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Abstract

A Neumaier graph is a non-complete edge-regular graph containing a regular clique. A
Neumaier graph that is not strongly regular is called a strictly Neumaier graph. In this work
we present a new construction of strictly Neumaier graphs, and using Jacobi sums, we show
that our construction produces infinitely many instances. Moreover, we prove some necessary
conditions for the existence of (strictly) Neumaier graphs that allow us to show that several
parameter sets are not admissible.
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1 Introduction
A regular graph is called edge-regular if any two adjacent vertices have the same number of common
neighbors. A regular clique in a regular graph is a clique having the property that every vertex
outside of it is adjacent to the same positive number of vertices of the clique, denoted by e. A
Neumaier graph is a non-complete edge-regular graph containing a regular clique. A Neumaier
graph that is not a strongly regular graph is called a strictly Neumaier graph.

In his 1981 paper [14], Neumaier studied regular cliques in edge-regular graphs, and he showed
that all vertex-transitive, edge-transitive graphs with a regular clique are strongly regular. He
subsequently raised the question whether there are edge-regular graphs with a regular clique, that
are not strongly regular, i.e. whether there are strictly Neumaier graphs. Greaves and Koolen [9]
gave an answer to this question by constructing an infinite family of strictly Neumaier graphs. The
same authors provided a second construction in [10]. All strictly Neumaier graphs described in
[9, 10] have e = 1. Evans, Goryainov and Panasenko [7] presented a family of strictly Neumaier
graphs which is the only known family with e > 1. Abiad, De Bruyn, D’haeseleer and Koolen [1]
investigated Neumaier graphs with few eigenvalues, and showed that Neumaier graphs with four
distinct eigenvalues do not exist.
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In this article we present a new infinite class of Neumaier graphs, and we also show some
non-existence results. In Section 3 we prove two new conditions on the parameter set of (strictly)
Neumaier graphs (Corollary 3.2 and Theorem 3.4), which show that infinitely many parameter
sets for strictly Neumaier graphs that had not been ruled out by previous results are not feasible
(see Table 1). In Section 4 we present a new family of (strictly) Neumaier graphs (Theorem
4.9). Our construction depends on three parameters: a prime p, an odd integer q and an integer
a ∈ (Z/pqZ)∗, fulfilling several conditions. In Section 5, which is purely number-theoretic, we
discuss these parameters and show that the family from Section 4 contains an infinite number of
strictly Neumaier graphs.

2 Preliminaries
Throughout this paper we will consider simple graphs (undirected, loopless, no multiple edges). For
a graph Γ we denote the set of vertices at distance i from a given vertex u by Γi(u); in particular,
the neighbors of u are denoted by Γ1(u) = Γ(u). Adjacency between vertices is denoted by ∼.

A graph is (k-)regular if each vertex is adjacent to k vertices. A regular graph is (λ-)edge-regular
if it is non-empty, and any pair of adjacent vertices has exactly λ common neighbors for some integer
λ; it is (µ-)co-edge-regular if it is not complete, and any pair of non-adjacent vertices has exactly µ
common neighbors for some integer µ. A graph that is both edge-regular and co-edge-regular is
called strongly regular. An edge-regular graph with parameters (v, k, λ) has v vertices, is k-regular
and λ-edge-regular; a co-edge-regular graph with parameters (v, k, µ) has v vertices, is k-regular
and µ-co-edge-regular. A strongly regular graph has parameters (v, k, λ, µ) if it is edge-regular with
parameters (v, k, λ) and co-edge-regular with parameters (v, k, µ).

It is immediate that vk ≡ 0 (mod 2) for a k-regular graph with v vertices. We have the following
classic result for edge-regular graphs.

Theorem 2.1 ([3, Section 1.1]). Let Γ be an edge-regular graph with parameters (v, k, λ), then

(i) v − 2k + λ ≥ 0,

(ii) λk ≡ 0 (mod 2),

(iii) vkλ ≡ 0 (mod 6).

Let Γ be a graph with vertex set V (Γ) and S ⊂ V (Γ). If every vertex in V (Γ) \ S has precisely
e > 0 neighbors in S, we say that S is e-regular. A clique of Γ is a subset of V (Γ) wherein all
vertices are pairwise adjacent; a coclique of Γ is a subset of V (Γ) wherein all vertices are pairwise
non-adjacent.

A graph is a Neumaier graph with parameters (v, k, λ; e, s) if it is edge-regular with parameters
(v, k, λ) and has an e-regular clique of size s. A Neumaier graph which is not strongly regular is
called strictly Neumaier.

Neumaier already made the following observations about the regular cliques in Neumaier graphs.

Theorem 2.2 ([14], Theorem 1.1). Let Γ be a Neumaier graph with parameters (v, k, λ; e, s). Then

(i) the largest clique of Γ has size s,

(ii) all regular cliques are e-regular,

(iii) the regular cliques are exactly the cliques of size s.

Observe that the parameters naturally satisfy e ≤ s− 1, k < v − 1 and s− 2 ≤ λ < k. Theorem
2.3 lists some additional conditions on the parameters of Neumaier graphs.

Theorem 2.3 ([14, Theorem 1.1] and [7, Theorem 1]). The parameters (v, k, λ; e, s) of a Neumaier
graph satisfy the following conditions:

(i) k − s+ e− λ− 1 ≥ 0,

(ii) s(k − s+ 1) = (v − s)e,
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(iii) s(s− 1)(λ− s+ 2) = (v − s)e(e− 1).

For strictly Neumaier graphs some additional conditions were derived. We refer to [9, Proposition
5.1], [14, Theorem 1.3], [16, Theorem 4.1],[5, Lemma 4.7], and [5, Theorem 4.10].

Theorem 2.4. The parameters (v, k, λ; e, s) of a strictly Neumaier graph satisfy

(i) s ≥ 4 and, as a result, λ ≥ 2,

(ii) e ≤ k − 2,

(iii) v /∈ {2k − λ, 2k − λ+ 1},

(iv) k − s+ e− λ− 1 ≥ 1.

Table 1 lists all parameter sets (v, k, λ; e, s) with v ≤ 64 that satisfy the conditions of Theorems
2.1, 2.3 and 2.4 (and the trivial conditions mentioned in between), i.e. the known necessary conditions
for the existence of strictly Neumaier graphs.

3 Nonexistence results for strictly Neumaier graphs
In this section we first show a general counting result for co-edge-regular graphs, from which we
immediately derive a new condition for Neumaier graphs.

Lemma 3.1. If Γ is a co-edge-regular graph with parameters (v, k, µ), then k(k−1)−µ(v−k−1) ≥ 0.
Moreover, if k(k − 1)− µ(v − k − 1) = 0, then Γ is strongly regular. If k(k − 1)− µ(v − k − 1) = 2,
then each vertex of Γ is contained in a unique triangle.

Proof. Recall that a co-edge-regular graph is not complete. Let u be a vertex in Γ. Each of the k
neighbors of u is adjacent to k − 1 other vertices. There are v − k − 1 vertices not adjacent to u,
which all have exactly µ common neighbors with u. Then there are µ(v − k − 1) edges between
a vertex in Γ2(u) and a vertex in Γ1(u). This number cannot exceed the number of available
endpoints in Γ1(u), hence k(k − 1)− µ(v − k − 1) ≥ 0.

If k(k− 1)−µ(v−k− 1) = 0, then the subgraph induced on Γ1(u) is an empty graph, hence any
w ∈ Γ1(u) has no common neighbors with u. Since u was chosen arbitrarily, Γ is strongly regular
with parameters (v, k, 0, µ).

Finally, assume that k(k − 1) − µ(v − k − 1) = 2. Then two vertices in Γ1(u) are not the
endpoints of an edge to Γ2(u), which means that the subgraph induced on Γ(u) is (k− 2) ·K1 ∪K2,
a graph consisting of a single edge and k − 2 isolated vertices. Then u is contained in exactly one
triangle. As u was arbitrary, this holds for any vertex of Γ.

The complement Γ of a co-egde-regular graph Γ is an edge-regular graph, and vice versa. So, if
Γ is an edge-regular graph with parameters (v, k, λ), then (v− k− 1)(v− k− 2)− k(v− 2k+λ) ≥ 0.
In particular, observe that from Lemma 3.1 it follows that if k(k − 1) − µ(v − k − 1) = 0,
then not only Γ is strongly regular, but also Γ is strongly regular; the latter has parameters
(v, v − k − 1, v − 2− 2k + µ, v − 2k).

Looking at the complement of an edge-regular graph, we can deduce the following result.

Corollary 3.2. There are no edge-regular graphs (and hence no Neumaier graphs) with parameter
set (v, k, λ) such that (v−k−1)(v−k−2)−k(v−2k+λ) < 0. All edge-regular graphs (and thus also
all Neumaier graphs) with parameter set (v, k, λ) such that (v−k− 1)(v−k− 2)−k(v− 2k+λ) = 0
are strongly regular.

