
Demonstrator for Experimental Evaluation of
Large-Scale Distributed SDN Deployments

Hemanth Kumar Ravuri, Maria Torres Vega, Jeroen van der Hooft, Tim Wauters, Filip De Turck
Ghent University - imec, IDLab, Belgium
Email: hemanthkumar.ravuri@ugent.be

Abstract—The software-defined networking (SDN) paradigm
has gained widespread popularity due to its ability to ease
network management. However, the traditionally used centralized
SDN architectures are restricted by scalability issues. To cope
with these, several distributed alternatives have been proposed.
The performance evaluation of such distributed solutions is
limited to simulation-based methodologies, where virtualization
technologies are used (e.g., virtual machines (VMs) and con-
tainers to distribute the control plane). In this context, large-
scale testbeds offer a platform to validate the applicability of
an architecture to real-world network conditions. The Virtual
Wall is one such large-scale generic experimentation facility for
advanced networking research and testing. This work proposes a
demonstrator for large-scale distributed SDN deployment using
the Virtual Wall. It provides a thorough description of the steps
involved to deploy experiments, by evaluating the scalability of
a hierarchically distributed control plane.

Index Terms—Controller, Distributed, Scalability, SDN

I. INTRODUCTION

Over the last decade, the software-defined networking
(SDN) paradigm has gained attention from both industry and
academia. Its evolution can be traced to problems posed
by traditional networks in terms of rigidity and inability
to dynamically adapt to changing conditions [1]. The SDN
paradigm, where the control plane is decoupled from the
data plane, supports management, automation and application-
specific routing policies. This has allowed researchers to
envision new networking architectures [1]. So far, several
mechanisms ranging from simulators, emulators, and proto-
type testbeds have been deployed for performance evaluation
of such architectures. In this context, experimentation facil-
ities offer a possibility to examine the performance of the
architecture under near real-world conditions. Furthermore,
they provide experimental resources in the range of hundreds
of physical nodes [1]. This becomes particularly important
when evaluating distributed SDN architectures designed to
deal with the shortcomings of the centralized SDN. The
control plane needs to be distributed onto several nodes to
analyze the gains obtained by the architecture. Thus far, works
focusing on performance evaluation of SDN controllers have
used simulators or virtualization technologies such as virtual
machines (VMs) and containers to deploy the controllers [2].

In this paper, we present a demonstrator for large-scale
evaluation of distributed SDN control plane architectures.
To illustrate its potential and capabilities, we evaluate the
scalability of a hierarchically distributed SDN control plane

U
se

r
S

p
a

ce

(J
F
e

d
E

xp
e

ri
m

e
n

te
r)

Aggregate Manager API

V
ir

tu
a

l
W

a
ll

(P
h

y
si

ca
l

N
o

d
e

s)

R
S

p
e

c

S
li

ce

E
S

p
e

c

R
e

su
lt

s

Design Deployment
Execution &

Monitoring
Results

Fig. 1: Deployment of experiments on the Virtual Wall exper-
imentation facility.
implemented based on the ZeroSDN controller [3]. This archi-
tecture supports independent instantiation of modules, which
aids us in showcasing the relevance of the experimentation
facility. In order to perform experiments, we use the Virtual
Wall1, a large-scale generic experimentation facility for ad-
vanced networking, scalability research, and testing. In the
demonstrator, we set up the data plane on a physical node
using Mininet2 and evaluate the scalability performance of the
controller when it is distributed on several physical nodes. In
this demo paper, we provide a thorough explanation on the
experimental design using the jFed3 experimenter graphical
user interface (GUI), resource provisioning, and execution.
Finally, we present the results in a GUI and analyze them.

