
--RL -based controller, a = 0.7

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Days

Fig. 5. Indoor temperature for the continuous action RL-agent with different weights for the reward function . The green line indicates the indoor
temperature when using the heating curve for the supply temperature control.
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--Setpoint by the heating curve
- Setpoint by DA, a = 0.7
--Setpoint CA, a = 0.7

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Days

Fig. 6. The supply temperature set point for the discrete (DA) and continuous (CA) RL-controller , with a weight of 0.7, and the heating curve-based
controller.

VI. CONCLUSION

The current supply temperature control for heating
networks is rule-based, i.e. according to a heating curve.
However, the innovative heating networks with more
renewable energy sources and low heat demand dwellings,
require advanced controlling systems.

In this work , we utilized model-free deep RL to control the
supply temperature of a heating network with a central
geothermal heat pump. The two objectives for the reward
function were the electric energy usage of the geothermal
heat pump and the indoor temperature deviation from the
indoor setpoint temperature. A continuous action space, a
discrete action space and three weight parameters of the
reward function, including 0.3,0.5 and 0.7, were examined.

A custom OpenAI Gym environment was developed and a
MATLAB simulation environment, which simulates the
thermodynamic behavior of the heating network, was
integrated into it. This integration enabled us to use PPO
method which is provided by the RLlib library and train an
agent over a period of 70 days for controlling the supply
temperature of the heating network.

The results over 20 days of testing suggest that utilizing a
PPO agent with a multi-objective reward function over our
simulation environment, can help in energy savings while
maintaining the indoor temperature requirements for
occupants. It also outperforms the heating curve control (i.e.
RBC) as our baseline using a continuous action space.
Regardless of the chosen weight for the reward function and
of the type of action space, the results indicate that using RL
based control reduces the electric energy usage of the
geothermal heat pump in comparison to the RBC. In this
regard, the energy savings were up to 16.03% for the discrete
action space and 13.66% for the continuous action space.

A next step is to increase the state space and involve more
control actions which gives the agent more information and
more degrees of freedom to optimize the policy. The heating
network simulation environment could also be made more
representative by taking into account the hydraulic behavior
of a heating network as well as the domestic hot water
demand.
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