Corollary 3.2 allows to reduce the number of admissible parameter sets. Actually, it also follows
from the proof of Lemma 3.1 that k(k − 1)− µ(v − k − 1) is even, but this is not useful further on
to reduce the number of admissible parameter sets since we already know that vk and kλ are both
even for edge-regular graphs with parameters (v, k, λ).
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v k λ e s Exists?
16 9 4 2 4 Yes, [7]
21 14 9 4 7 No, Theorem 3.4
22 12 5 2 4
24 8 2 1 4 Yes, [7, 8, 10]
25 12 5 2 5

16 9 3 5
26 15 8 3 6
27 18 12 5 9 No, Theorem 3.4
28 9 2 1 4 Yes, [7, 9]

15 6 2 4
8 3 7

18 11 4 7
33 22 15 6 11 No, Theorem 3.4

24 17 6 9
34 18 7 2 4
35 10 3 1 5

16 6 2 5
18 9 3 7
22 12 3 5

36 11 2 1 4
15 6 2 6
20 10 3 6
21 12 4 8
25 16 4 6

39 26 18 7 13 No, Theorem 3.4
30 23 9 13 No, Corollary 3.2

40 12 2 1 4 Yes, [7]
21 8 2 4

12 4 10
27 18 6 10
30 22 7 10

42 11 4 1 6
21 10 3 7
26 15 4 7

44 28 18 6 11
45 12 3 1 5

20 7 2 5
10 3 9

24 13 4 9
28 15 3 5

17 5 9
30 21 8 15 No, Theorem 3.4
32 22 6 9

46 24 9 2 4
25 12 3 6
27 16 5 10

48 12 4 1 6
14 2 1 4
35 26 10 16 No, Corollary 3.2

v k λ e s Exists?
49 18 7 2 7

24 11 3 7
30 17 4 7
36 25 5 7

50 28 15 4 8
51 20 7 2 6

34 24 9 17 No, Theorem 3.4
52 15 2 1 4 Yes, [9]

27 10 2 4
16 5 13

36 25 8 13
54 13 4 1 6
55 14 3 1 5

24 8 2 5
30 17 5 11

18 3 5
34 21 6 11
36 23 6 10

56 27 12 3 7
30 14 3 6
33 20 6 12
45 36 12 16 No, Corollary 3.2

57 24 11 3 9
38 27 10 19 No, Theorem 3.4
40 27 6 9
42 31 10 15

58 30 11 2 4
60 14 4 1 6

17 2 1 4
35 22 7 15
38 25 8 15

63 14 5 1 7
30 13 3 7
32 16 4 9
38 21 4 7

22 5 9
42 30 11 21 No, Theorem 3.4
50 40 15 21 No, Corollary 3.2
52 43 16 21 No, Corollary 3.2

64 18 2 1 4
21 8 2 8
28 12 3 8
33 12 2 4

20 6 16
35 18 4 8 Yes, [7]
36 20 5 10
42 26 5 8
45 32 10 16
48 36 11 16
49 36 6 8

Table 1: Feasible parameters for strictly Neumaier graphs up to 64 vertices.
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Remark 3.3. It follows from Corollary 3.2 that several parameter sets that were admissible as
parameter sets of strictly Neumaier graphs by Theorems 2.1, 2.3 and 2.4 are now showed not to be
admissible as such. In particular, there are 14 parameter sets with v ≤ 100 that are now showed not
to be parameter sets of Neumaier graphs: twelve of them have (v−k−1)(v−k−2)−k(v−2k+λ) < 0,
and (56, 45, 36, 12, 16) and (77, 60, 47, 15, 21) can only correspond to strongly regular Neumaier
graphs. Note that the former parameter set corresponds to the complement of a (56, 10, 0, 2)
strongly regular graph, and the latter to the complement of a (77, 16, 0, 4) strongly regular graph.
The Sims-Gewirtz graph and the Mesner-M22 graph are the unique strongly regular graphs with
these parameters, respectively, see [4]. The complements of the Sims-Gewirtz and the Mesner-M22
graph admit a 12-regular clique of size 16, and a 15-regular clique of size 21, respectively, so are
indeed Neumaier.

We show the strength of Corollary 3.2 by giving several infinite families of parameter sets that
are admissible by Theorems 2.1, 2.3 and 2.4, but which do not meet the conditions of Corollary 3.2.
The parameter sets(

3
an+1 − 1

a− 1
, 2an + a

an − 1

a− 1
, 3an − 2an−1 + a

an−1 − 1

a− 1
− 1; an,

an+1 − 1

a− 1

)
with integers a, n ≥ 2, fulfill all conditions of Theorems 2.1, 2.3 and 2.4, but

(v − k − 1)(v − k − 2)− k(v − 2k + λ) = −2
(a− 2)an(an−1 − 2)− 1

a− 1

is negative if a ≥ 3. So, in case a ≥ 3 there are no Neumaier graphs with these parameters by
Corollary 3.2. In case a = 2, then all Neumaier graphs with these parameters are strongly regular.
Likewise, the parameter sets (27a + 21, 21a + 14, 13a + 7; 6a + 4, 9a + 7), with a ≥ 0 an integer,
fulfill the conditions of Theorems 2.1, 2.3 and 2.4, but

(v − k − 1)(v − k − 2)− k(v − 2k + λ) = −2(a+ 1)(3a− 1)

is negative if a ≥ 1. So, in case a ≥ 1 there are no Neumaier graphs with these parameters by
Corollary 3.2.

For the parameter sets

(a2(2a+ 3), (a+ 1)(4a2 − 1), 4a3 + 2a2 + a− 2; 4a2 − 2a, 4a2) and

(2(2a+ 1)(a2 + a− 1), 2(a+ 1)(2a2 − 1), 4a3 + 2a2 + a− 3; 4a2 − 2a, 4a2 − 1)

with a ≥ 2 an integer, all conditions from Theorems 2.1, 2.3 and 2.4 are fulfilled, but we have
(v − k − 1)(v − k − 2)− k(v − 2k + λ) = 0. So any Neumaier graph with these parameters must be
strongly regular.

The next result shows the nonexistence of certain strictly Neumaier graphs with (v− k− 1)(v−
k− 2)− k(v− 2k+ λ) = 2. Note again that this parameter set fulfills all conditions from Theorems
2.1, 2.3 and 2.4

Theorem 3.4. There is no Neumaier graph with parameter set (6l + 3, 4l + 2, 3l; l + 1, 2l + 1) for
any integer l ≥ 3.

Proof. Suppose that Γ is a Neumaier graph with parameters (6l+ 3, 4l+ 2, 3l; l+ 1, 2l+ 1) for some
integer l ≥ 3. Its complement Γ is a co-edge-regular graph with parameters (6l + 3, 2l, l − 1). By
Lemma 3.1 we know that each vertex of Γ is in a unique triangle.

We also know that Γ has an l-regular coclique C of order 2l + 1, arising from an (l + 1)-regular
clique in Γ. Let C = {x1, . . . , x2l+1} and let {xi, yi, zi} denote the triangle containing xi. Without
loss of generality, z1, y2, . . . , yl are the neighbors of y1 that are not in C; here we used that y1
has at most one neighbor in each triangle. Note that yi and yj cannot be neighbors for any
i, j ∈ {2, . . . , l}, as y1 is in only one triangle, namely {x1, y1, z1}. Furthermore, we can assume that
x1, xl+1, . . . x2l−1 are the neighbors of y1 in C (observe that y1 6∼ xi for i ∈ {2, . . . , l}, because this
would create a triangle {xi, yi, y1}). Then, for any j ∈ {2, . . . , l}, the vertex yj is not adjacent to
any xi ∈ {x1} ∪ {xl+1, . . . , x2l−1}, since this would induce a triangle {yj , xi, y1}. We know that
l ≥ 3. Now, by the l-regularity of C, y2 and y3 each have l neighbors in {x2, . . . , xl} ∪ {x2l, x2l+1}.
This means that they have at least l− 1 common neighbors in this set, contradicting the (l− 1)-co-
edge-regularity of Γ, since y1 is also a common neighbor of y2 and y3.
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As a consequence of Theorem 3.4, we can settle down several open cases of existence of strictly
Neumaier graphs, see [7, Table 2]. The updated list of feasible parameters for strictly Neumaier
graphs up to 64 vertices is shown in Table 1.

4 A new family of strictly Neumaier graphs
In [10] Greaves and Koolen described a construction of strictly Neumaier graphs arising from
antipodal distance-regular graphs with diameter 3. It was later generalised by Evans in his PhD
thesis, see [5, Theorem 5.1]; this generalisation also appeared in [6]. Next we will describe the
construction from [5], for later use. A spread of (the vertex set of) a graph is a partition of the
vertex set in subsets, i.e. a family of pairwise disjoint subsets of the vertex set whose union is the
whole vertex set.

Definition 4.1. Let Γ1 = (V1, E1), . . . ,Γt = (Vt, Et) be t graphs such that for any i = 1, . . . , t the
graph Γi admits a spread of 1-regular cocliques, denoted by Ci,1, . . . , Ci,a. Let π1 = id, π2, . . . , πt
be t permutations in Syma. The graph F(π2,...,πt)(Γ1, . . . ,Γt) is the graph that has vertex set
V1 ∪ · · · ∪Vt and where two vertices x ∈ Ci,k and y ∈ Cj,l are adjacent if and only if i = j and x ∼ y
in Γi, or if π−1i (k) = π−1j (l). In particular, Γ1, . . . ,Γt could be t copies of the same edge-regular
graph Γ. In this case we denote F(π2,...,πt)(Γ1, . . . ,Γt) by F(π2,...,πt)(Γ).

In other words, in the previous construction we take the graphs Γ1, . . . ,Γt and for any k we
add the edges between all vertices in C1,k ∪ C2,π2(k) ∪ · · · ∪ Ct,πt(k). In [5, Theorem 5.1] the author
describes the 1-regular cocliques as perfect 1-codes, but they are just equivalent. Also, in the above
construction we actually could do without the permutations π1 = id, π2, . . . , πt, as we could change
the order on the cocliques in each of the graphs. We do however want to point out that we can
obtain several not necessarily isomorphic (actually almost always non-isomorphic) graphs starting
from the same set of edge-regular graphs.

The following result is essential to the rest of the paper.

Theorem 4.2 ([5, Theorem 5.1]). Let Γ1 = (V1, E1), . . . ,Γt = (Vt, Et) be t edge-regular graphs
with parameters (v, k, λ) such that for any i = 1, . . . , t the graph Γi admits a spread of 1-regular
cocliques, Ci,1, . . . , Ci,k+1. Let π1 = id, π2, . . . , πt be t permutations in Symk+1. If t = (λ+2)(k+1)

v ,
then F(π2,...,πt)(Γ1, . . . ,Γt) is a Neumaier graph with parameters (vt, k + λ+ 1, λ; 1, λ+ 2), which
admits a spread of 1-regular cliques.

Remark 4.3. Note that in the construction from Theorem 4.2 the number of cocliques is precisely
one more than the regularity parameter k, since each vertex has precisely one neighbor in each of
the cocliques of the spread, and no neighbor in its own coclique. This was not pointed out in [5,
Theorem 5.1], where the regularity and the number of cocliques were two independent parameters.