II. EXPERIMENT LIFECYCLE MANAGEMENT

This section presents an overview of the architecture of
the demonstrator implemented on the Virtual Wall. Fig. 1
shows how the specific infrastructure resource management
(bottom) is abstracted from the experiment lifecycle (top). The
Virtual Wall is a large-scale generic experimentation facility,
hosting as many as five hundred bare-metal servers. All nodes
are completely configurable in terms of software installation
and network connections. The userspace comprises the jFed
experimenter GUI, which aids in requesting resources on the
Virtual Wall to conduct experiments. The Aggregate Manager
API acts as an interface between the Virtual Wall and the jFed
experimenter GUI. Various steps involved in the experiment
lifecycle management are as follows:

1https://doc.ilabt.imec.be/ilabt/virtualwall/overview.html
2http://mininet.org/
3https://jfed.ilabt.imec.be/

978-1-6654-2434-9/21/$31.00 ©2021 IEEE

IML

D
at

a
P

la
n

e
C

o
n

tr
o

l P
la

n
e

Fig. 2: Illustration of an experimental setup with a hierarchi-
cally distributed control plane.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 10 15

Pe
rc

en
ta

ge
 o

f
A

cc
ep

te
d

 R
eq

u
es

ts

Number of Controllers

Scalability performance in NSFNET

HIER_DIS

Fig. 3: Obtained scalability evaluation results, with gradual
increase of the degree of the distribution.

Design: The jFed experimenter GUI comes with a topology
editor that is useful in designing the experimental setup and
provide configuration details ranging from the type of nodes
to the Operating System (OS) to be installed on a node. The
editor also generates an extensible markup language (XML)
file following the resource specification (RSpec) format that
can be manually edited to add additional features, such as the
installation of software on specific nodes. Once the design is
complete, the experiment may be run directly from the editor.

Deployment: The jFed experimenter GUI supports an ad-
vanced feature for experiment description in the experiment
specification (ESpec) format. The ESpec usually contains a
RSpec in combination with other files. It allows to bootstrap an
experiment by uploading the required software onto different
nodes and specifying the order of execution.

Execution: Each step involved in the execution of an
experiment can be monitored through the progress window
of the GUI. Errors generated during any step are presented in
the error window and in the error logs of the specific node.

Results: Once the experiment is complete, all logs and
results can be downloaded from the nodes for further analysis.

III. DEMONSTRATION SETUP

A. System Under Evaluation

While the traditionally used centralized SDN architecture
suffers from scalability issues, alternatively proposed architec-
tures such as the flat distributed ones do not fare better due to
the inherent inter-controller overhead [4]. In this direction, we
envision a hierarchically distributed control plane architecture
which supports independent modularity, linear scalability and
on-demand instantiation. While independent modularity refers
to factoring out individual control functions into independently
deployable modules, linear scalability refers to the ability to
replicate one or more modules. Finally, on-demand instanti-
ation refers to instantiating different modules based on the
network load, priority and network requirements.

The demonstrator presents an evaluation of the scalability
performance of the hierarchically distributed SDN control
plane architecture (Fig. 2). The data plane is implemented
using the Mininet emulator, which is connected to the con-
trol plane using the OpenFlow protocol4. The control plane
consists of various modules, also called controllets. The lower
tier of the control plane comprises the packet handler (Pk-
tHandler) and local modules (L-modules). The PktHandler
acts as the point of contact between the data plane and other
controllets in the control plane. It is responsible for handling
all incoming packets from the data plane and sending them to
the responsible modules. Furthermore, it is also responsible for
implementing the decisions taken by those modules. The L-
modules are responsible for handling events that do not require
a global network view. Among others, such events include
handling of address resolution protocol (ARP) requests and
simple hop-by-hop forwarding. The upper tier consists of the
routing controllet (RC) and state modules (SModules). The
SModules are responsible for maintaining the global network
state and sharing it with all other modules. The network
state information includes data about switches, hosts, links,
network graphs, and traffic statistics. The RC is responsible
for taking all the routing-related decisions using algorithms
such as the shortest path algorithm [4]. It is possible to
deploy multiple instances of the RC on separate nodes and
distribute the incoming requests amongst them. All nodes on
the control layer are connected using the internal messaging
link (IML). Such an architecture aids in incorporating local-
level decision-making and scalability by distributing the load.
It is implemented using the ZeroSDN controller as described
in one of our previous works in which the architecture has
been proposed [5]. Furthermore, the detailed request handling
mechanism of the architecture can be also be found there.