Remark 4.4. The construction from Theorem 4.2 always produces a Neumaier graph with e = 1
since it requires a spread of 1-regular cocliques in each of the graphs. There is no straightforward
generalisation of this construction for e > 1, starting from e-regular cocliques, since two (adjacent)
vertices in Ci,k would not have the same number of common neighbors as two (adjacent) vertices,
one in Ci,k and one in Cj,k, i 6= j, violating the edge-regularity. Here we used the notation from
Theorem 4.2.

The next theorem gives checks when the construction from Theorem 4.2 produces strictly
Neumaier graphs. The first case was recently also described in [6, Theorem 1], independently from
this paper.

Theorem 4.5. Let Γ1 = (V1, E1), . . . ,Γt = (Vt, Et) be t edge-regular graphs with parameters
(v, k, λ) such that vt = (λ+ 2)(k+ 1) and such that for any i = 1, . . . , t the graph Γi admits a spread
of 1-regular cocliques, Ci,1, . . . , Ci,k+1. Let π1 = id, π2, . . . , πt be t permutations in Symk+1. If

• t ≥ 2 and the Γi’s are not complete, or

• t = 1 and there are two vertices in Γ1 that are at distance at least 3 and not in the same C1,j ,

6



then the graph F(π2,...,πt)(Γ1, . . . ,Γt) is a strictly Neumaier graph.

Proof. We denote F(π2,...,πt)(Γ1, . . . ,Γt) by Γ. Note that if Γ1 is complete, then v = k + 1 = λ+ 2,
hence t = v ≥ 2. So, in each of the two cases above we know that Γ1 is not complete.

Let u1, w1 ∈ V1 be two vertices that are at distance two in Γ1; these exist since Γ1 is not
complete. Then there is a vertex x such that u1 ∼ x ∼ w1. Since x cannot have two neighbors
in the same coclique of Γ1, we find that u1 and w1 belong to different cocliques, say u1 ∈ C1,1

and w1 ∈ C1,2. In Γ1 there is precisely one vertex w′1 ∈ Γ1(u1) ∩ C1,2 and precisely precisely one
vertex u′1 ∈ Γ1(w1)∩C1,1 by the 1-regularity of the cocliques. Obviously u′1 6= x 6= w′1. So, in Γ the
vertices u1, w1 have at least three common neighbors.

If t ≥ 2, we can find a vertex w2 ∈ C2,2. From the construction it follows immediately that in Γ
the vertices u1 and w2 have precisely two common neighbors, one in C1,2 and one in C2,1. So as
{u1, w1} and {u1, w2} have a different number of common neighbors, Γ is not co-edge-regular, so
not strongly regular, and thus a strictly Neumaier graph.

Now we consider the case with t = 1. Assume now there are vertices y and y′ in Γ1 such that
d(y, y′) ≥ 3 and y and y′ are in different cocliques of Γ1, say y ∈ C1,m and y′ ∈ C1,m′ . In Γ the
vertex y has a unique neighbor z ∈ C1,m′ , and y′ has a unique neighbor z′ ∈ C1,m. So, the vertices
z and z′ are common neighbors of y and y′ in Γ. Any other common neighbor of y and y′ in Γ
cannot be in C1,m ∪ C1,m′ by construction, so must be a common neighbor of y and y′ in Γ1. But
such a vertex cannot exist since d(y, y′) ≥ 3. It follows that y and y′ have precisely two common
neighbors in Γ. But we know from the beginning of the proof that there are two vertices in Γ that
have precisely three common neighbors. So, the graph Γ cannot be strongly regular, so is a strictly
Neumaier graph.

Given Theorems 4.2 and 4.5 it is essential to find (families of) edge-regular graphs with a spread
of 1-regular cocliques. Essentially all known constructions of strictly Neumaier graphs with e = 1
arise from this construction. In [10] the authors use a-antipodal distance-regular graphs of diameter
3; examples of these include the Taylor graphs, the Thas-Somma graphs, and the graphs constructed
by Brouwer, Hensel and Mathon.

In [5] Evans describes some particular applications of this Theorem 4.2, including the construction
of a strictly Neumaier graph on 40 vertices and one on 78 vertices. In [9] Greaves and Koolen
constructed a family of strictly Neumaier graphs as Cayley graphs on the group Z/lZ× (Z/2Z)m×
(Fq,+), with m ∈ {2, 3}. It can however be seen that the restricted Cayley graph on (Z/2Z)m ×
(Fq,+) produces an edge-regular graph that admits a spread of 1-regular cocliques, and that the
graphs described in [9] appear through an application of Theorem 4.2 (the factor Z/lZ produces l
copies of this graph, all with the same ordering on the cocliques).

We will now describe a new construction of edge-regular graphs having a spread of 1-regular
cocliques.

Definition 4.6. Let n be an integer and a ∈ (Z/nZ)∗ such that ai ≡ −1 (mod n), where 2i is the
order of a in (Z/nZ)∗, ·. Then Sn(a) is the set {aj ∈ Z/nZ | 0 ≤ j < 2i} and Γn(a) is the Cayley
graph on Z/nZ,+ with Sn(a) as generating set.

Theorem 4.7. Let p be an odd prime and let q be an odd integer. If a ∈ (Z/pqZ)∗ is such that
a (mod p) is a generator of (Z/pZ)∗, · and such that a

p−1
2 ≡ −1 (mod pq), then the Cayley graph

Γpq(a) is an edge-regular graph with parameters (pq, p− 1, λ), with λ = |Spq(a) ∩ (Spq(a) + 1)|, that
has a spread of 1-regular cocliques.

Proof. We denote Spq(a) by S and Γpq(a) by Γ. First note that S = −S since −1 ∈ S and that
|S| = p− 1. Obviously Γ is (p− 1)-regular. Since Γ is a Cayley graph and thus vertex-transitive, it
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is sufficient to check that |Γ(0) ∩ Γ(ai)| = |S ∩ (S + 1)| for all i = 0, . . . , p− 2. Now,

|Γ(0) ∩ Γ(ai)| = |{aj | aj − ai ∈ S}|
= |{aj | ∃k : aj − ai = ak}|
= |{aj | ∃k : aj−i = ak−i + 1}|

= |{aj
′
| ∃k′ : aj

′
= ak

′
+ 1}|

= |{aj
′
| ∃s ∈ S : aj

′
= s+ 1}|

= |S ∩ (S + 1)|
= λ ,

which shows that Γ is edge-regular with parameters (pq, p− 1, λ).
Let H be the subgroup of Z/(pqZ),+ generated by the integer p; this subgroup has order q. It

is clear that S ∩H = ∅. Moreover, a coset of H contains at most one element of S since p | ai − aj
implies that ai−j = 1 (mod p). Since |S| = p− 1, each coset of H contains precisely one element of
S ∪ {0}. In other words, each element of Z/(pqZ) can be written in a unique way as the sum of an
element in H and an element in S ∪ {0}. Consequently, each coset of H, including H itself is a
1-regular coclique of Γ. Clearly, the cosets of H form a spread.

Remark 4.8. In the proof of the previous theorem it is clear that the 1-regular cocliques correspond
to the cosets of a subgroup of Z/pqZ,+. Cayley graphs on a group G wherein a 1-regular coclique
corresponds to a subgroup of the group G are called subgroup perfect codes. These are interesting
in their own right. We refer to [11] for a brief survey and to [18] for recent work on this topic.

Using Theorem 4.2 and Theorem 4.7, we can now state our main result of this section.

Theorem 4.9. Let p and q be two different odd primes and let a ∈ (Z/pqZ)∗ be a generator of
(Z/pZ)∗ and such that a

p−1
2 = −1 (mod pq). Write S = Spq(a). If |S ∩ (S + 1)| ≡ −2 (mod q),

then F(π2,...,πt)(Γpq(a)), with t = |S∩(S+1)|+2
q and πi ∈ Symp for i = 2, . . . , t, is a Neumaier graph

with parameters (tpq, p+ |S ∩ (S + 1)|, |S ∩ (S + 1)|; 1, |S ∩ (S + 1)|+ 2).

Proof. It follows from Theorem 4.7 that Γpq(a) is an edge-regular graph with a spread of 1-regular
cocliques. The theorem then follows from an application of Theorem 4.2.

Remark 4.10. Tables 2 and 3 contain several parameter sets (q, p, a) for which indeed |Spq(a) ∩
(Spq(a)+1)| ≡ −2 (mod q) and thus a Neumaier graph can be constructed using Theorem 4.9. Note
that in general many non-isomorphic examples can be constructed by chosing different πi ∈ Symp,
for i = 2, . . . , t, if t ≥ 2. If gcd(i, p − 1) = 1, then a and ai clearly generate the same subgroup
of (Z/pqZ)∗, so Γpq(a) and Γpq(a

i) are equal. So, in Tables 2 and 3 only one generator for each
subgroup is given.

We also point out that if |Spq(a)∩(Spq(a)+1)| ≡ −2 (mod q), then |Spq(a)∩(Spq(a)+1)| ≥ q−2.
It follows immediately that p > q. In particular gcd(p, q) = 1.

Remark 4.11. In most applications of Theorem 4.9 we have t ≥ 2. We know by Theorem 4.5 that
in these cases the construction produces strictly Neumaier graphs. However, also when t = 1, the
construction in Theorem 4.9 often produces a strictly Neumaier graph, e.g. the graph F (Γ65(2)) is
a strictly Neumaier graph. This is the smallest graph that arises from this construction.

Remark 4.12. In Theorem 4.9 we take t copies of the graph Γpq(a). However, there are also other
options in some cases. E.g. if q = 13 and p = 397, both Γ5161(6) and Γ5161(20) are edge-regular
graphs with parameters (5161,396,24), but these graphs are not isomorphic (it can be checked
that they have different spectrum). We know that Fπ2

(Γ5161(6)) and Fπ2
(Γ5161(20)) are strictly

Neumaier graphs for any π2 ∈ Sym397, but we can also apply Theorem 4.2 with one copy of each:
Fπ2(Γ5161(6),Γ5161(20)) is also a strictly Neumaier graph for any π2 ∈ Sym397.
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q p a t v k λ s

5 13 2 1 65 16 3 5
37 2 1 185 40 3 5
61 17 4 1220 79 18 20
149 13 4 2980 167 18 20

2 7 5215 182 33 35
197 3 10 9850 245 48 50
269 3 10 13450 317 48 50

2 13 17485 332 63 65
293 2 13 19045 356 63 65
397 13 13 25805 460 63 65
421 2 13 27365 484 63 65
557 13 22 61270 665 108 110
613 13 22 67430 721 108 110
661 18 28 92540 799 138 140
677 7 22 74470 785 108 110
701 2 31 108655 854 153 155
773 3 34 131410 941 168 170
821 2 31 127255 974 153 155
829 47 28 116060 967 138 140

2 31 128495 982 153 155
853 18 28 119420 991 138 140

7 79 54 1 553 84 5 7
103 45 1 721 108 5 7
127 12 2 1778 139 12 14
139 26 4 3892 165 26 28
307 45 8 17192 361 54 56
379 10 8 21224 433 54 56
487 3 8 27272 541 54 56
547 33 16 61264 657 110 112
571 3 16 63952 681 110 112
631 3 11 48587 706 75 77
691 12 16 77392 801 110 112

11 131 2 1 1441 140 9 11
991 6 10 109010 1099 108 110

13 61 2 1 793 72 11 13
397 6 2 10322 421 24 26

20 2 10322 421 24 26
829 2 5 53885 892 63 65

17 977 23 1 16609 992 15 17

Table 2: Parameter sets (q, p, a), with q ≤ 17 and p ≤ 1000, for which the conditions in Theorem
4.9 are fulfilled. We give the parameter t and the parameters of the resulting Neumaier graphs.
Recall that e = 1.
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q p a t v k λ s

25 1021 77 2 51050 1069 48 50
122 2 51050 1069 48 50

1181 42 2 59050 1229 48 50
1301 3 2 65050 1349 48 50

73 2 65050 1349 48 50
1381 42 2 69050 1429 48 50

123 2 69050 1429 48 50
1621 88 2 81050 1669 48 50

113 2 81050 1669 48 50
1741 197 2 87050 1789 48 50
2141 58 2 107050 2189 48 50

112 2 107050 2189 48 50

Table 3: Parameter sets (q, p, a), with q = 25 and p ≤ 2400, for which the conditions in Theorem
4.9 are fulfilled. We give the parameter t and the parameters of the resulting Neumaier graphs.
Recall that e = 1.

5 Discussion of the parameters
Given the construction of (strictly) Neumaier graphs in Theorem 4.9, we wonder for which odd
integers q we can find primes p and corresponding integers a satisfying the stated conditions. We
know from Tables 2 and 3 that there are indeed such parameter sets (q, p, a). In particular we
ask ourselves whether the construction from Theorem 4.9 produces an infinite number of (strictly)
Neumaier graphs, and whether for any q we can find a prime p and an integer a satisfying the
conditions.

Regarding the first question, we will show that actually there is an infinite number of odd
integers q such that for each of them there is an infinite number of primes p for which an integer a
exists, satisfying the conditions from Theorem 4.9, thereby showing that the construction from this
theorem produces an infinite number of (strictly) Neumaier graphs. We refer to Sections 5.5, 5.6
and 5.7. For q = 5 and q = 7 we also determine the density of the primes p for which an admissible
a exists. The proofs in these sections rely on a formula given in Section 5.4, which involves Jacobi
sums. Therefore we give a gentle introduction to Jacobi sums in Section 5.3.

We investigate the second question in Section 5.1, obtaining some values of q that are not
admissible.

5.1 Non-admissible q’s
Note that q = 3 and q = 9 are notably absent from Tables 2 and 3. We will show that this is no
coincidence. In Remark 5.3 we will see that q cannot be a multiple of 3.

Theorem 5.1. Let p be an odd prime, let q be an odd integer and let a ∈ (Z/pqZ)∗ be such that a
(mod p) is a generator of (Z/pZ)∗, · and such that a

p−1
2 ≡ −1 (mod pq). Denote the set of elements

of order 6 in Spq(a) by Z6 (if there are none Z6 = ∅). Then |Spq(a) ∩ (Spq(a) + 1)| ≡ 3δ + 2ε
(mod 6), where

δ =

{
1 if 2 ∈ Spq(a)

0 if 2 /∈ Spq(a)
ε =

{
1 if Z6 ∩ (Spq(a) + 1) 6= ∅
0 if Z6 ∩ (Spq(a) + 1) = ∅

.

Proof. We denote Spq(a) by S. Define the maps ϕ on Z/pqZ and ψ on (Z/pqZ)∗ as follows:
ϕ(x) = 1 − x and ψ(x) = x−1

x . If b ∈ S ∩ (S + 1), then there are integers m,n such that
b = am = an + 1, and we can see that

ϕ(b) = 1− (an + 1) = a
p−1
2 +n ψ(b) =

(an + 1)− 1

am
= an−m

= 1− am = a
p−1
2 +m + 1 =

am − 1

am
= 1 + a

p−1
2 −m ,

10



hence ϕ(b), ψ(b) ∈ S ∩ (S + 1). So, we can look at the restriction of ϕ and ψ to S ∩ (S + 1); note
that S ⊆ (Z/pqZ)∗, and that 1 /∈ S + 1. We will denote these restrictions also by ϕ and ψ. It can
easily be seen that ϕ2 = id = ψ3 and that ϕ ◦ ψ = ψ2 ◦ ϕ. So the group G = 〈ϕ,ψ〉 is isomorphic
to S3 and acts naturally on S ∩ (S + 1). The orbits of this action have size 1, 2, 3 or 6.

It is easy to see that there are no orbits of size 1. Any orbit of size 2 is of the form {x, x−1} for
some x ∈ S ⊆ (Z/pqZ)∗ satisfying x2 − x+ 1 = 0. Then x (mod p) satisfies the same equation in
(Z/pZ)∗ i.e. it is a primitive 6th root of unity. However, in (Z/pZ)∗ there are at most two primitive
sixth roots of unity. Since each element of S corresponds to a unique element in (Z/pZ)∗, there
is at most one orbit of size 2. Moreover, there is such an orbit if there is an x ∈ S ⊆ (Z/pqZ)∗

satisfying x2 − x+ 1 = 0; such an x clearly has order 6 in (Z/pqZ)∗.
In a similar but easier way, if 2 ∈ S, then also 2 ∈ S ∩ (S + 1) and there is precisely one orbit of

size 3, namely
{
−1, 12 , 2

}
, and else there are no orbits of size 3. All other orbits have size 6. So,

indeed |S ∩ (S + 1)| ≡ 3δ + 2ε (mod 6).

Corollary 5.2. Let p be an odd prime, let q be an odd integer and let a ∈ (Z/pqZ)∗ be such
that a (mod p) is a generator of (Z/pZ)∗, · and such that a

p−1
2 ≡ −1 (mod pq). Then we have

|Spq(a) ∩ (Spq(a) + 1)| 6≡ 1 (mod 3).

Remark 5.3. From Corollary 5.2 it follows that |Spq(a) ∩ (Spq(a) + 1)| 6≡ −2 (mod q) if q is a
multiple of 3, given a prime p and an integer a satisfying the conditions of Theorem 4.9. So, for any
q which is a multiple of 3, it is impossible to construct a Neumaier graph using the construction in
Theorem 4.9.

5.2 A joint condition on p and q

As we mentioned before, it is our aim to prove that there is an infinite number of odd integers q
such that for each of them there is an infinite number of primes p for which an integer a exists,
satisfying the conditions from Theorem 4.9. We will show this in Sections 5.5, 5.6 and 5.7. This
section serves as an introduction to that, fixing some notation.

Consider a positive odd integer q, a prime number p > q and let r = ν2(p− 1) ≥ 1 denote the
2-valuation of p− 1, i.e. 2r | p− 1, but 2r+1 - p− 1. Let a ∈ (Z/pqZ)∗ be such that a(p−1)/2 = −1,
and let α ∈ F∗p = (Z/pZ)∗ and β ∈ (Z/qZ)∗ denote the reductions a modulo p and a modulo
q, respectively. As before, it is assumed that α is a generator of F∗p. In Section 5.4 we will give
a formula for the cardinality of S ∩ (S + 1) with S = Spq(a) in terms of Jacobi sums of order
n = ord(β).

Let us first discuss a joint condition on p and q for there to exist such an element a, regardless
of the value of |S ∩ (S + 1) |. Consider the factorization q = `e11 · · · `

ek
k of q into powers of distinct

(necessarily odd) primes `i. For each i, let βi ∈ (Z/`eii Z)∗ be the reduction of β modulo `ei , and
denote by ni its order. From

β
(p−1)/2
i = −1

it follows that ni | p− 1 and that ν2(ni) = ν2(p− 1) = r, independently of i (in particular all ni
are even). This is only possible if p, q are such that 2r | ϕ(`eii ) = `ei−1i (`i − 1), or in other words
such that

2r | `i − 1, for all i = 1, . . . k. (1)

For use below, we note that n = lcm(n1, . . . , nk) then also satisfies ν2(n) = r (in particular n is
even), so that

β
n/2
i = −1

for all i, which in turn implies that βn/2 = −1.
Condition (1) is necessary, but also sufficient. Indeed, if p, q are such that 2r | `i − 1 for all i,

then we can choose any elements βi ∈ (Z/`eii Z)∗ of order 2rsi, with si some odd common divisor
of p− 1 and ϕ(`eii ), and any generator α of F∗p, and combine them into an element a ∈ (Z/pqZ)∗

of the desired form, using the Chinese remainder theorem.
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5.3 Preliminaries on Jacobi sums
For an odd prime number p, a character mod p is a group homomorphism χ : F∗p → C∗. The image
of χ is the group µn of n-th roots of unity, for some integer n ≥ 1 dividing p− 1 that we call the
order of χ. Equivalently, the order of χ is just its order as an element of the character group (i.e.,
with respect to point-wise multiplication). If n = 1 then χ is said to be trivial. We always have
χ(1) = 1, and it is customary to extend the domain of χ to all of Fp by defining χ(0) = 0, unless χ
is trivial in which case one lets χ(0) = 1.