B. Demonstration

Experiment Design and Deployment: The demo starts by
introducing the jFed experimenter GUI, followed by designing
the experiment with the topology editor. Furthermore, we
explain the provisioning of resources using a RSpec. Then,

4https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-
v1.5.1.pdf

Controllers 10

Hosts 6

Topology NSFNET

70%

0%

20%

40%

60%

80%

10

P
e

rc
e

n
ta

g
e

 o
f

A
cc

e
p

te
d

R
e

q
u

e
st

s

Number of Controllers

Accepted Requests on NSFNET

SDN REAL-TIME

GUI

Start Experiment

Fig. 4: Real-time GUI to perform scalability experiments.

we configure the provisioned resources using an ESpec. Thus,
we deploy the control plane as shown in Fig. 2.

Execution: Then, we execute the experiment by starting
the Mininet-based data plane on a separate node. We use an
out-of-band controller connection. As part of the experiment,
we emulate the data plane using an extension of the NSFNET
topology. Fig. 2 presents the core network of the topology.
In the experiment, each core switch has two edge switches,
to which the emulated hosts are connected. Then, we gen-
erate the flow requests by making the hosts ping each other
simultaneously. Each ping request has a default timeout of
500 milliseconds, and a successful ping request is considered
as an accepted flow request by the controller. We log all
the messages exchanged in the process of setting up flows.
For ease of use, we present a GUI (Fig. 4) where the user
can directly enter the configuration parameters to start a new
experiment and check the resulting message flows dynamically
over time.

Results and Analysis: The results of the flow requests can
be verified in the log files. The GUI (Fig 4) presents all the
messages exchanged between the data plane and the control
plane, along with the scalability in terms of the percentage
of accepted requests. The number of Flow mod messages is
higher compared to the rest because the controller has to install
flow rules on multiple switches per request. Fig. 3 shows
the scalability performance for an increasing number of RCs.
The scalability increases until five RCs and further the curve
flattens due to the PktHandler maxing out.

The demonstration highlights how distributed SDN-based
experiments can be performed seamlessly on a number of bare-
metal nodes. Furthermore, it provides insights into various
aspects of the hierarchically distributed control plane architec-
ture, ranging from its scalability to possible bottlenecks such
as the PktHandler maxing out.

IV. CONCLUSIONS

In this paper, we propose a demonstration of an experi-
mentation setup based on the Virtual Wall experimentation
facility and Mininet for large-scale SDN experiments. The
presented setup is validated by performing a scalability eval-
uation experiment for a hierarchically distributed controller.
In the demonstration, we show the various steps involved in
the experiment lifecycle, ranging from design to deployment.
Finally, we present and analyze the results in real-time with
a GUI. Our approach can be adapted to various other archi-
tectures and use cases of SDN, ranging from a data center
network to content delivery networks.

ACKNOWLEDGMENT

This research is the result of a collaborative project between
Huawei and Ghent University, and funded by Huawei Tech-
nologies, China. Maria Torres Vega and Jeroen van der Hooft
are funded by the Research Foundation Flanders (FWO), with
grant numbers 12W4819N and 1281021N, respectively.

REFERENCES

[1] T. Huang, F. R. Yu, C. Zhang, J. Liu, J. Zhang, and Y. Liu, “A survey on
large-scale software-defined networking (SDN) testbeds: Approaches and
challenges,” IEEE Communications Surveys & Tutorials, vol. 19, no. 2,
pp. 891–917, 2016.

[2] L. Zhu, M. M. Karim, K. Sharif, F. Li, X. Du, and M. Guizani, “SDN
controllers: Benchmarking & performance evaluation,” arXiv preprint
arXiv:1902.04491, 2019.

[3] T. Kohler, F. Dürr, and K. Rothermel, “ZeroSDN: A highly flexible
and modular architecture for full-range distribution of event-based net-
work control,” IEEE Transactions on Network and Service Management,
vol. 15, no. 4, pp. 1207–1221, 2018.

[4] H. K. Ravuri, M. Torres Vega, J. van der Hooft, T. Wauters, B. Da, and
F. De Turck, “On routing scalability in flat SDN architectures,” in 2020
11th International Conference on Network of the Future (NoF). IEEE,
2020, pp. 23–27.

[5] H. K. Ravuri, M. Torres Vega, J. van der Hooft, T. Wauters, and
F. De Turck, “A scalable hierarchically distributed architecture for next-
generation applications,” Springer’s Journal of Network and Systems
Management, 2021 [Accepted for Publication].