If χ and λ are two characters mod p, then the corresponding Jacobi sum is defined to be

J(χ, λ) =
∑
c,d∈Fp

c+d=1

χ(c)λ(d),

which we note is the complex conjugate of J(χ−1, λ−1). If ε denotes the trivial character mod p,
then we have the immediate rule

J(χ, ε) =

{
0 if χ 6= ε,
p if χ = ε, (2)

and it is not hard to check that
J(χ, χ−1) = −χ(−1) (3)

as soon as χ 6= ε. More advanced identities can be found in [12, Ch. 8], to which we refer for a
gentle introduction to Jacobi sums, and in [2, Ch. 3], which contains explicit formulae for Jacobi
sums involving characters of order n ≤ 8 and n = 10, 12, 16, 20, 24. For the reader’s convenience, let
us include the cases n = 2, 4, 6. We denote the square roots of −1 by ±i.

Example 5.4. If χ is a character of order 2, then

J(χ, χ) = J(χ, χ−1) = −χ(−1) = −
(
−1

p

)
= (−1)

p+1
2 .

Example 5.5. [2, Section 3.2] If χ is a character of order 4, then necessarily p ≡ 1 (mod 4). Let
g ∈ F∗p be such that χ(g) = i. There exist unique integers x, y such that

p = x2 + y2, x ≡ −
(

2

p

)
(mod 4), y ≡ xg

p−1
4 (mod p). (4)

Then the values of J(χi, χj) for i, j = 1, 2, 3 are as follows:

i
j

1 2 3

1 (−1)f (x+ yi) x+ yi (−1)f+1

2 x+ yi −1 x− yi
3 (−1)f+1 x− yi (−1)f (x− yi)

where f = (p− 1)/4.

Example 5.6. [2, Section 3.1] If χ is a character of order 6, then we must have p ≡ 1 (mod 6).
Let ζ = e2πi/6 = (1 + i

√
3)/2 and let g ∈ F∗p be such that χ(g) = ζ. There exist unique integers

x, y such that

p = x2 + 3y2, x ≡ −1 (mod 3), 3y ≡ (2g
p−1
3 + 1)x (mod p) . (5)

We further define r = 2x, s = 2y, u = 2x, v = 2y, if y ≡ 0 (mod 3),
r = −x+ 3y, s = −x− y, u = −x− 3y, v = x− y, if y ≡ 1 (mod 3),
r = −x− 3y, s = x− y, u = −x+ 3y, v = −x− y, if y ≡ 2 (mod 3),

where we note that 4p = r2 + 3s2 = u2 + 3v2. The values of J(χi, χj) for i, j = 1, 2, 3, 4, 5 are as
follows:
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i
j

1 2 3 4 5

1 (−1)f u+vi
√
3

2 x+ yi
√

3 (−1)f (x+ yi
√

3) u+vi
√
3

2 (−1)f+1

2 x+ yi
√

3 r+si
√
3

2 x+ yi
√

3 −1 u−vi
√
3

2

3 (−1)f (x+ yi
√

3) x+ yi
√

3 (−1)f+1 x− yi
√

3 (−1)f (x− yi
√

3)

4 u+vi
√
3

2 −1 x− yi
√

3 r−si
√
3

2 x− yi
√

3

5 (−1)f+1 u−vi
√
3

2 (−1)f (x− yi
√

3) x− yi
√

3 (−1)f u−vi
√
3

2

where f = (p− 1)/6.

5.4 A formula for |S ∩ (S + 1) |
We can convert the natural surjection ξ : F∗p → 〈β〉 : αj 7→ βj into an order-n character χ by
composing it with the isomorphism

ψ : 〈β〉 → µn : βj 7→ e2πij/n.

Recall from Section 5.2 that βn/2 = −1, hence ψ(−1) = −1, so that

χ(−1) = ψ
(
ξ
(
α(p−1)/2

))
= ψ

(
β(p−1)/2

)
= ψ(−1) = −1 .

The proof below makes a frequent use of this fact. For a complex number z we denote the real part
by <(z).

Theorem 5.7. Writing B = { b ∈ 〈β〉 | b− 1 ∈ 〈β〉 }, we have

|S ∩ (S + 1) | =
1

n2

(p+ 1) |B|+
∑

1≤i≤j<n−i

2(2− δi,j)<(ci,jJ(χi, χj))

 , (6)

where ci,j =
∑
b∈B ψ(b)−iψ(1− b)−j and δi,j is the Kronecker symbol.

Proof. Under the Chinese remainder theorem, the set S corresponds to

{ (c, ξ(c)) | c ∈ F∗p } ⊆ Fp × (Z/qZ) ,

so we have

|S ∩ (S + 1) | = |{ c ∈ Fp \ {0, 1} | ∃b ∈ B : ξ(c− 1) = b− 1 and ξ(c) = b }|

=
∑
b∈B

|{ c ∈ Fp \ {0, 1} |χ(c− 1) = ψ(b− 1) and χ(c) = ψ(b) }| .

Each summand of the right-hand side can be rewritten as

∑
c∈Fp\{0,1}

ψ(b)

n

∏
ζ∈µn

ζ 6=ψ(b)

(χ(c)− ζ)


ψ(b− 1)

n

∏
ζ∈µn

ζ 6=ψ(b−1)

(χ(c− 1)− ζ)

 , (7)

where we have used that∏
ζ∈µn

ζ 6=ψ(b)

(ψ(b)− ζ) = ψ(b)n−1
∏
ζ∈µn

ζ 6=ψ(b)

(1− ζψ(b)−1) = ψ(b)−1
∏
ζ∈µn
ζ 6=1

(1− ζ) = nψ(b)−1,

and likewise for ψ(b − 1); to see the last equality, evaluate the polynomial (Xn − 1)/(X − 1) =
Xn−1 + . . .+ 1 at 1.

We can let the sum in (7) range over every c ∈ Fp without affecting it. Indeed, the contribution
of c = 1 is zero since χ(1) = 1 and ψ(b) 6= 1 (because 1 /∈ B), and similarly the contribution of
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c = 0 is zero because χ(−1) = −1 and ψ(b− 1) 6= −1 (because 0 /∈ B). Writing d = 1− c, one sees
that expression (7) then becomes

ψ(b)ψ(b− 1)

n2

∑
c,d∈Fp

c+d=1

 ∏
ζ∈µn

ζ 6=ψ(b)

(χ(c)− ζ)


(−1)n−1

∏
ζ∈µn

ζ 6=ψ(1−b)

(χ(d)− ζ)


=
ψ(b)ψ(1− b)

n2

∑
c,d∈Fp

c+d=1

∏
ζ∈µn

ζ 6=ψ(b)

(χ(c)− ζ)
∏
ζ∈µn

ζ 6=ψ(1−b)

(χ(d)− ζ), (8)

which we can view as the evaluation of

ψ(b)ψ(1− b)
n2

∑
c,d∈Fp

c+d=1

(Xn − 1)(Y n − 1)

(X − ψ(b))(Y − ψ(1− b))

at X = χ(c), Y = χ(d). One checks that

ψ(b)ψ(1− b)(Xn − 1)(Y n − 1)

(X − ψ(b))(Y − ψ(1− b))
=

n−1∑
i,j=0

ψ(b)−iψ(1− b)−jXiY j ,

allowing us to rewrite (8) as

1

n2

∑
c,d∈Fp

c+d=1

n−1∑
i,j=0

ψ(b)−iψ(1− b)−jχi(c)χj(d) =
1

n2

n−1∑
i,j=0

ψ(b)−iψ(1− b)−jJ(χi, χj).

Note that the terms for which i = 0 or j = 0 sum up to p, in view of (2). Using that

J(χi, χn−i) = −χi(−1) = (−1)i+1,

which follows from (3), the terms for which i+ j = n can be seen to sum up to 1. Indeed,

n−1∑
i=1

ψ(b)−iψ(1− b)i−nJ(χi, χn−i) =

n−1∑
i=1

ψ(b)−iψ(1− b)i−n(−1)i+1

= −
n−1∑
i=1

(
−ψ(b)−1ψ(1− b)

)i
= 1−

n−1∑
i=0

(
−ψ(b)−1ψ(1− b)

)i
= 1−

(
−ψ(b)−1ψ(1− b)

)n − 1

(−ψ(b)−1ψ(1− b))− 1
= 1.

Altogether, we find that

|S ∩ (S + 1) | =
∑
b∈B

1

n2

n−1∑
i,j=0

ψ(b)−iψ(1− b)−jJ(χi, χj)

=
1

n2

∑
b∈B

p+ 1 +
∑

1≤i,j≤n−1
i+j 6=n

ψ(b)−iψ(1− b)−jJ(χi, χj)



=
1

n2

(p+ 1)|B|+
∑

1≤i,j≤n−1
i+j 6=n

ci,jJ(χi, χj)
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with ci,j as in the statement of the theorem. Next, using −1 ∈ 〈β〉, one checks that b 7→
1 − b is an involution of B, from which it follows that ci,j = cj,i and hence ci,jJ(χi, χj) =
cj,iJ(χj , χi) for all i, j. The theorem then follows because ci,jJ(χi, χj) is the complex conjugate of
cn−i,n−jJ(χn−i, χn−j).

Remark 5.8. From the previous theorem it follows immediately that |S ∩ (S + 1) | = 0 if B = ∅.
Actually, one can see this already in the beginning of the proof. In some cases it is easy to show
that B = ∅, see Examples 5.10 and 5.11, as well as Theorem 5.13.

Example 5.9. If q = 3 then condition (1) amounts to r = 1, therefore we should restrict to p ≡ 3
(mod 4). The only option for β is −1. Then n = 2 and the corresponding set B is just the singleton
{−1}. The theorem yields |S ∩ (S + 1) | = (p+ 1)/4. It is easy to check that this is never congruent
to −2 (mod 3), so it is impossible to construct a Neumaier graph using the construction in Theorem
4.9. But this we already knew from Section 5.1.

Example 5.10. If q = 5 then r = 1 or r = 2. If r = 1, or in other words p ≡ 3 (mod 4), then
β = −1, but in this case B = ∅ so that |S ∩ (S + 1) | = 0. Thus we focus on the case r = 2, i.e., the
case p ≡ 5 (mod 8). Then β ∈ {±2}, and B = {−2,−1, 2}.

For β = 2, the values of ψ(b) are −i, −1, i, and those of ψ(1− b) are −i, i, −1, for b = −2, −1
and 2 respectively. We find that

|S ∩ (S + 1) | = 1

16

(
3p+ 3 + 2<((−1 + 2i)J(χ, χ)) + 4<((1− 2i)J(χ, χ2))

)
.

Letting x, y be as in (4), i.e.,

p = x2 + y2, x ≡ −
(

2

p

)
≡ 1 (mod 4), y ≡ xα

p−1
4 (mod p),

we find from Theorem 5.7 that

|S ∩ (S + 1) | = 3

16
(p+ 1 + 2x+ 4y),

using the results on Jacobi sums in the table in Example 5.5. Note our usage of p ≡ 5 (mod 8) in
several steps. For β = −2, an analogous computation shows that |S∩ (S+1) | = 3

16 (p+1+2x−4y).

Example 5.11. If q = 7 then r = 1, so p ≡ 3 (mod 4). The possible values of n = ord(β) are 2
and 6. If n = 2 then β = −1 and B = ∅, hence |S ∩ (S + 1) | = 0. Therefore we assume n = 6,
which implies that β is a generator of F∗7 and that p ≡ 1 (mod 6); consequently p ≡ 7 (mod 12).
We focus on β = 3, leaving the analogous case β = −2 for the reader.

We have B = {−3,−2,−1, 2, 3}, and we list the values of ψ(b) and ψ(1− b) for all b ∈ B:

b −3 −2 −1 2 3
ψ(b) −ζ −ζ2 −1 ζ2 ζ

ψ(1− b) −ζ ζ ζ2 −1 −ζ2
.

Theorem 5.7 yields that |S ∩ (S + 1) | equals

1

36

[
5p+ 5 + 2<

(
5+i
√
3

2 J(χ, χ)
)

+ 4<
(

(2− i
√

3)J(χ, χ2)
)

+ 4<
(

(−2 + i
√

3)J(χ, χ3)
)

+4<
(
−5−i

√
3

2 J(χ, χ4)
)

+ 2<
(

1+3i
√
3

2 J(χ2, χ2)
)

+ 4<
(

(2− i
√

3)J(χ2, χ3)
)]

which can be rewritten as

1

36

(
5p+ 5 + 2

(−5u+3v
4

)
+ 4(2x+ 3y) + 4(2x+ 3y) + 4

(−5u+3v
4

)
+ 2

(
r−9s
4

)
+ 4 (2x+ 3y)

)
=

1

36

(
5p+ 5 + 24x+ 36y +

r − 9s− 15u+ 9v

2

)
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using the results on Jacobi sums in the table in Example 5.6, where x, y are as in (5) and where
r, s, u, v are defined correspondingly (see Example 5.6, where we take g = α). This leads to the
conclusion that

36 · |S ∩ (S + 1) | =

 5p+ 5 + 10x+ 36y if y ≡ 0 (mod 3),
5p+ 5 + 40x+ 60y if y ≡ 1 (mod 3),
5p+ 5 + 22x+ 12y if y ≡ 2 (mod 3).

(9)

Example 5.12. Let q = `e11 · · · `
ek
k > 7 be such that all its prime divisors `i satisfy `i ≡ 1 (mod 6).

We can choose r = 1, so p ≡ 3 (mod 4). For each i, consider a primitive 6-th root of unity
βi ∈ (Z/`eii Z)∗, i.e., we let βi be one of the two solutions to X2 −X + 1 = 0. To see why there are
two solutions: there are two solutions modulo `i because

(
−3
`i

)
=
(
`i
3

)
= 1 since `i ≡ 1 (mod 6),

and each of these solutions lifts to a unique solution modulo `eii by Hensel’s lemma [15, Thm. 2.23].
Using the Chinese remainder theorem, we combine these βi’s into a single element β ∈ (Z/qZ)∗. It
is clearly again of order n = 6, and it satisfies

β2 = β − 1 . (10)

Our choice of β implies that p ≡ 1 (mod 6); consequently p ≡ 7 (mod 12).
Using (10) one checks that 〈β〉 = {β, β − 1,−1,−β, 1− β, 1}, and from q > 7 one sees that

B = {β, 1− β}. We immediately find ψ(β) = ψ(1− (1− β)) = ζ and ψ(1− β) = ζ−1 = −ζ2. From
Theorem 5.7 we get:

|S ∩ (S + 1) | = 1

36

(
2p+ 2 + 2 · 2 ·

(
−u

2

)
+ 4 · 1 · x+ 4 · (−1) · (−x)

+4 · (−2) · u
2

+ 2 · 2 · r
2

+ 4 · 1 · x
)

=
1

36
(2p+ 2 + 12x+ 2r − 6u)

using the results on Jacobi sums in the table in Example 5.6, where x, y are as in (5) and where
r, s, u, v are defined correspondingly (see Example 5.6, where we take g = α). This leads to the
conclusion that

36 · |S ∩ (S + 1)| =


2p+ 2 + 4x if y ≡ 0 (mod 3),

2p+ 2 + 16x+ 24y if y ≡ 1 (mod 3),

2p+ 2 + 16x− 24y if y ≡ 2 (mod 3).

(11)

A Fermat prime is a prime of the form 22n + 1 for some integer n. The only known Fermat
primes are 3, 5, 17, 257 and 65537. It is conjectured there are no others.

Theorem 5.13. Let p be an odd prime, let q be an odd integer and let a ∈ (Z/pqZ)∗ be such that
a (mod p) is a generator of (Z/pZ)∗, · and such that a

p−1
2 ≡ −1 (mod pq). Let q =

∏m
i=1 `

ei
i be

the prime power decomposition of q. If there is an i such that `i ≥ 5 is a Fermat prime, and there
is a j such that `j ≡ 3 (mod 4), then |Spq(a) ∩ (Spq(a) + 1)| = 0.

Proof. From (1) and `j ≡ 3 (mod 4) it follows immediately that r = 1. Thus the order of
βi ∈ (Z/`eii Z)∗, the reduction of a modulo `eii , equals 2si for some odd si. Further reducing mod
`i, we find an element βi ∈ (Z/`iZ)∗ whose order divides 2si. But since `i is a Fermat prime, the
order of (Z/`iZ)∗ is a power of 2. Hence ord(βi) is equal to 1 or 2, or in other words βi equals −1
or 1.

Now assume that B = { b ∈ 〈β〉 | b− 1 ∈ 〈β〉 } is non-empty, i.e. we have βr − 1 = βs for certain
exponents r, s. Reducing mod `i yields β

r

i − 1 = β
s

i . But given that βi = ±1 and `i ≥ 5, this is
impossible. So B = ∅ and the theorem follows from Theorem 5.7 and Remark 5.8.

Remark 5.14. From Theorem 5.13 it follows that |Spq(a) ∩ (Spq(a) + 1)| 6≡ −2 (mod q) if q = p′q′

with p′ a Fermat prime and q′ having a prime factor p′′ ≡ 3 (mod 4), given a prime p and an
integer a satisfying the conditions of Theorem 4.9. So, for any such q it is impossible to construct a
Neumaier graph using the construction in Theorem 4.9. The five smallest values of q that have
such a decomposition, and that are not multiples of 3, are 35, 55, 95, 115, and 119.
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5.5 An infinite family of Neumaier graphs for q = 5

We can now explain why there exist infinitely many prime numbers p for which there exists an
a ∈ (Z/5pZ)∗ meeting the conditions from Theorem 4.9 and such that |S ∩ (S + 1) | ≡ −2 (mod 5).
This argument mainly relies on the Gaussian integer analogue of a celebrated result by Dirichlet [13,
Sect.V.6] which states that, for any integer m 6= 0 and any integer a that is coprime to m, there
exist infinitely many prime numbers p ≡ a (mod m). The analogue for the Gaussian integers Z[i]
and for Eisenstein integers Z[ζ] is as follows.

Theorem 5.15. Let R = Z[i] or R = Z[ζ] and consider m ∈ R \ {0}. Let z ∈ R be coprime with
m. Then there exist infinitely many prime elements π ∈ R such that m | π − z.

Proof. This follows from [13, Thm.V.6.2] or [17, Prop. 28.10], applied to the modulus (m) for the
number field K = Frac(R).

Theorem 5.16. There exist infinitely many prime numbers p for which there exists an a ∈ (Z/5pZ)∗

meeting the requirements from Theorem 4.9 and for which S = S5p(a) satisfies |S ∩ (S + 1) | ≡ −2
(mod 5).

Proof. We apply Theorem 5.15 to R = Z[i] with m = 20 and z = 5 + 6i, which one verifies to be
coprime to each other (it suffices to check that gcd(zz, 20) = gcd(52 + 62, 20) = 1), to conclude that
there exist infinitely many Gaussian primes π such that

20 | π − (5 + 6i). (12)

Recall that, up to multiplication with a unit of Z[i], i.e., up to multiplication with ±1,±i, all
Gaussian primes π are either integer primes p ≡ 3 (mod 4), or of the form x+ yi for integers x, y
such that p = ππ = x2 + y2 is an integer prime; in the latter case we necessarily have p = 2 or p ≡ 1
(mod 4).

Writing π = x+ yi, one sees from (12) that x ≡ 5 (mod 20) and y ≡ 6 (mod 20). In particular
x and y are non-zero, hence π cannot be of the form ±p,±pi for some integer prime p ≡ 3 (mod 4).
Thus we must be concerned with a Gaussian prime of the second kind: x2 + y2 is a prime p ≡ 1
(mod 4) (indeed, the case p = 2 is easily ruled out as well).

Since x ≡ 1 (mod 4) and y ≡ 2 (mod 4), we in fact know that p = x2 + y2 ≡ 5 (mod 8). Let α
be a generator of F∗p satisfying y = xα(p−1)/4 (mod p); such a generator indeed exists because y/x
is a primitive 4-th root of unity in F∗p, being a square root of y2/x2 ≡ −1. Let β = 2 ∈ F∗5 and
combine it with α into an element a ∈ (Z/5pZ)∗ using the Chinese remainder theorem. Then, by
Example 5.10, the corresponding set S = S5p(a) satisfies:

|S ∩ (S + 1) | = 3

16
(p+ 1 + 2x+ 4y) ≡ 3

1
(02 + 12 + 1 + 2 · 0 + 4 · 1) ≡ −2 (mod 5),

as wanted.
Since this construction applies to every Gaussian prime satisfying (12), of which there is an

infinite number, we indeed obtain the existence of infinitely many primes p with the desired
property.

Remark 5.17. Note that we could have arrived at the same conclusion using other congruence
classes mod 20, rather than that of 5 + 6i. Indeed, considering the congruence class of z = z1 + z2i
mod 20, the above reasoning applies as soon as z1 ≡ 1 (mod 4), z2 ≡ 2 (mod 4), gcd(z21 +z22 , 20) = 1
and 3

16 (z21 +z22 +2z1 +4z2) ≡ −2 (mod 5). The reader can check that, besides 5+6i, the congruence
classes of 1 + 14i, 13 + 10i, 17 + 2i mod 20 satisfy these conditions, and this list is exhaustive.

Let P5 denote the set of prime numbers p with the requested properties, i.e., for which there
exists an element a ∈ (Z/5pZ)∗ meeting the requirements from Theorem 4.9 and for which the
corresponding set S satisfies |S ∩ (S + 1) | ≡ −2 (mod 5). We claim that all p ∈ P5 arise as the
norm of a Gaussian prime π = x+ yi that belongs to one of the above congruence classes modulo 20.
As before, let α ∈ F∗p and β ∈ F∗5 denote the reductions of a modulo p and modulo 5, respectively.
From Example 5.10 we know that p is necessarily congruent to 5 (mod 8), hence of the form x2 +y2

with x ≡ 1 (mod 4) and y ≡ 2 (mod 4). By changing the sign of a if needed we can assume that
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β = 2, and by changing the sign of y if needed we can assume that y ≡ xα(p−1)/4 (mod p). From
Example 5.10 it then follows that 3

16 (x2 + y2 + 2x+ 4y) ≡ −2 (mod 5). This proves the claim.
We can use this to argue that the set P5 has natural density

δ(P5) = lim
X→∞

|{ prime numbers p ≤ X | p ∈ P5 }|
|{ prime numbers p ≤ X }|

=
7

64
.

Indeed, a refinement of Theorem 5.15 states that, for each z in the above list, the density of prime
ideals of Z[i] having a generator π that satisfies 20 | π − z is 1/32, where the denominator 32 arises
as the size of the ray class group of Q(i) for modulus (20). Explicitly,

lim
X→∞

|{ prime ideals (π) ⊆ Z[i] of norm p = ππ ≤ X |π ≡ z (mod 20) }|
|{ prime ideals (π) ⊆ Z[i] of norm p = ππ ≤ X }|

=
1

32
(13)

(see [17, Prop. 26.10], and see [17, Rmk. 26.12] for why we can use the natural density instead of
the Dirichlet density).

Now observe that the limit in (13) is not affected when replacing the denominator with the
cardinality |{ prime numbers p ≤ X }|. Indeed, we can ignore the unique prime ideal of norm 2 and
rewrite this denominator as

2 · |{ primes numbers p ≤ X | p ≡ 1 (mod 4) }|+
∣∣{prime numbers p ≤

√
X | p ≡ 3 (mod 4) }

∣∣ .
Then the observation follows because the prime numbers are equidistributed among the residue
classes 1 (mod 4) and 3 (mod 4). As for the numerator, if z 6= 13 + 10i then, subject to the
congruence π ≡ z (mod 20), one sees that (π) is uniquely determined by p = ππ. This is different
for z = 13 + 10i, where both (π) and (π) contribute to the numerator. We conclude that the
numerator of δ(P5) is the sum of the numerators of (13) for z = 5 + 6i, 1 + 14i, 17 + 2i and half
the numerator of (13) for z = 13 + 10i, from which the density 1/32 + 1/32 + 1/32 + 1/64 = 7/64
follows.

Example 5.18. The Gaussian prime π = −15 − 14i of norm p = ππ = 421 satisfies (12). The
generator α = 2 of F∗421 meets the requirement α(p−1)/4 ≡ y/x ≡ (−14)/(−15) (mod p). With
β = 2 ∈ F∗5 this combines into a = 2 ∈ (Z/2105Z)∗. The corresponding set S = S2105(2) satisfies
|S ∩ (S + 1) | = 3

16 (p+ 1− 2 · 15− 4 · 14) = 63 ≡ −2 (mod 5).

Remark 5.19. From Theorem 5.16 it follows that there are infinitely many primes p for which an
integer a exists such that S = S5p(a) satisfies |S ∩ (S + 1) | ≡ −2 (mod 5). But, using the notation
from Example 5.10, it also follows that

|S ∩ (S + 1) | = 3

16
(p+ 1 + 2x+ 4y) >

3

16
(p+ 1− 4

√
p) =

3

16
((
√
p− 2)2 − 3) .

Consequently, if p ≥ 41, then t = |S∩(S+1)|+2
5 > 1. So, the Neumaier graphs that we find using the

construction in Theorem 4.9 are strictly Neumaier by Theorem 4.5. Hence, the construction in
Theorem 4.9 produces infinitely many strictly Neumaier graphs for q = 5.

5.6 An infinite family of Neumaier graphs for q = 7

In this section we prove a result for q = 7, which is analogous to Theorem 5.16.

Theorem 5.20. There exist infinitely many prime numbers p for which there exists an a ∈ (Z/7pZ)∗

meeting the requirements from Theorem 4.9 and for which S = S7p(a) satisfies |S ∩ (S + 1) | ≡ −2
(mod 7).

Proof. Here, we apply Theorem 5.15 to conclude that there exist infinitely many Eisenstein primes
π ∈ Z[ζ] such that

84 | π − (3 + 10ζ). (14)

Up to multiplication with one of the six units ±1, ±ζ, ±ζ2 of Z[ζ], the Eisenstein primes π are either
integer primes p ≡ 2 (mod 3), or of the form c+ dζ for integers c, d such that p = ππ = c2 + cd+ d2

is an integer prime, in which case we necessarily have p = 3 or p ≡ 1 (mod 3).
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Writing π = c+ dζ, we get from (14) that c ≡ 3 (mod 84) and d ≡ 10 (mod 84). In particular
c 6= 0, d 6= 0 and c 6= −d, so that π cannot be of the form ±p, ±pζ or ±pζ2 = ∓p± pζ for some
integer prime p ≡ 2 (mod 3). Thus we are concerned with an Eisenstein prime of the second kind:
c2 + cd+ d2 is a prime p ≡ 1 (mod 3) (indeed, the case p = 3 is easily ruled out as well).

We now define x = c+ d/2 and y = d/2, which are integers because d ≡ 10 (mod 84) implies
that d is even. Note that

π = c+ dζ = c+ d
1 + i

√
3

2
= x+ yi

√
3

and that x ≡ 3 + 5 ≡ 8 (mod 42) and y ≡ 5 (mod 42).
In particular it follows that x ≡ 0 (mod 2) and y ≡ 1 (mod 2), so that p = ππ = x2 + 3y2 ≡ 3

(mod 4) and therefore p ≡ 7 (mod 12). We also have x ≡ −1 (mod 3) and y ≡ −1 (mod 3), and
we can choose a generator α of F∗p such that 3y ≡ (2α(p−1)/3 + 1)x (mod p). Such a generator
exists because (3y − x)/(2x) is a primitive 3th root of unity in F∗p; indeed, it is different from 1
because x 6= y, and using y2/x2 = −1/3 one checks that it cubes to 1. Combining this choice of α
with β = 3 into an element a ∈ (Z/7pZ)∗ by means of the Chinese remainder theorem, we see from
Example 5.11 that the corresponding set S satisfies

|S ∩ (S + 1) | = 1

36
(5p+ 5 + 22x+ 12y) ≡ 1

1
(5(12 + 3 · 52) + 5 + 22 · 1 + 12 · 5) ≡ −2 (mod 7),

as wanted.
Because this construction applies to every Eisenstein prime satisfying (14), of which there are

infinitely many, we obtain the existence of infinitely many primes p with the desired properties.

Remark 5.21. Note that, here again, there are other congruence classes to which the above
reasoning applies besides that of 3+10ζ mod 84. Indeed, we could have worked with any z = z1+z2ζ
satisfying z1 ≡ 1 (mod 2), z2 ≡ 2 (mod 4), z1 + z2/2 ≡ −1 (mod 3), gcd(z21 + z1z2 + z22 , 84) = 1
and which is such that the formula for |S ∩ (S+ 1) | from (9) applied to x = z1 + z2/2 and y = z2/2
yields a value congruent to −2 mod 7. The reader can check that these properties hold for the
following 36 congruence classes mod 84:

1 + 50ζ, 3 + 10ζ, 5 + 42ζ, 7 + 74ζ, 9 + 34ζ, 11 + 66ζ,
13 + 14ζ, 21 + 82ζ, 23 + 30ζ, 25 + 62ζ, 27 + 22ζ, 29 + 54ζ,
31 + 2ζ, 33 + 46ζ, 35 + 78ζ, 37 + 26ζ, 39 + 70ζ, 41 + 18ζ,
43 + 50ζ, 45 + 10ζ, 47 + 42ζ, 49 + 74ζ, 51 + 34ζ, 53 + 66ζ,
55 + 14ζ, 63 + 82ζ, 65 + 30ζ, 67 + 62ζ, 69 + 22ζ, 71 + 54ζ,
73 + 2ζ, 75 + 46ζ, 77 + 78ζ, 79 + 26ζ, 81 + 70ζ, 83 + 18ζ,

where we note that the latter 18 are just obtained from the former 18 by adding 42.
Denote by P7 the set of prime numbers p with the requested property, i.e., for which there exists

an a ∈ (Z/7pZ)∗ meeting the requirements from Theorem 4.9 and for which the corresponding set
S satisfies |S ∩ (S + 1) | ≡ −2 (mod 7). As in Remark 5.17, one can check that every p ∈ P7 arises
as the norm of an Eisenstein prime π belonging to one of the above 36 congruence classes. Moreover,
for an Eisenstein prime π in one of these congruence classes, it can be checked that no generator of
(π) (i.e., none of the six elements ±π, ±ζπ, ±ζ2π) belongs to that same congruence class. In other
words, the list contains no analogue of the exceptional case 13 + 10i from Remark 5.17. Mimicking
the rest of the reasoning from Remark 5.17, and using that the ray class group of Q(ζ) for modulus
(84) contains 432 elements, we then conclude that δ(P7) = 36

432 = 1
12 .

Example 5.22. The Eisenstein prime π = 3 + 10ζ = 8 + 5i
√

3 of norm p = ππ = 139 of course
satisfies (14). The generator α = 2 of F∗139 meets the requirement 3y ≡ (2α(p−1)/3 + 1)x (mod p)
for x = 8 and y = 5. With β = 3 ∈ F∗7 this combines into a = 836 ∈ (Z/973Z)∗. The corresponding
set S = S973(836) satisfies |S ∩ (S + 1) | = 1

36 (5p+ 5 + 22 · 8 + 12 · 5) = 26 ≡ −2 (mod 7). Note
that 83665 ≡ 26 (mod 973) and gcd(65, 138) = 1, so S973(836) = S973(26). This is the value that
we find in Table 2.

Remark 5.23. Arguing in the same way as in Remark 5.19, we see that the Neumaier graphs
arising from the construction in Theorem 4.9 for q = 7 are necessarily strictly Neumaier if p ≥ 127.
Hence, this construction produces infinitely many strictly Neumaier graphs for q = 7.
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5.7 Infinitely many infinite families of Neumaier graphs
Finally, building on Example 5.12, we show that there exist infinitely many q’s for which there exist
infinitely many prime numbers p admitting an a ∈ (Z/pqZ)∗ with the requested properties. First
we prove a lemma about a specific system of modular equations.

Lemma 5.24. Let q be a product of (not necessarily distinct) prime numbers that are congruent to
1 modulo 6. There exist integers z1, z2 such that

(i) z1 ≡ 1 (mod 2), z2 ≡ 2 (mod 4),

(ii) z1 + z2/2 ≡ −1 (mod 3), z2/2 ≡ 0 (mod 3),

(iii) gcd(z21 + z1z2 + z22 , 12q) = 1,

(iv)
(
2(z21 + z1z2 + z22) + 2 + 4z1 + 2z2

)
/36 ≡ −2 (mod q).

Proof. It suffices to find integers z1, z2 meeting condition (iv) and gcd(z21 + z1z2 + z22 , q) = 1,
which are conditions modulo q. Indeed, such integers can be transformed into integers satisfying
conditions (i)–(iv) by further imposing z1 ≡ 5 (mod 12) and z2 ≡ 6 (mod 12), which can be done
using the Chinese remainder theorem. When looking for integers z1, z2 meeting condition (iv) and
gcd(z21 + z1z2 + z22 , q) = 1, it suffices to assume that q = `e for some prime ` ≡ 1 (mod 6) and some
exponent e ≥ 1, again by the Chinese remainder theorem.

If e = 1 we are looking for a point (z1, z2) ∈ F2
` on the conic

Z2
1 + Z1Z2 + Z2

2 + 2Z1 + Z2 + 37 = 0 (15)

which moreover satisfies z21 + z1z2 + z22 6= 0 or, equivalently, 2z1 + z2 + 37 6= 0. One checks that this
conic is absolutely irreducible, hence non-singular, and that it has two F`-rational points at infinity,
so there are ` − 1 affine points over F`. At most two of these points satisfy the linear equation
2Z1 + Z2 + 37 = 0. Therefore, since ` ≡ 1 (mod 6) is at least 7, a point with the desired properties
exists.

If e > 1 then one again starts from a point (z1, z2) on the conic (15) viewed over F`, making
sure that z21 + z1z2 + z22 6= 0. Since it concerns a non-singular point, at least one of the partial
derivatives of the left-hand side of (15) does not vanish at it; let us assume that this is true for
∂/∂Z1, the other case is completely analogous. Now view the left-hand side of (15) as a polynomial
over Z/`eZ and substitute an arbitrary lift z2 of z2 for Z2. The remaining univariate polynomial
in Z1 satisfies the hypotheses of Hensel’s lemma [15, Thm. 2.23] at z1, so we can lift the latter to
obtain a solution (z1, z2) of (15) over Z/`eZ. The condition gcd(z21 + z1z2 + z22 , q) = 1 is ensured
because (z1, z2) reduces to (z1, z2) modulo `. This concludes the proof of the lemma.

Theorem 5.25. Let q be a product of (not necessarily distinct) prime numbers that are congruent
to 1 modulo 6. There exist infinitely many prime numbers p for which there exists an a ∈ (Z/pqZ)∗

meeting the requirements from Theorem 4.9 and for which S = Spq(a) satisfies |S ∩ (S + 1) | ≡ −2
(mod q).

Proof. If q = 7 then this follows from Theorem 5.20, so we can assume q > 7 and choose β ∈ (Z/qZ)∗

as in Example 5.12, i.e., such that β2 = β − 1; such a β exists, as was explained there.
Apply Lemma 5.24 to find integers z1, z2 satisfying (i)–(iv). We then proceed as in Section 5.6:

according to Theorem 5.15 there exist infinitely many prime elements π ∈ Z[ζ] such that

12q |π − (z1 + z2ζ), (16)

where we note that 12q and z1 + z2ζ are indeed coprime, thanks to condition (iii) in Lemma 5.24.
Writing π = c + dζ, this implies that c ≡ z1 and d ≡ z2 modulo 12q. Note, in view of (i), that
c 6= 0, d 6= 0 and c 6= −d. As a consequence π cannot be of the form ±p,±pζ,±pζ2 = ∓p± pζ for
an integer prime p. Thus π is an Eisenstein prime of the second kind, i.e. c2 + cd+ d2 is a prime
p ≡ 1 (mod 3) (indeed, the case p = 3 is easy to rule out).

Define x = c+ d/2 and y = d/2, which are integers because d ≡ z2 (mod 12q) is even, again
in view of (i). We then have x ≡ z1 + z2/2 (mod 6q) and y ≡ z2/2 (mod 6q). In particular we
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find that x ≡ 0 (mod 2) and y ≡ 1 (mod 2), again by (i), so that p = ππ = x2 + 3y2 ≡ 3 (mod 4)
and therefore p ≡ 7 (mod 12). Next, one sees that x ≡ −1 (mod 3) and y ≡ 0 (mod 3) in view
of (ii). We can find a generator α of F∗p that satisfies 3y ≡ (2α(p−1)/3 + 1)x (mod p), see Section
5.6. Choosing such a generator and combining it with β using the Chinese remainder theorem, we
then find an element a ∈ (Z/pqZ)∗ such that the corresponding set S satisfies |S ∩ (S + 1) | ≡ −2
(mod q); indeed, this follows from (iv) and (11).

This reasoning applies to each of the infinitely many Eisenstein primes π satisfying (16), from
which the theorem follows.

Example 5.26. We choose q = 13 · 19 = 247, and we check that β = 69 satisfies β2 = β − 1 in
(Z/qZ)∗; we can find β = 69 using the Chinese remainder theorem, having found 4 and 12 as
solutions of X2 = X − 1 in F∗13 and F∗19, respectively. When viewed over F13, the conic (15) admits
the point (z1, z2) = (0, 1) and it satisfies z21 + z1z2 + z22 6= 0. Similarly, over F19 we find that the
point (z1, z2) = (0, 14) has the requested properties. Modulo q = 13 · 19, these points combine into
(z1, z2) = (0, 14). Finally, by further imposing z1 ≡ 5 (mod 12) and z2 ≡ 6 (mod 12), we find that
(z1, z2) = (2717, 1002) satisfies conditions (i)–(iv) modulo 12q = 12 · 13 · 19. Within the congruence
class of z1 + z2ζ mod 12q, we find the Eisenstein prime

π = c+ dζ, where c = z1 − 12q and d = z2,

of norm p = ππ = c2 + cd+ d2 = 817519. The respective values of x = c+ d/2 and y = d/2 are 254
and 501. One checks that α = 15 is a generator of F∗p satisfying 3y = (2α(p−1)/3 + 1)x. Together
with β = 69 this combines into a = 22890547 ∈ (Z/pqZ)∗, and the corresponding set S = Spq(a)
can be seen to satisfy |S ∩ (S + 1) | = 45446 = 184 · 247 − 2, which is indeed congruent to −2
modulo q.

Remark 5.27. Let q be a product of (not necessarily distinct) prime numbers that are congruent
to 1 modulo 6. Arguing in the same way as in Remarks 5.19 and 5.23, we see that the Neumaier
graph arising from the construction in Theorem 4.9 for q is necessarily strictly Neumaier if
p ≥ 18(q − 2) + 8

√
18(q − 2) + 16 + 31. Hence, this construction produces infinitely many strictly

Neumaier graphs for q.
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